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Abstract: We consider the stochastic multi-armed bandit problem with unknown horizon. We
present a randomized decision strategy which is based on updating a probability distribution
through a stochastic mirror descent/exponentiated gradient type algorithm. We consider
separately two assumptions: nonnegative losses or arbitrary losses with an exponential moment
condition. We prove optimal (up to logarithmic factors) gap-free bounds on the excess risk of
the average over time of the instantaneous losses induced by the choice of a specific action.

1. INTRODUCTION

The multi-armed bandit is a celebrated problem in the field
of sequential prediction. In this problem, the forecaster has
to choose, over some time sequence, among a finite set of
available actions and the only information he gets at each
step is the instantaneous loss he suffers for the selected
action. A standard criterion to assess the performance
of a given strategy for action selection is the difference
between the average over time of the instantaneous losses
and the minimal (over the set of actions) average loss.
The statistical theory is then devoted to estimating how
does this risk function can be controlled in terms of the
number N of possible actions and the length T of the
time sequence. Several variants of this problem have been
studied and we refer to Cesa-Bianchi and Lugosi (2006)
and the PhD thesis of Stoltz (2005) for a detailed and
modern account on this topic. Early book-length studies in
Nazin and Poznyak (1986) and Najim and Poznyak (1994)
can be also of interest.

In the present paper, we consider the stochastic setup
which was first introduced by Robbins (1952), Lai and
Robbins (1985) and further studied by Auer et al. (2002a).
The horizon is not assumed to be known in advance. We
then propose a stochastic optimization algorithm which
can be viewed as a modification of the exponentiated
gradient algorithm of Kivinen and Warmuth (1997) or,
more generally, of the mirror descent algorithm given in
Juditsky et al. (2005). Previous works on stochastic multi-
armed bandit, (cf. Auer et al. (2002a) and more recent
developments inspired by that paper) provide bounds on
the excess risk with fast rates but involving (unknown)
gaps between the expected loss of each non-optimal arm
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and the minimal expected loss. Such bounds can be called
gap-dependent. They are similar in the spirit to Lai and
Robbins (1985) whose bounds used Kullback divergences
between distributions of arms rather than gaps. For in-
stance, recent gap-dependent bounds by Audibert et al.
(2007) cannot be really used because they involve unknown
parameters of the problem. Note also that these bounds
go to infinity over the parameter class (see Corollary 1,
Theorem 3, and Theorem 9 in Audibert et al. (2007)).

A different approach has been suggested by Auer et al.
(2002b) and further developed by Cesa-Bianchi and Lu-
gosi (2006). They established gap-free bounds for a non-
stochastic multi-armed bandit setting where the losses
were assumed to take values in [0, 1]. In the present paper
we derive gap-free bounds for the expected excess risk,
with tight constants, under two different assumptions on
the stochastic process of the instantaneous losses. In the
case of nonnegative losses with finite variance we ob-
tain an explicit expected excess bound, for any horizon
T ≥ 1; in particularly, it implies the convergence rate
of the order

√
(N/T )(ln N). In the case of signed losses

under an exponential moment assumption we get the sim-
ilar explicit bound with an additional logarithmic factor
(ln T )

√
(N/T )(ln N).

The rest of the paper is organized as follows. We first
introduce the setup and state the main convergence re-
sults (Sections 2 and 3). Then we describe the algorithm
(Section 4) and provide the technical details for the proof
of the upper bounds in the Appendix A.

2. STATEMENT OF THE PROBLEM

Let X = {x(1), . . . , x(N)} be a set of N available actions.
At each time t = 1, 2, . . . , we have to choose sequentially
an action xt ∈ X. We denote by ηt the observable
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(instantaneous) loss for the choice of xt, and introduce
the average loss up to horizon T which is to be minimized:

ΦT =
1
T

T∑
t=1

ηt . (1)

A strategy U is a sequence of rules for the choice xt at
times t = 1, . . . , T . In the stochastic setup that we consider
here, the sequence of losses (ηt)t≥1 is a stochastic process
and xt is a measurable function (random, in general)
depending only on the vector of past decisions and losses
(x1, . . . , xt−1; η1, . . . , ηt−1). Any strategy U generates a
flow of σ-algebras Ft = σ{x1, . . . , xt; η1, . . . , ηt}, t ≥ 1
(for brevity we do not indicate the dependence of Ft

on U). Throughout the paper we denote by z(j) the jth
component of vector z ∈ R

N .

Introduce the following two basic assumptions:

A1. With probability 1, the conditional expectations
satisfy

E{ηt | Ft−1 , xt = x(k)} = ak, k = 1, . . . , N, (2)
where ak ∈ R are unknown deterministic values.

The value ak characterizes the expected loss for deciding
to take the action xt = x(k) at time t. Assumption A1
says that this loss should not depend on t.

A2. The second conditional moment of the loss ηt is a.s.
bounded by a constant:

E{η2
t | Ft−1 , xt} ≤ σ2 < ∞ . (3)

It is easy to prove (see, e.g., Nazin and Poznyak (1986))
that under these assumptions all the limiting points of
the average loss sequence (Φt)t≥1 cannot be almost surely
(a.s.) less than

amin � min
k=1,...,N

ak .

Thus, the problem is to design a strategy U∗ which has
the asymptotically minimal average loss:

ΦT → amin as T → ∞ , (4)
in an appropriate probability sense. We study here con-
vergence in mean, trying to get the rate of convergence
E(ΦT ) → amin as fast as possible. In particular, we
provide non-asymptotic upper bounds for the expected
excess risk E(ΦT )− amin that are close, up to logarithmic
factors, to the lower bound of the order

√
N/T proved

for N = 2 by Vogel (1960) and for arbitrary N by Auer
et al. (2002b) (see also Theorem 6.11 in Cesa-Bianchi and
Lugosi (2006)).

We will suppose that one of the following two assumptions
on the loss sequence (ηt)t≥1 holds.

A3. The losses are nonnegative: ηt ≥ 0 a.s.

A4. The random variables ηt have finite exponential
moments: there exist constants Cη, κ > 0 such that

E

{
|ηt|e−κηt/σ

∣∣∣ Ft−1 , xt

}
≤ Cησ < ∞, ∀ t ≥ 1. (5)

3. RESULTS

Below we propose a randomized decision strategy in which,
at each step t + 1, the action xt+1 is drawn according to a

distribution pt �
(
p
(1)
t , . . . , p

(N)
t

)�
over X where:

p
(k)
t � P(xt+1 = x(k) | Ft) , k = 1, . . . , N . (6)

The update of the distribution pt over time is given by the
algorithm described in Section 4.

Denote by Θ the simplex of all probability vectors over X:

Θ �
{

p ∈ R
N
+

∣∣∣∣ ∑N

k=1
p(k) = 1

}
. (7)

We then define the mean (over the set of actions) loss
function A on Θ:

A(p) =
N∑

k=1

akp(k) = a�p , p ∈ Θ , (8)

where a = (a1, . . . , aN )�. Since pt is a random vector, the
quantity A(pt) is a random variable. The update rule for
the probability distribution pt uses a stochastic gradient
of A.

The expected average loss equals to the average over time
of the expectations EA(pt), that is

E(ΦT ) =
1
T

T∑
t=1

E(E(ηt |xt ,Ft−1)) =
1
T

T∑
t=1

E(A(pt−1)) .

(9)
We are now in a position to state our results.
Theorem 1. Let assumptions A1-A2-A3 be satisfied and
let the conditional distributions (pt)t≥0 be defined by the
algorithm of Section 4 with parameters (15), (17) and
c0 = 1. Then, for any horizon T ≥ 1,

E (ΦT ) − amin ≤ 2σ

√
(T + 1)N ln N

T
. (10)

Theorem 2. Let assumptions A1-A2-A4 be satisfied and
let the conditional distributions (pt)t≥0 be defined by the
algorithm of Section 4 with parameters (16), (17). Then,
for any horizon T ≥ 2,

E (ΦT ) − amin ≤ σ

√
(T + 1)

T
×

{
2Cη (11)

+
√

N ln N

([
c0 +

1
2κ2c0

]
ln(T + 1) +

2
c0

)}
.

Remark 1. Minimizing the right hand side of (11) in c0 > 0
one can find both the optimal parameter c0 and the
corresponding optimal upper bound. Optimal c0 depends
on the horizon T but this dependence becomes negligible
for large T . If T is unknown, it looks reasonable to set c0

by minimizing the main term, i.e., the expression in square
brackets in (11): c0 = (

√
2κ)−1.

The previously known gap-free results (Auer et al. (2002b)
and Theorem 6.10 in Cesa-Bianchi and Lugosi (2006))
assume that ηt ∈ [0, 1] and prove that ΦT − amin is
O

(√
(N/T ) ln(NT/δ)

)
or O

(√
(N/T ) ln(N/δ)

)
, respec-

tively, with probability at least 1 − δ, where 0 < δ < 1.
The bound of Theorem 1 is given for the expectation
E(ΦT ) − amin and therefore it is not directly comparable
to these bounds in probability. Note however that those
papers assume ηt ∈ [0, 1] whereas Theorem 1 assures the
result for unbounded nonnegative losses in the stochastic
context. Bounds in expectation are obtained in the same
form as in Theorem 1 with σ = 1 by Stoltz (2005), again
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under the assumption that ηt ∈ [0, 1]. Finally, note that
Theorem 1 is proved for the pure exponentiated gradi-
ent/mirror descent algorithm (with time-dependent choice
of tuning parameters), whereas Auer et al. (2002b) and
Cesa-Bianchi and Lugosi (2006) obtain their bounds for a
more sophisticated procedure.

4. DEFINITION OF THE STRATEGY

In this section we introduce our algorithm. It is related
to the exponentiated gradient method of Kivinen and
Warmuth (1997) and to the mirror descent algorithm given
in Juditsky et al. (2005). We refer to Nemirovski and
Yudin (1983) and Ben-Tal and Nemirovski (1999) for the
general idea of mirror descent and its development in non-
stochastic optimization, as well as to Nesterov (2005) for
the pioneering extension to a stochastic setup.

First we introduce a Gibbs distribution defined by the
probability vector

Gβ(z) = [Sβ(z)]−1
(
e−z(1)/β , . . . , e−z(N)/β

)�

where Sβ(z) =
∑N

j=1 e−z(j)/β for arbitrary fixed z ∈ R
N

and some parameter β > 0. We will also use the notation
eN (k) = (0, . . . , 0, 1, 0, . . . , 0)� for vectors in R

N with 1
on k-th position and 0 elsewhere. Note, that z represents
a dual vector variable, see (A.1) below in the Appendix.

The algorithm is defined as follows.

(1) Fix p0 ∈ Θ and ζ0 = 0 ∈ R
N .

(2) For t = 1, . . . , T :
(a) draw an action xt = x(kt) with random kt

distributed according to pt−1;
(b) compute the thresholded stochastic gradient

ut(pt−1) =
max{ηt + ∆t, 0}

p
(kt)
t−1

eN (kt) ; (12)

(c) update the dual and probability vectors

ζt = ζt−1 + γtut(pt−1) , (13)

pt = Gβt
(ζt) . (14)

(3) At horizon t = T , output a sequence of actions
(x1, . . . , xT ).

The tuning parameters ∆t, γt and βt involved in the
algorithm are defined differently for Theorems 1 and 2.
For all t ≥ 1, in Theorem 1 we set

γt ≡ 1, ∆t ≡ 0, βt−1 = β0

√
t, (15)

whereas in Theorem 2 we set
γt ≡ 1, ∆t =

σ

κ
ln
√

t, βt−1 = β0

√
t ln (t ∨ e) (16)

with the constant β0 given, for both theorems, by
β0 = c0σ

√
N/(ln N) (17)

with some c0 > 0; t ∨ e � max{t, e}. It is important to
note that these choices do not involve the horizon T which
is not necessarily known in advance.

Remark that the vector (ηt/p
(kt)
t−1) eN (kt) is in fact a

stochastic gradient: its conditional expectation given Ft−1

equals to the gradient of the mean loss A(p):

E

{
ηt

p
(kt)
t−1

eN (kt)

∣∣∣∣∣ Ft−1

}
= a = ∇A(pt−1) . (18)

The threshold parameter ∆t > 0 in the definition of
ut(pt−1) modifies the stochastic gradient by lower bound-
ing the loss ηt . In Theorem 1 we have no thresholding:
there ut(pt−1) is just a stochastic gradient and our algo-
rithm is a special case of the mirror descent/exponentiated
gradient method. However, in Theorem 2 thresholding
plays a crucial role.
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Appendix A. PROOFS

First, recall some properties of the function Gβ(·) (cf., e.g.,
Juditsky et al. (2005)). We have Gβ(z) = −∇Wβ(z) where

Wβ(z) = β ln

(
1
N

N∑
k=1

e−z(k)/β

)
, z ∈ R

N .

Furthermore, Wβ and the entropy type function

V (θ) � ln N +
N∑

j=1

θ(j) ln θ(j) ≥ 0 , θ ∈ Θ ,

are related to each other via convex duality formula:
Wβ(z) = sup

θ∈Θ

{−zT θ − βV (θ)
}

, z ∈ R
N . (A.1)

A.1 Proof of Theorem 2

Note that

Wβt−1(ζt) − Wβt−1(ζt−1) = βt−1 ln

( ∑N
k=1 e−ζ

(k)
t /βt−1∑N

k=1 e−ζ
(k)
t−1/βt−1

)
= βt−1 ln(p�t−1vt)

where the k-th entry of vector vt equals v
(k)
t = e−u

(k)
t /βt−1

and u
(k)
t is the k-th entry of ut(pt−1). Since ex ≤ 1 + x +

x2/2 for x ≤ 0, we get

v
(kt)
t ≤ 1 − u

(kt)
t

βt−1
+

(u(kt)
t )2

2β2
t−1

and clearly v
(k)
t = 1 for all k �= kt. Introduce the vectors

η̃t � max{ηt + ∆t , 0} eN (kt)

having the a.s. nonnegative entries η̃
(k)
t . Then we have

βt−1 ln(p�t−1vt)≤ βt−1 ln

(
1 − η̃

(kt)
t

βt−1
+

(η̃(kt)
t )2

2p
(kt)
t−1β2

t−1

)

≤−η̃
(kt)
t +

(η̃(kt)
t )2

2p
(kt)
t−1βt−1

. (A.2)

Note that Wβ is monotone decreasing in β, as follows from
(A.1). Using this, taking expectation of both sides of (A.2)
(first over kt, conditional on pt−1, then over pt−1) and
applying assumption A2 we obtain

E
(
Wβt

(ζt) − Wβt−1(ζt−1)
)

≤ −E(η̃�
t pt−1) +

1
2βt−1

E

(
N∑

k=1

(η̃(k)
t )2

)
(A.3)

≤ −E(a�pt−1) − ∆t +
(σ2 + ∆2

t )N
βt−1

.

Summing up from t = 1 to t = T we obtain

T−1∑
t=0

E(a�pt)≤−EWβT
(ζT ) + N

T−1∑
t=0

σ2 + ∆2
t+1

βt
−

T∑
t=1

∆t .

The minimizer p∗ � arg min
p∈Θ

A(p) of the linear form A(p) =

a�p on the simplex Θ satisfies A(p∗) = amin. Therefore
N∑

k=1

E

(
p∗(k)

E{ηt | kt = k,Ft−1}
)

=
N∑

k=1

akp∗(k) = amin.

Using (A.1), the fact that supθ∈Θ V (θ) = ln N , and the
last display we get

EWβT
(ζT ) ≥ −E(ζ�T p∗) − βT ln N

= −
T∑

t=1

N∑
k=1

E

(
η̃
(k)
t p∗(k)

)
− βT ln N

= −Tamin − βT ln N +
T∑

t=1

(
−∆t + E

N∑
k=1

p∗(k)ν
(k)
t

)
where

ν
(k)
t = E{(ηt + ∆t)1{ηt <−∆t} | kt = k,Ft−1} (A.4)

and 1{·} denotes the indicator function. Thus,

T−1∑
t=0

E(a�pt) ≤ βT ln N + Tamin + N

T−1∑
t=0

σ2 + ∆2
t+1

βt

+
T∑

t=1

N∑
k=1

p∗(k)
E|ν(k)

t |

= βT ln N + Tamin + N

T−1∑
t=0

σ2 + ∆2
t+1

βt
+

T∑
t=1

max
k

E|ν(k)
t |.

We now use the exponential Markov inequality and As-
sumption A3. This yields

T−1∑
t=0

[ EA(pt) − amin] ≤ βT ln N (A.5)

+N

T−1∑
t=0

σ2 + ∆2
t+1

βt
+ σCη

T∑
t=1

e−κ∆t/σ . (A.6)

Recall that ∆t = (σ/κ) ln
√

t and βt−1 = β0

√
t ln(t∨e) for

t ≥ 1. Therefore,
T−1∑
t=0

∆2
t+1

βt
≤ σ2

√
T ln T

2β0κ2

and the result of the theorem easily follows from (A.5)–
(A.6) and Eq.(9). �

A.2 Proof of Theorem 1

Here ∆t ≡ 0, η̃t = ηteN (kt), and ηt are nonnegative
(implying ν

(k)
t = 0). Therefore, from (A.3) we get

E
(
Wβt

(ζt) − Wβt−1(ζt−1)
) ≤ −E(a�pt−1) +

Nσ2

2βt−1
.

Using this inequality and acting as in the proof of Theo-
rem 2, we arrive to a simplified analog of (A.5)–(A.6):

T−1∑
t=0

[ EA(pt) − amin] ≤ βT ln N + N

T−1∑
t=0

σ2

2βt
.

The choice of βt as in (15), (17) with c0 = 1 as well as
Eq.(9) finish the proof. �
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