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1. INTRODUCTION

Milling of ore from a mine is an important step in the
metallurgical extraction process. The process is compli-
cated by significant input and plant uncertainties, because
the feed ore forms part of the grinding medium and the
variation in feed ore contributes to the input uncertainty.
Proper design of the milling circuit alone cannot elimi-
nate the disturbances. Feedback control systems play an
important part in reducing the effects of disturbances and
increasing efficiency. Reduction of output variations does
not only have a positive effect on the economics of the
milling circuit itself but is also beneficial in downstream
processing.

In milling circuits it is difficult to control important vari-
ables such as the product particle size, because indepen-
dent control of the amount, size and hardness of the
grinding medium in the mill is not possible. This causes
significant uncontrollable disturbances and uncertain plant
dynamics [Craig and MacLeod, 1995].

Each of the components that make up the milling circuit is
highly nonlinear. Some of the components, for example the
cyclone, only have nonlinear input-output relationships
and no states. The cyclone model reduces to a static gain
matrix when linearized.

Milling circuits have many different configurations. Being
able to use the nonlinear components and arrange them
in different configurations gives huge advantages in simu-
lating different milling configurations. Applying nonlinear
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control like nonlinear MPC control further simplifies the
process, by eliminating the need for different simulation
and control models.

This study determines the feasibility of applying nonlinear
MPC to the milling circuit, firstly by examining the
performance of the nonlinear MPC through a simulation
study. Secondly, the calculation time should be short
enough for real-time implementation.

2. ROM MILL CIRCUIT

2.1 ROM Milling Circuit Description

An industrial run-of-mine ore milling circuit with single
stage classification is discussed.

The circuit is fed gold-bearing ore at about 100 tons/hour
and grinds it down to a product with particle size of 80%
smaller than 75 µm. The ROM mill is operated in closed
circuit with a hydro-cyclone that separates the product
from the out-of-specification material, which is recycled to
the mill. The gold is then extracted through a leaching
process downstream.

A typical mill has dimensions of 5m in diameter and a
length of 9m. The mill is supported by pressurized-oil
circumferential bearings. The mill features lifter bars and
solid white-iron liners and it is operated at 90% of critical
speed [Stanley, 1987]. The mill discharges slurry through
an end-discharge grate into a sump. The slurry is diluted
with water in the sump and pumped to the hydro-cyclone.
The hydro-cyclone has an internal diameter of 1m. The
underflow of the cyclone, water and feed ore constitute
the mill feed.
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Fig. 1. Milling Circuit Schematic
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Fig. 2. Milling Circuit Modules

2.2 Milling Circuit Model

The variables of the mill (Figure 1) that can be controlled
are the level of the slurry in the sump (SLEV), the product
particle-size (PSE) and the mass of material in the mill
(LOAD). The inputs to the mill that can be manipulated
are the feed-rate of water to the sump (SFW), the flow
rate of slurry to the cyclone (CFF), the feed-rate of solids
to the mill (MFS) and the rate of water fed to the mill
inlet (MIW).

The feed-ore consists of rock (do not discharge from the
mill), coarse (out-of-specification but do discharge from
the mill) and fine ore (in-specification material). The
composition is described by αf and αr in Table 1. The
circuit depicted in Figure 1 has a total of 8 states, 6 inputs
and 5 outputs.

Due to brevity, the nonlinear models of each of the
components in Figure 2 are not shown [Hulbert, 2005].
Only a short discussion of how the variables in Figure 2
relates to the diagram in Figure 1 will be given.

Mill module

The feed of the mill (MFS) is split into three components:
volumetric flow-rate of fines (Vfi), volumetric flow-rate
of solids (Vsi) and volumetric flow-rate of rocks (Vri) in
cubic meter per hour. There are two additional feeds:
volumetric flow-rate of water to the mill (Vfi), which
relates to MIW, and volumetric flow-rate of balls to the
mill (Vbi). The mill has five states: volume of water (Xmw),
volume of solids (Xms), volume of fines (Xmf ), volume of
rock (Xmr) and volume of balls (Xmb) in cubic meters. The
mill load (LOAD) is the total of all the states. The mill
only discharges solids (that also contains fines) and water
through an end discharge grate (Vwo, Vso, Vfo). The mill
model has a total of 14 parameters. Only the parameters
that describe the ore hardness (ηf ,φr and φb) are shown
in Table 1.

Sump module

The sump module receives the discharge from the mill,
which is the volumetric flow-rates of water (Vwi), solids
(Vsi) and fines (Vfi) in cubic meters per hour. The sump
receives additional water (Vwi−sump), which relates to the
feed-rate of water to the sump (SFW), to dilute the slurry
in the sump. The discharge slurry consists of water (Vwo),
solids (Vso) and fines (Vfo). The sump has three states:
volume of water (Xsw), volume of solids (Xss), volume of
fines (Xsf ) in cubic meters. The sump level (SLEV) is the
total of all the states.

Cyclone module

The cyclone receives the slurry that consists of water (Vwi),
solids (Vsi) and fines (Vfi) from the sump. The slurry
is split between the underflow and overflow such that
the out-of-spec material (Vci = Vsi − Vfi) is discharged
through the underflow (u) and the desired material (Vfi)
is discharged at the overflow (o). The split is not perfect
and both the underflow and overflow discharge undesired
material. The fraction of desired material with regards to
all solids discharged at the overflow relates to the particle

size estimate (PSE =
Vfo

Vso
). The cyclone model has a total

of 6 parameters. Only the parameters that describe the
classification directly (εc and αsu) are shown in Table 1.

2.3 Objectives in Mill Control

The control of the milling circuit has multiple objectives,
firstly to stabilize the system and secondly to optimize the
economics of the process [Hulbert, 1989]. The economic ob-
jective is divided into sub-objectives that each contribute
to the overall economic objective of the milling process. A
set of possible sub-objectives for the milling circuit are to
[Craig and MacLeod, 1995]:

(1) improve product quality
(a) by increasing grind fineness,
(b) and decreasing the fluctuations in product size,

(2) maximize throughput,
(3) minimize the amount of steel that is consumed for

each ton of fines produced,
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(4) and to minimize the power consumed for each ton of
fines produced, etc.

The objectives above are interrelated and require trade-
offs to be made. There is a trade-off between particle size
of the product and the throughput of solids (objectives
1a and 2). More gold can be extracted at a finer product
size (objective 1a), but the variation in particle size also
influences the recovery (objective 1b).

It is assumed that the throughput of the mill is maximized
when it draws maximum power from the mill motor.
The ∆LOAD/∆MFS input-output pair is therefore often
under power peak seeking control [Craig et al., 1992]. This
is contrary to objective 4, which is to minimize electrical
power, but given the value of the milling product versus the
cost of electricity, objective 4 is considered less important.

Objectives 1 and 3 are interrelated. Steel is added to
the mill to stabilize the conditions inside the mill and
also increase throughput. A controller that is capable of
stabilizing the particle size, will reduce the need for steel
and thus objective 3 will be addressed when objective 1b
is met.

A possible control strategy is to maximize throughput at
a certain particle size setpoint. This strategy considers
both objectives 1 and 2. The particle size setpoint may
be determined by throughput targets or if throughput is
not a consideration, the particle size can be optimized. A
trade-off exists between throughput and grind, and grind
and residue (product that is not recovered) [Craig et al.,
1992]. The aim of control would be to increase throughput,
while keeping grind constant.

3. NONLINEAR MODEL PREDICTIVE CONTROL

Nonlinear model predictive control (NMPC) utilizes a
nonlinear model to predict the behaviour of the plant and
calculate the optimal control moves or control laws with
regard to a specified objective function. NMPC is derived
from nonlinear optimal control over a constant or varying
time interval into the future t ∈ [tk, tk + T ]. Only the first
control move or control law is implemented and a new
state measurement is taken. The nonlinear optimal control
problem is then recalculated for the new time interval
[tk+1, tk+1 + T ], which leads to receding horizon control
[Mayne et al., 2000].

The nonlinear optimal control problem finds a control tra-
jectory u such that it minimizes some scalar performance
index

φc(x, u) (1)
subject to differential constraints

ẋ(t) = g(t, x(t), u(t)) (2)

inequality constraints

θc(x(t), u(t)) ≤ 0 (3)

the prescribed initial conditions

t0 , 0, x0 , x(t0) (4)

and the prescribed final conditions

tf , T, xf , x(tf ), ψ(xf ) , 0 (5)

where x : R → R
n is the state trajectory, u : R → R

m

is the control trajectory, x(t) ∈ R
n is the state vector,

ẋ(t) ∈ R
n is the state sensitivities to time , u(t) ∈ R

m

is the control vector, xf ∈ R
n is the terminal state

vector, φc(x, u) ∈ R is the scalar performance function and
θc(x(t), u(t)) ∈ R

c is the inequality constraints function.

The nonlinear optimal control problem, consisting of a
system with continuous dynamics, needs to be discretized
in order to be cast in a nonlinear parameter optimization
problem. This is accomplished by dividing the control
interval [0, T ] into N discrete time intervals called nodes
[Hull, 1997]

t0 , 0 < t1 < t2 < · · · < tk < · · · < tN−1 < tN , T (6)

where the sampling time is ts , tk+1 − tk and N is called
the prediction horizon. The functions of time x and u are
replaced by their values at the nodes xk ∈ R

n and uk ∈ R
m

for k = 0, . . . , N and some form of interpolation between
nodes.

The resulting nonlinear controlled discrete-time system is

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1. (7)

The nonlinear optimal control problem can now be cast
into the following nonlinear parameter optimization prob-
lem

min
s0, . . . , sN

q0, . . . , qN−1

φ(s,q) (8)

subject to equality constraints

x0 − s0 = 0,

fi(si, qi) − si+1 = 0, i = 0, . . . , N − 1, (9)

and inequality constraints

θi(si, qi) ≤ 0, i = 0, . . . , N − 1, (10)

θN (sN ) ≤ 0, (11)

where the scalar performance index is given by

φ(s,q) ,

N−1
∑

i=0

Li(si, qi) + E(sN ), (12)

where φ(s,q) ∈ R and θi(si, qi) ∈ R
c for all si ∈ R

n, i =
0, . . . , N the estimated state parameters, qi ∈ R

m, i =
0, . . . , N − 1 the control parameters, s , (s0, . . . , sN ) the

state sequence and q , (qo, . . . , qN−1) the control sequence
to be optimized in the nonlinear optimization problem
[Diehl et al., 2005].

Using only the control moves in the parameter optimiza-
tion problem leads to a single integration of the state
equations over the time interval [0, T ]. If the time inter-
val is long, the accuracy of the numerical integration is
affected. The accuracy of the numerical derivatives for a
given perturbation size is affected even more. To com-
pensate for this problem, an estimate of the state value
xk at each time node is made (represented by sk) and
the system dynamics are integrated between nodes (13).
This method is called direct multiple shooting [Hull, 1997].
The nonlinear optimizer then removes any error between
the estimate (sk) and actual dynamics (xk) through the
equality constraints (9).
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4. NONLINEAR MODEL PREDICTIVE CONTROL
IMPLEMENTATION

Implementing the nonlinear model predictive controller
needs software to solve the different problems stated above.
First a nonlinear optimization software is required, to solve
the nonlinear parameter optimization problem stated in
(8). The software used is a package called IPOPT [Kawajir
et al., 2006], which is used for large scale sparse nonlinear
optimization problems.

IPOPT requires the following functions to be provided:

• Scalar performance function value ϕ(X)
• Gradient of the performance function ∇ϕ(X)
• Constraint functions values ϑ(X)
• Jacobian of the constraints ∇ϑ(X)
• (optionally) Hessian of the Lagrangian function
σf∇

2ϕ(X) +
∑m

i=1 λi∇
2ϑi(X)

where X is the vector of all decision variables. For the
problem specified in (8)-(12), the vector of decision vari-

ables is defined as X , (s0, q0, . . . , sN−1, qN−1, sN ) ∈

R
((n+m)·N+n).

The equality constraint functions contains discretized sys-
tem dynamics fk(xk, uk). For a continuous system, the
interpolation between nodes are done by integrating the
state equations (2) for one sample time ts

xk+1 , fk(xk, uk) ,

∫ tk+ts=tk+1

tk

g(τ, x(τ), uk) dτ (13)

with the initial conditions x(tk) = xk = sk and the
controls uk = qk constant over the interval [tk, tk+1].

The scalar performance function is defined as

ϕ(X) ,

N−1
∑

i=0

Li(si, qi) + E(sN ) (14)

where the scalar interval performance indexes and the
terminal performance index can be given by a quadratic
function

Li(si, qi) ,

∫ ti+ts

ti

xT
i (τ)Qxi(τ) + qT

i Rqi dτ,

i = 0, . . . , N − 1, (15)

E(sN ) , sT
NPsN , (16)

where Q and R represent the weighting matrices on the
states and controls respectively and P is the terminal
cost weighting matrix. The state value is obtained by
integrating (2)

xi(t) ,

∫ t

ti

g(τ, x(τ), ui) dτ (17)

where the initial state vector is xi(ti) = si and the constant
control vector is ui = qi. The integration of (15) and
(17) is done simultaneously by a software package called
SUNDIALS [Hindmarsh and Serban, 2006], where (17)
is the solution of the main ODEs defined in the node
interpolation (13), while (15) is solved as a quadrature
function.

The gradient of the performance function ∇ϕ(X) ∈

R
((n+m)·N+n) then becomes

∇ϕ(X) =























∂L0(s0,q0)
∂s0

∂L0(s0,q0)
∂q0

...
∂LN−1(sN−1,qN−1)

∂sN−1

∂LN−1(sN−1,qN−1)
∂qN−1

∂E(sN )
∂sN























. (18)

The values of the constraint functions ϑ(X) are interleaved
equality and inequality constraint functions with the same
decision variables that will result in a Jacobian of the
constraints ∇ϑ(X) that is sparse and banded. For NMPC,
the following structure for the constraints function ϑ(X) ∈
R

((n+c)·N+n) is presented

ϑ(X) ,



























x0 − s0
θ0(s0, q0)

f0(s0, q0) − s1
θ1(s1, q1)

f1(s1, q1) − s2
...

θN−1(sN−1, qN−1)
fN−1(sN−1, qN−1) − SN

θN (sN )



























(19)

that results in a Jacobian of the constraints function
∇ϑ(X) ∈ R

((n+c)·N+n)×((n+m)·N+n) shown in Figure
3. IPOPT only requires the non-zero entries to be
populated for this sparse Jacobian matrix. The num-
ber of non-zero entries for this structure is nnzje =
(n+ c · (n+m) + n · (n+m)) ·N + n.

SUNDIALS is also capable of calculating forward sensitiv-
ities and adjoint sensitivities. This is useful for calculating
the sensitivities of the system dynamics fk(xk, uk) as well
as the stage costs Lk(xk, uk), k = 0, . . . , N−1 with regards
to initial states x(tk) = sk and inputs uk = qk.

The sensitivities of differential equations (2) with regards

to the states ∂g(t,x,u)
∂x

∈ R
n×n and inputs ∂g(t,x,u)

∂u
∈ R

n×m

requires software that does numeric differentiation. For
this purpose, a software package called CPPAD of the
COIN-OR project [Lougee-Heimer, 2003] is used. It does
Automatic Differentiation of specially modified C++ code.
It works by recording all the mathematical operations
being done in the desired function and then uses the
chain rule of differentiation to calculate the derivatives.
The advantages of Automatic Differentiation is that it is
fast to calculate and does not suffer from truncation errors
present in other numerical methods.

5. SIMULATION

A simulation study is shown where the nonlinear model
predictive controller of section 3 is applied to the ROM
milling model presented in section 2.

In this simulation scenario the ”actual” plant differs from
the nominal model. The parameters of the milling circuit
have large uncertainties, especially the parameters relating
to the composition of the feed-ore and the hardness of the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10623



∇ϑ(X) =


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


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Fig. 3. Jacobian of the constraints.

Table 1. Parameter values for a ROM milling
circuit.

Nominal Min Max %∆ Description

αf 0.09 0 0.2 30 Feed Ore - Fraction fines
αr 0.04 0 0.1 30 Feed Ore - Fraction rocks
ηf 28 17 40 30 Mill - Power per fines

produced [kW hr / ton]
φr 187 90 280 30 Mill - Rock abrasion factor

[kW hr / ton]
φb 94 70 120 15 Mill - Steel abrasion factor

[kW hr / ton]
εc 184 147 220 5 Cyclone - Coarse split
αsu 0.16 0.13 0.2 5 Cyclone - Fraction solids

in underflow

ore (energy needed to grind a ton of ore). The parameter
variations used in the simulation study are shown in
Table 1. The parameter variations are time-varying and
assumed to be uniformly distributed between the bounds.
The prediction model of the nonlinear model predictive
controller uses the nominal parameter values.

The milling circuit is simulated at the operating point as
described in Table 2. The constraints of the milling circuit
is also described in Table 2. The simulation is done for 260
minutes with a recommended sampling time of 10 seconds.
A prediction horizon of 24 is used to predict behaviour over
240 seconds, resulting in 344 decision variables as part of
the optimization problem.

A disturbance is introduced in the feed-ore. At time 20
minutes, the amount of rock in the feed-ore is increased
by 30% and at time 100 minutes, the hardness of the ore
is increased by 25%.

The mill level (LOAD), as shown in Figure 4, is given
highest priority and the controller keeps the level constant.
The particle size (PSE), as shown in Figure 4, is given
secondary priority. The PSE shows a small drop from the
setpoint of 80% when the ore hardness increases. The sump
level (SLEV), as shown in Figure 4, is given least priority,
which results in it showing large variations.

Figure 5 shows the flow-rate of water to the sump, flow-
rate of slurry to the cyclone and flow-rate of feed-ore to
the circuit that the controller is manipulating.

The simulation executed with an average time of about
4 seconds per iteration, which is well below the recom-
mended sampling time of 10 seconds.
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Fig. 4. Controlled Variables.
The dashed lines indicate the constraints on the
variable and the vertical dotted lines indicate the start
of the disturbance events. The dash-dot line indicates
the setpoint.

6. CONCLUSIONS

The nonlinear MPC performed well in the simulation
study. It tracked the operating point very well despite
disturbances in the feed-ore.

Extending this work, a robust nonlinear MPC can be
applied, which builds on linear robust MPC done by
Coetzee and Craig [2007], which explicitly incorporates
the description of common disturbances, for example the
spillage water being dumped in the sump as well as the
parameter uncertainties, such as those described in Table
1.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10624



Table 2. Constraints and operating point.

Variable Min Max Operating Point Description

Xmw 0 m3 50 m3 8.53 m3 The holdup of water in the mill
Xmc 0 m3 50 m3 9.47 m3 The holdup of coarse ore in the mill
Xmf 0 m3 50 m3 3.54 m3 The holdup of fine ore in the mill
Xmr 0 m3 50 m3 20.25 m3 The holdup of rock in the mill
Xmb 0 m3 20 m3 6.75 m3 The holdup of balls in the mill
Xsw 0 m3 10 m3 3.95 m3 The holdup of water in the sump
Xsc 0 m3 10 m3 1.05 m3 The holdup of coarse ore in the sump
Xsf 0 m3 10 m3 0.14 m3 The holdup of fine ore in the sump

MIW 0 m
3

hour
100 m

3

hour
33.33 m

3

hour
The flow-rate of water to the circuit.

MFS 0 tons

hour
200 tons

hour
100 tons

hour
The flow-rate of ore to the circuit (consists of rocks, coarse and fine ore).

Vbi 0 tons

hour
4 tons

hour
2 tons

hour
The flow-rate of balls to the circuit.

αmillspeed 0.7 1.0 0.82 The fraction of critical mill speed.

CFF 400 m
3

hour
500 m

3

hour
442.59 m

3

hour
The flow-rate of water from the sump to the cyclone.

SFW 0 m
3

hour
400 m

3

hour
266.67 m

3

hour
The flow-rate of extra water to the sump.

LOAD 30 m3 50 m3 45 m3 The total charge of the mill. Must not be fuller than 50%.
SLEV 2 m3 9.5 m3 5.0 m3 The level of the sump. Should not run empty and also not overflow.

Rheology 0 1 0.51
Describes the fluidity of the slurry in the mill, where 1 is water and 0
represents a “thick mud” that does not flow.
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Fig. 5. Manipulated Variables.
The dashed lines indicate the constraints on the
variable and the vertical dotted lines indicate the start
of the disturbance events. The dash-dot line indicates
the setpoint.

The simulation further assumed full-state feedback. It is
necessary to add an observer to the loop to evaluate
practical feedback scenarios.

The simulation shows that the computational time falls
within the sampling time. Increasing the prediction hori-
zon significantly increases the calculation time. Tuning
the controller will include the selection of the prediction
horizon for stability and performance, while maintaining
a reasonable calculation time.
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