
Parameter Estimation for Discrete-Time
Nonlinear Systems Using EM

Adrian Wills
∗

Thomas B. Schön
∗∗

Brett Ninness
∗

∗ School of Electrical Engineering and Computer Science, University of
Newcastle, Callaghan, NSW 2308, Australia (e-mail:

Adrian.Wills@newcastle.edu.au, and Brett.Ninness@newcastle.edu.au).
∗∗ Division of Automatic Control, Linköping University, SE-581 83
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1. INTRODUCTION

One of the most general descriptions of dynamic system
behaviour is a stochastic nonlinear state-space model of
the form

xt+1 = ft(xt, ut, wt, θ), (1a)

yt = ht(xt, ut, vt, θ), (1b)

where xt ∈ R
nx denotes the state variable, ut ∈ R

nu

denotes the input signal (control signal), yt ∈ R
nu denotes

the output signal (measurement), wt and vt denote the mu-
tually independent i.i.d. process and measurement noise
(respectively), and θ ∈ R

nθ denotes model parameters.

Parameterisation of the above model will largely depend
on the situation at hand. Typically, however, this will in-
volve a combination of physical insight in conjunction with
more generic black-box structures [Ljung, 1999]. Given
such a model structure, in this paper we are concerned
with estimating the parameters θ based on the information
about the system that is present in the observed inputs and
outputs.

This is a nonlinear system identification problem [Ljung,
1999, Söderström and Stoica, 1989] and we will approach
it using a maximum likelihood (ML) formulation, i.e. we

seek an estimate of the parameter values θ̂ via

θ̂ , arg max
θ

pθ(y1, . . . , yN ), (2)

where pθ(y1, . . . , yN ) denotes the joint likelihood of N
output measurements, as postulated via model (1).

One approach for solving this maximum likelihood prob-
lem is to use an iterative gradient-based search procedure.
This requires calculation of the likelihood and the predic-
tor gradient ∂

∂θp(yt|y1:t−1) for a given parameter value.
This in turn requires the solution of a nonlinear filtering
problem as shown in Coquelin et al. [2007], Poyiadjis et al.
[2005], where some insight into approximating the filter

gradients using Sequential Monte Carlo (SMC) methods
was also provided.

In the present contribution we approach the maximum
likelihood problem using an Expectation Maximisation
(EM) algorithm. This has previously been considered for
linear and bilinear systems by Gibson and Ninness [2005]
and Gibson et al. [2005], respectively. A detailed discussion
of EM as applied to Stochastic Volatility models can be
found in [Kim, 2005]. However, the more general state-
space model (1) is not considered in that work. Andrieu
and Doucet [2003] have considered the case of on-line
estimation using EM. They use a split-data likelihood
criteria to avoid degeneration in the expectation step of
EM, which shows very promising results.

In previous work by the authors [Schön et al., 2006],
offline parameter estimation using the EM algorithm for
nonlinear state-space models was also addressed. However,
in contrast to the work here employing the very general
state-space model (1) and placing (almost) no restriction
on the distribution of wt.vt, in [Schön et al., 2006] the
parameterisation was required to be affine and the noise
was required to be additive and Gaussian.

2. ML ESTIMATION AND THE EM ALGORITHM

The maximum likelihood problem in (2) can be restated
in a more convenient form as the maximum log-likelihood
problem

θ̂ , arg max
θ

Lθ(Y ), Lθ(Y ) , log pθ(Y ), (3)

where Y , {y1, . . . , yN}. The inherent difficulty in solving
the above optimisation problem stems from the need
to perform a nonlinear filtering operation in order to
calculate Lθ(Y ). This problem is amplified when gradient
and Hessian information is also required. Nevertheless, this
approach has been successfully applied by [Andrieu et al.,
2004, 2005, Coquelin et al., 2007, Poyiadjis et al., 2005]
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Here, we take a different approach and employ the EM
algorithm. As motivation for this, suppose that in addition
to the output measurements Y we are also given mea-
surements of the state X , {x1, . . . , xN+1}, and based on
all these measurements and the postulated system model
in (1), we seek the maximum log-likelihood estimate of θ
via

θ̂ , arg max
θ

Lθ(X,Y ), (4)

Lθ(X,Y ) , log pθ(X,Y ). (5)

Then, at least in principle, we could maximise Lθ using
a similar iterative search procedure as mentioned above.
This situation is not realistic, however, since the state is
typically not measured. At the same time, we can regard
this as the best possible scenario. That is to say, if solving
the above problem is difficult, then we can expect solving
(3) to become even more difficult.

This is a basic premise of the EM method; we should
choose the missing data X such that if it were available,
then solving (4) would be straightforward or at least easier
than solving (3). The problem is that we don’t have the
missing data X. This motivates the first step (E-step) of
the EM method, in which the joint likelihood Lθ(X,Y )
is approximated using its expected value over the missing
data X–based upon some current guess at the parameters
θ′. That is, we approximate Lθ(X,Y ) via its expected
value Eθ′{Lθ(X,Y ) | Y } conditional on the observed data
Y and a current estimate θ′ of the model parameters. This
can be viewed as marginalisation of the missing data X,

Lθ(X,Y ) ≈

∫
Lθ(X,Y )pθ′(X|Y )dX , Q(θ, θ′). (6)

A remarkable feature of the EM algorithm is that max-
imising Q(θ, θ′) actually guarantees an increase of the like-
lihood Lθ(Y ), which is our purpose in this paper. Indeed
(see, for example Gibson and Ninness [2005])

Q(θ, θ′) , Lθ(Y ) +

∫
log pθ(X|Y )pθ′(X|Y )dX,

and therefore

Lθ(Y )− Lθ′(Y ) = (7)

Q(θ, θ′)−Q(θ′, θ′) +

∫
log

pθ′(X|Y )

pθ(X|Y )
pθ′(X|Y )dX. (8)

Furthermore, the rightmost integral in (8) is the Kullback-
Leibler divergence metric, which is therefore non-negative.
Hence,

Lθ(Y )− Lθ′(Y ) ≥ Q(θ, θ′)−Q(θ′, θ′), (9)

which implies that by increasing Q we in fact increase the
likelihood Lθ(Y ). It follows that at iteration k of the EM
algorithm we proceed as follows

(1) (E-Step): Form the expected value of Lθ(X,Y ) over
the missing data X based on the current parameter
estimate θk and the measurements Y via

Q(θ, θk) = Eθ′{Lθ(X, Y ) | Y } =

∫
Lθ(X, Y )pθk

(X|Y )dX. (10)

(2) (M-Step): obtain a new estimate θk+1 by maximising
Q(θ, θk) over θ, i.e.

θk+1 , arg max
θ

Q(θ, θk). (11)

Iterating between these expectation and maximisation
steps is known as the Expectation Maximisation (EM)
algorithm [Dempster et al., 1977]. Clearly, its employ-
ment requires a mechanism for computing the expectation

involved in Q(θ, θk), and also a means for maximising
Q(θ, θk) over θ.

In terms of the expectation, there are very few situations
where an exact and tractable solution exists (a well known
exception is linear systems with additive Gaussian noise).
As such, we will employ an approximation technique in
this paper; namely we employ Sequential Monte Carlo
methods to approximate the distribution pθk

(X|Y ) in
(10). The approximation consists of a sum of weighted
delta functions, which allows us to convert the integral in
Q(θ, θk) into a finite sum as shown in the next section.

3. EXPECTATION STEP

The expectation step corresponds to computing Q(θ, θk).
This may be performed by first noting that via Bayes’
rule and the Markov properties associated with the model
structure (1)

pθ(X,Y ) = pθ(Y | X)pθ(X) (12)

= pθ(x1)

N∏

t=1

pθ(xt+1 | xt)p(yt | xt) (13)

Taking logarithms and conditional expectations as per the
definition (5), (6) then delivers

Q(θ, θk) =

∫
log pθ(x1)pθk

(X|Y )dx1

+

N∑

t=1

∫
log pθ(xt+1|xt)pθk

(xt+1|Y )dxt

+
N∑

t=1

∫
log pθ(yt|xt)pθk

(xt|Y )dxt, (14)

which explains why we are interested in the marginal
smoothing density p(xt|Y ), rather than the complete joint
density p(X|Y ). These marginal smoothing densities will
be approximated using sequential Monte Carlo methods,
resulting in (δ is the Dirac delta)

p(xt|Y ) ≈
M∑

i=1

q̃
(i)
t|Nδ(xt − x

(i)
t|N ). (15)

The details regarding the computation of this approxima-
tion are given in the subsequent section. Substituting (15)

in (14) provides the desired approximation Q̂(θ, θk) of
Q(θ, θk)

Q̂(θ, θk) =
M∑

i=1

q̃
(i)
1|N log pθ(x

(i)
1|N )

+

N∑

t=1

M∑

i=1

q̃
(i)
t+1|N log pθ(x

(i)
t+1|N |xt)

+

N∑

t=1

M∑

i=1

q̃
(i)
t|N log pθ(yt|x

(i)
t|N ). (16)

In order to maximise Q(θ, θk) we will typically need
gradients and possibly Hessians. It is straightforward to
approximate them using (15) as well. For the gradient we
have

∂Q

∂θ
=

∂

∂θ

∫
log pθ(X,Y )pθk

(X|Y )dX

=

∫
∂ log pθ(X,Y )

∂θ
pθk

(X|Y )dX.
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This is an expression which is exactly in the same form
as (6). Hence, we can use (15) to approximate the gradients
as well (similarly for the Hessian).

4. PARTICLE METHODS

Here it is worth noticing that, similar to the present
contribution, Coquelin et al. [2007] and Poyiadjis et al.
[2005] make use of the marginal density pθ(xt|Y ), rather
than the joint density pθ(x1:N |Y ). Approaches based on
the joint density will inevitably run into problems as the
sample size N increases [Andrieu et al., 2004].

This section will describe how to obtain an estimate of
pθ(xt|Y ) in the form (15) using particle methods. Inspired
by the work of Tanizaki [2001, 2004], let us consider
the problem of generating random numbers distributed
according to some target density t(x), which potentially is
rather complex. One way of doing this would be to employ
an alternate density that is simple to draw from, say s(x),
referred to as the sampling density, and then calculate the
probability that the sample was in fact generated from the
target density. That is, a sample x(i) ∼ s(x) is drawn, and
then the following ratio is calculated

a(x(i)) ∝ t(x(i))/s(x(i)),

which indicates how probable it is that x(i) is in fact
generated from the target density t(x).

The probability of accepting x(i) as a sample from t(x) is
referred to as the acceptance probability, and typically it is
computed via consideration of a(x(i)). This is the case, for
example, for all of the so-called “rejection sampling”, “im-
portance sampling/resampling” and “Metropolis–Hastings
independence sampling” methods [Tanizaki, 2001, Liu,
1996]. This paper employs importance resampling.

4.1 Particle Filter

In the case of filtering, the target density referred to
above becomes t(xt) = p(xt|Yt), and it is then necessary
to also choose an appropriate sampling density s(·) and
acceptance probability. This is in fact quite simple, since
from Bayes’ theorem and the Markov property

p(xt|Yt) = p(xt|yt, Yt−1) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)

∝ p(yt|xt)p(xt|Yt−1)

which suggests, since t(x) ∝ a(x)s(x), the following choices

p(xt|Yt)︸ ︷︷ ︸
t(xt)

∝ p(yt|xt)︸ ︷︷ ︸
a(xt)

p(xt|Yt−1)︸ ︷︷ ︸
s(xt)

.

Via the principle of importance resampling the acceptance
probabilities, {ã(i)}Mi=1, are calculated according to

ã(i) =
a(x

(i)
t|t−1)

∑M
j=1 a(x

(j)
t|t−1)

=
p(yt|x

(i)
t|t−1)

∑M
j=1 p(yt|x

(j)
t|t−1)

,

where x
(i)
t|t−1 ∼ p(xt|Yt−1). That is, acceptance probabili-

ties ã(i) depend upon computation of p(yt|xt|t−1).

The algorithm then proceeds by obtaining samples from

p(xt|Yt) by resampling the particles {x
(i)
t|t−1}

M
i=1 from the

sampling density p(xt|Yt−1) according to the correspond-
ing acceptance probabilities {ã(i)}Mi=1. If this procedure is
recursively repeated over time the following approximation

p(xt|Yt) ≈
M∑

i=1

1

M
δ(xt − x

(i)
t|t) (17)

is obtained, and we have in fact derived the particle filter
algorithm, which is given below in Algorithm 1. It was first
introduced by Gordon et al. [1993].

Algorithm 1. Particle filter

(1) Initialise the particles, {x
(i)
0|−1}

M
i=1 ∼ px0

(x0).

(2) Calculate weights {q
(i)
t }

M
i=1 according to

q
(i)
t = p(yt|x

(i)
t|t−1)

and normalize q̃
(i)
t = q

(i)
t /

∑M
j=1 q

(j)
t .

(3) Resample N particles according to

Pr(x
(i)
t|t = x

(j)
t|t−1) = q̃

(j)
t

(4) For i = 1, . . . ,M , predict new particles according to

x
(i)
t+1|t ∼ p(xt+1|t|x

(i)
t|t).

(5) Set t := t + 1 and iterate from step 2.

4.2 Particle Smoother

In solving the smoothing problem the target density be-
comes t(xt+1, xt) = p(xt+1, xt|Y ). Similarly to what was
discussed in the previous section we have to find a suit-
able sampling density and the corresponding acceptance
probabilities to solve the smoothing problem. Again, using
Bayes’ theorem we have

p(xt+1, xt|Y ) = p(xt|xt+1, Y )p(xt+1|Y ) (18)

where

p(xt|xt+1, Y ) = p(xt|xt+1, Yt, Yt+1:N )

=
p(Yt+1:N |xt, xt+1, Yt)p(xt|xt+1, Yt)

p(Yt+1:N |xt+1, Yt)

= p(xt|xt+1, Yt) =
p(xt+1|xt)p(xt|Yt)

p(xt+1|Yt)
. (19)

Inserting (19) into (18) gives

p(xt+1, xt|Y )︸ ︷︷ ︸
t(xt+1,xt)

=
p(xt+1|xt)

p(xt+1|Yt)︸ ︷︷ ︸
a(xt+1,xt)

p(xt|Yt)p(xt+1|Y )︸ ︷︷ ︸
s(xt+1,xt)

.

At time t the sampling density can be used to generate
samples. In order to find the acceptance probabilities
{a(i)}Mi=1 we have to calculate

a(xt+1, xt) =
p(xt+1|xt)

p(xt+1|Yt)
,

where p(xt+1|xt) is calculated using the model (1), and
p(xt+1|Yt) can be approximated according to

p(xt+1|Yt) =

∫
p(xt+1|xt)p(xt|Yt)dxt

≈
M∑

j=1

1

M
p(xt+1|x

(j)
t|t ),

where (17) has been used. The particles can now be resam-
pled according to the normalised acceptance probabilities
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{ã(i)}Mi=1 in order to generate samples from p(xt+1, xt|Y ).
The above discussion can be summarised in the following
algorithm (first introduced by Tanizaki [2001]).

Algorithm 2. Particle smoother

(1) Run the particle filter (Algorithm 1) and store the

filtered particles, {x
(i)
t|t}

M
i=1, t = 1, . . . , N .

(2) Initialise the smoothed particles and importance

weights at time N according to {x
(i)
N |N = x

(i)
N |N , q̃

(i)
N |N =

1/M}Mi=1 and set t := t− 1.

(3) Calculate weights {q
(i)
t|N}

M
i=1 according to

q
(i)
t|N =

p(x
(i)
t+1|N |x

(i)
t|t)

∑M
j=1 p(x

(i)
t+1|N |x

(j)
t|t )

and normalise q̃
(i)
t|N = q

(i)
t|N/

∑M
j=1 q

(j)
t|N .

(4) Resample the smoothed particles according to

Pr(x
(i)
t+1|N , x

(i)
t|N ) = (x

(j)
t+1|N , x

(j)
t|t ) = q̃

(j)
t|N

(5) Set t := t− 1 and iterate from step 3.

5. MAXIMISATION STEP

Recall that the EM method comprises the expectation step
as described in Sections 3 and 4, and the maximisation
step, which is the subject of the current section. It was
mentioned in Section 2 that the choice of missing data is
often made so that maximising Q(θ, θk) is straightforward.
As such, it is difficult to prescribe an efficient method
for solving the maximisation step since it will necessarily
change on a case-by-case basis. Nevertheless, here we
are interested in a general approach that is applicable
whenever Q(θ, θk) and its gradient with respect to θ exist,
but makes no attempt to exploit any underlying structure
of the specific problem at hand.

In order to use the EM method, we require the following
steps to be performed (prior to calling the EM routine).

(1) Form the expression (i.e. write software) for Q̂(θ, θk);

this depends on θ, the weights q̃
(i)
t|N and the smoothed

particles x
(i)
t|N (see Sections 3, 4.1 and 4.2).

(2) Form the expression (i.e. write software) for∇θQ̂(θ, θk)

∇θQ̂(θ, θk) ,

M∑

i=1

q̃
(i)
1|N

∂ log pθ(x
(i)
1|N )

∂θ

+

N∑

t=1

M∑

i=1

q̃
(i)
t+1|N

∂ log pθ(x
(i)
t+1|N |xt)

∂θ

+

N∑

t=1

M∑

i=1

q̃
(i)
t|N

∂ log pθ(yt|x
(i)
t|N )

∂θ
. (20)

With this software available, then we can maximise Q̂
using any practical gradient-based search procedure. Note
that for the numerical illustrations in Section 7, we have
used a standard Quasi-Newton method (see e.g. [Nocedal
and Wright, 2006, Dennis and Schnabel, 1983, Fletcher,

1987]). Furthermore, note that if the gradient of Q̂ is

difficult to obtain, then numerical differentiation can be
used instead.

6. THE ALGORITHM

The EM method described in this paper can be sum-
marised by the following algorithm.

Algorithm 3. (EM algorithm). Given a model in the form
of (1) and an initial parameter estimate θ0, then set k = 0
and perform the following steps:

(1) Compute the filtered weights and particles (q̃
(i)
t|t , x

(i)
t|t )

via Algorithm 1 based on θk.
(2) Compute the smoothed weights and particles

(q̃
(i)
t|N , x

(i)
t|N ) via Algorithm 2 based on (q̃

(i)
t|t , x

(i)
t|t ) and

θk.

(3) Using θk and (q̃
(i)
t|N , x

(i)
t|N ), maximise Q̂(θ, θk) as given

in (16) via gradient based search to form

θk+1 , arg max
θ

Q̂(θ, θk). (21)

(4) Set k ← k + 1 and goto Step 1.

The above algorithm was trialled on several numerical
examples, which are profiled in the following section.

7. NUMERICAL ILLUSTRATIONS

In this section we demonstrate the utility of Algorithm 3
through several simulation examples. The first example
considers a linear time-invariant state-space model, which
is known to have a exact solution (i.e. to machine pre-
cision) for both the expectation and maximisation steps
Gibson and Ninness [2005]. The reason for including this
example is to profile the exact solution against that ob-
tained using Algorithm 3.

The remaining examples involve various nonlinearities
in either the state-transition or measurement equations,
which render parameter estimation a more challenging
task.

7.1 Linear Gaussian System

Consider the following linear state-space model

xt+1 = axt + but + wt, (22a)

yt = cxt + dut + et, (22b)[
wt
et

]
∼ N

([
0
0

]
,

[
q s
s r

])
. (22c)

Given measurements of the input ut and the output yt for
t = 1, . . . , N , we would like to estimate the parameters
θT = [a, b, c, d, q, s, r].

A realisation from (22) was obtained with the input se-
lected as ut ∼ N (0, 1) and for N = 1000 samples and with
θT = [0.9, 0.8, 0.5, 0.2, 0.01, 0, 0.01]. Both the exact
EM algorithm from Gibson and Ninness [2005] and Algo-
rithm 3 were employed and the evolution of the parameter
estimates are shown in Figure 1. The initial parameter
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Fig. 1. Example 1: Evolution of the parameter values
for the linear system (22). The exact EM (solid) is
profiled against Algorithm 3 (shown as *’s).

estimates were selected as θT
0 = [0.5, 0.5, 0.5, 0.5, 1, 0, 1]

and Algorithm 3 was used with M = 50 particles.

Note that this parametrisation is not strictly identifiable
since similarity transformations of the state will result in
input-output equivalent systems; in fact, for this example
only the (b, c) pair will not be identifiable. Therefore, we
have plotted b×c, which is independent of similarity trans-
formations. The extremely close agreement between the
Figure 1 results obtained via ‘exact’ Kalman smoothing,
and approximate particle smoothing indicates gives some
confidence that the approach will be viable in cases where
an exact solution is not available. To such situations will
now be profiled.

7.2 Stochastic Volatility System

With the favourable results from Section 7.1 we considered
the more challenging problem of parameter estimation for
a stochastic volatility model. This model is used, for ex-
ample, to predict changes in the variance (or volatility) of
stock prices and exchange rates. The stochastic volatility
model can be described as

xt+1 = axt + bwt, (23a)

yt = cext/2et, (23b)

wt ∼ N (0, 1) , (23c)

et ∼ N (0, 1) , (23d)

x0 ∼ N
(
0, b2/(1− a2)

)
. (23e)

In this case the parameters to be estimated are θT =
[a, b, c].

In accordance with the literature for this problem, we
simulated the system for θT = [0.85, 0.35, 0.65] and
recorded N = 10000 samples of the output yt. Starting
from the initial guess of θT

0 = [0.5, 0.5, 0.5] we used
Algorithm 3, save for the fact that we used a different
particle smoother for this example. Rather than using
Algorithm 2, we used the particle smoother proposed by
Godsill et al. [2004]. Here it is important to note that it
is straightforward to change smoothing algorithm, due to

the general nature of Algorithm 3. Again M = 50 particles
were used, and the parameter estimates are shown in
Figure 2.
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Fig. 2. Example 2: Evolution of the parameter values for
the stochastic volatility model (23).

Despite using only 50 particles, the parameters converged
towards to “true” values. However, we are using a large
number of data points and there appears to be a bias on
the b parameter for this data set. It was speculated that
this effect was due to the small number of particles being
used. Therefore, we increased the number to M = 100 and
ran the algorithm again with the same data set as before,
but observed only marginally better results.

To investigate this further, we performed a Monte Carlo
test with 100 simulations as described above, and the
results are summarised in Table 1. This shows that the EM
method of Algorithm 3 appears to produce inconsistent
estimates for this example under the above conditions.

Table 1. True and estimated parameter values
for Example 7.2; mean value and standard
deviations are shown for the estimates based

on 100 Monte Carlo runs.

Parameters True Values Estimates
a 0.8500 0.8496 ± 0.0119
b 0.3500 0.3280 ± 0.0165
c 0.6500 0.6602 ± 0.0085

It is difficult to gauge this bias against that (if any)
produced by competing off-line methods since, to the
authors’ knowledge, no such Monte Carlo tests have been
reported.

7.3 A Synthetic Nonlinear System

As a final example we considered the synthetic state-space
model

xt+1 = axt +
xt

b + x2
t

+ ut + wt, (24a)

yt = cxt + dx2
t + et, (24b)

where ut is a known input signal that was selected as a
sequence of random numbers, each distributed according
to N (0, 1). Here, the parameters to be estimated are θT =
[a, b, c, d, q, r], where q and r are the covariance of wt
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and et, respectively. For brevity we report only (a, b, c, d)
here.

This system was chosen because both the state transition
and measurement equations are nonlinear. In addition, the
parameters do not appear linearly in the model since b
appears in the denominator. We simulated this system
with θT = [0.7, 0.6, 0.5, 0.4, 0.01, 0.01] using N = 1000
samples. Algorithm 3 was employed with initial guess
θT
0 = [0.2, 0.2, 0.2, 0.2, 1, 1] and using M = 50 particles.

The parameter values are shown in Figure 3.

It appears that Algorithm 3 performs quite well on this ex-
ample for this data set. To examine the algorithm further,
we performed a Monte Carlo test with 100 simulations as
described above. The results are given in Table 2, which
shows that the algorithm produces consistent estimates for
this example.
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Fig. 3. Example 3: Evolution of the parameter values for
state-space model (24).
Table 2. True and estimated parameter values
for Example 7.3; mean and standard deviations
are shown for the estimates based on 100

Monte Carlo runs.

Parameters True Values Estimates
a 0.7000 0.7010 ± 0.0072
b 0.6000 0.6007 ± 0.0057
c 0.5000 0.4999 ± 0.0027
d 0.4000 0.4052 ± 0.0085

8. CONCLUSION

The contribution in this paper is an EM algorithm for solv-
ing the parameter estimation problem in general stochastic
nonlinear state-space models. Our experience from using
the proposed algorithm is that it would probably benefit
from an improved smoothing step. The plug-and-play na-
ture of Algorithm 3 implies that it is straightforward to
use it with a different smoother. Most particle smoothing
algorithms (if not all) use the particles from the filtering
step and just recompute the weights. However, it would be
interesting to derive an algorithm that changes the support
(i.e. the particles) as well.
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