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Abstract: In this paper we present a general decentralized controller for a swarm of mobile agents
with fixed topology to move in a given environment. The controller utilizes the widely accepted
hypothesis of Attraction/Alignment/Repulsion (A/A/R) interactions for fish schools in mathematical
biology community. We assume that during the swarm’s motion, each agent can sense and interact with
its neighbors via A/A/R interactions, while follow the path clue of the environment. The environment is
assumed to have identical effect on all agents. Under the assumptions of connected graph, the controller
is proved to make the velocities of all swarm members asymptotically converge to a common value.
The advantage of this controller is that all the information it needs can be locally sensed, therefore,
communication link and associated issues (such as communication noise and time delay) are avoided.
Simulations of a swarm with a fixed topology are presented to verify the proposed controller.

1. INTRODUCTION

The natural phenomena of swarming, such as schooling
fish, have invoked intensive research interests in diverse areas
for decades. The collective group behaviors are believed to
have certain advantages over individual ones, for example,
increasing the survival chances for the whole group under
the danger from predators [1][2]. The inspiring point in these
phenomena is that although the intelligence of the individual
member is limited, the sophisticated group behavior can be
achieved without a global coordinator.

Biologists have observed and analyzed the swarming be-
haviors of different species for decades [1]-[12]. Some inter-
esting phenomena were first observed and recorded by them.
For example, tuna shoals are observed to school together with a
separation of 0.16-0.25 body length in shapes of 1D “soldier”,
2D “surface”, and 3D “ball” [3].

Two main approaches are used in the literature to model
and analyze how the collective behaviors are self-organized
in different environments. In reference to the Lagrangian and
Eulerian descriptions of fluid motion, they are referred to as
Eulerian and Lagrangian approaches. The Eulerian approach
applies partial differential equations to describe the evolving
swarm density [2][6]; while the Lagrangian approach uses cer-
tain individual-based rules or the classical Newtonian mechan-
ics law to study the motion of swarm members [2][5][12][13].

The individual-based interaction rules used in most models
of fish schools in the literature include short-distance repul-
sion, long-distance attraction and middle-range alignment (also
called ”parallel orientation”) [10]-[13]. It is commonly believed
that individual fish senses and adjusts its motion according to
certain neighbors through the Attraction/Alighment/Repulsion
(A/A/R) interactions [10]-[13].
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In [15] Jadbabaie et al. presented a discrete kinematic model
and a decentralized averaging controller to prove the conver-
gence of agents’ velocities. In their later work [16]-[18], the
authors used a continuous dynamic model and proposed a de-
centralized controller for fixed and dynamic topologies. The
controller includes heading and velocity adjustment compo-
nents, both of which are based on nearest neighbors’ states.
Further theoretical extensions of this work are presented in
[25]. It is shown that consensus is achieved asymptotically if
the union of the “information exchange graph” is connected.
However, the controllers in [15]-[18] do not explicitly consider
the environment.

In [20] Gazi used a continuous kinematic model for individ-
ual agents and proposed a decentralized controller for swarm
aggregation in n-dimensional space. An explicit bound of the
swarm size is also derived. The results in [20] are extended to
a class of virtual force functions in [21]. Their later work [22]-
[24] demonstrate the collective behavior of swarms moving in
different environments. In [19], Liu et al. used a second-order
dynamic model to study the stable foraging of swarms in certain
noisy environments. However, all the controllers proposed in
[19]-[24] require each agent to know the global states of all
other members.

In this paper, we present a general decentralized controller
for a swarm of mobile agents to achieve the collective group
behavior in given environments. The controller utilizes the
widely accepted concept of A/A/R mutual interactions [2][10]-
[13]. We assume that each agent can sense and interact with
its neighbors via A/A/R forces. Moreover, according to the
biological facts that many natural species swarm in dynamic
environments, such as reef fish school along ocean currents
[8][9] and migrate birds flock to the south by the guidance of the
earth’s magnetic field [7], we assume that during the swarm’s
motion, each agent can perceive and follow the path clue
of the environment. We explicitly consider the environment
and assume that it has identical effects on all agents. The
swarm’s topological graph is assumed to be always connected.
This paper discusses the case when the swarm’s topology is
fixed. By some tools of nonsmooth analysis theory [26]-[30],
the controller is proved to enable all agents’ velocities to
asymptotically converge to a common value.

The advantage of the controller is that all the information it
needs can be locally sensed, therefore, communication modules
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are not needed for individual agents. Subsequently, all issues
related to communication links (such as time delay and com-
munication noise) are avoided.

This paper is organized as follows. In section 2 we present
a simplified dynamic model for individual agents and a graph
representation for swarm’s fixed topology. The general decen-
tralized controller and its asymptotic stability analysis are il-
lustrated in section 3. In section 4 a set of simulation result is
presented. This paper ends with some conclusions in section 5.

2. MODELLING OF SWARMS WITH FIXED TOPOLOGY

Consider a swarm of N agents moving in a 2D or 3D Eu-
clidean space. For simplicity, we do not consider each agent’s
dimension. We assume no disturbance upon each agent. For the
ith(i = 1, 2, ..., N ) agent in the swarm, its dynamics can be
modelled as

ṙi = vi

v̇i = ui
(1)

where ri ∈ R
2 or R

3 is its position vector relative to ground
coordinates, vi is its velocity vector, and ui is the control input.

Define

v̄ =
1

N

N∑

i=1

vi (2)

to represent the average velocity of all swarm members. We
will show that all agents’ velocity vectors converge to v̄ by the
proposed controller.

Let
rij = ri − rj , (3)

and ‖rij‖ = ‖rij‖2 is the distance between two agents i and j.

Let r = [rT
1 , rT

2 , ..., rT
N ]T and v = [vT

1 , vT
2 , ..., vT

N ]T

represent the position and velocity vector of the whole swarm,
respectively.

The swarm’s topology can be represented by algebraic
graph. According to how the information is exchanged among
the agents, the graph embodies either communication or sens-
ing relations of the swarm members. As shown in this paper,
only local and relative sensing information are needed by the
proposed controller, thus, we rather consider the swarm’s topo-
logical graph as a sensing graph.

Definition 2.1 (Swarm’s Topological Graph) The topolog-
ical graph of a swarm with a fixed topology is an undirected
graph, denoted G = {V, E}, consisting of:
(1) a set of vertices, V = {1, ..., N}, indexed by the agents in

the swarm;
(2) a set of edges, E = {(i, j) ∈ V × V | i ∼ j}

(∼ denotes adjacency), in which each undirected edge
is given by initial condition and represents the sensing
relation between two vertices.

Define
Ni , {j | (i, j) ∈ E} ⊆ V \ {i} (4)

to represent the set of agent i’s neighbors.
We assume that during the swarm’s motion, G is always

connected. For swarms with fixed topology, the graph G and
Ni are given by initial condition and keep unchanged.

3. CONTROLLER AND STABILITY ANALYSIS

In this section, we illustrate the general decentralized con-
troller for swarms with fixed topology and prove that it can
make all agents’ velocities to asymptotically converge to a
common value (v̄).

The hypothesis of mutual interactions of A/A/R for fish
schools has been widely accepted in mathematical biology
community for decades [2][5][10][11][12]. A fish is generally
assumed to adopt different interactions (attraction, repulsion,
or alignment) according to the range in which the perceived
neighbor fish is positioned. Fig.1 shows the diagram of two
neighbored agents and the mutual interaction between them.
The force vector −→g ij is along the direction of rij , in which
−→g ij , g(‖rij‖)

rij

‖rij‖
. The amplitude g(‖rij‖) is a scalar

function that only depends on the relative distance ‖rij‖.
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Fig. 1. Two neighbors (agent i and j) and their mutual interac-
tion.

Depending on the relative distance between two neighbored
agents, the interaction has different dominated effects. Fig.2
shows the three non-overlapping interaction zones associated
with each agent, in which d0, d1 and d2 are the respective
radius. Since it is not expensive to implement a sensing or
communication module that has an omnidirectional field of
view by current technology, we assume that each agent has
no any blind angle as in some models of fish schools in the
literature [11]-[13].
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Fig. 2. Interaction zones associated with agent i: zone of repul-
sion (ZOR), zone of alignment (ZOAl), zone of attraction
(ZOAt).

On the other hand, although each agent hardly has the
full knowledge about the environment, it is still reasonable
to assume that it knows about the local environment around
its current position. This assumption can be justified by some
phenomena in biological systems. For example, some tropical
reef fish can perceive and ride along the ocean current [8][9].
Assume the swarm moves in an environment with a global
potential function J(r), and its gradient at ri is denoted by
∇ri

J(r). Although each agent hardly knows J(r), but local
information ∇ri

J(r) is assumed to be known. We assume that
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the environment has identical effects on all agents, i.e., ∇ri
J(r)

is the same for i = 1, ..., N .
Based on the above discussion, we propose a general decen-

tralized controller for each agent as

ui = − kp[vi −∇ri
J(r)] +

∑

j∈Ni

g(‖rij‖)
rij

‖rij‖
, (5)

where kp > 0 is a design constant, and g(‖rij‖) is the
amplitude of interactions between two neighbored agents. The
implication of this controller is that each agent perceives and
follows the environmental “path clue” (∇ri

J(r)), and at the
same time affects its neighbors via A/A/R interactions.

According to the A/A/R zones, for a swarm with fixed topol-
ogy, in order to keep the whole group cohesive and avoid col-
lision among swarm members, the mutual interactions should
satisfy

g(‖rij‖) =

{
> 0 0 ≤ ‖rij‖ < d0,
= 0 d0 ≤ ‖rij‖ ≤ d1,
< 0 ‖rij‖ > d1.

(6)

For simplicity, we assume that g(‖rij‖) is continuous inside
each interaction zone, but may not be continuous along the
boundaries. Moreover, let g(‖rij‖) 6= ∞.

Note that for swarms with fixed topology, each agent’s
neighborhood is given by initial condition and not changing.
Hence, we do not need to consider the limit of the upper
boundary (d2) of attraction zone.

We will show that for a swarm with fixed topology, no
matter which specific functions the mutual interactions are, the
general controller (5) can make all agents’ velocities asymptot-
ically converge to a common value (v̄), as long as the condition
in (6) is satisfied.

Define error state

evi
= vi − v̄. (7)

It is straightforward to have

v̇i− ˙̄v = −kp(vi − v̄) +
∑

j∈Ni

g(‖rij‖)
rij

‖rij‖
+ kp[∇ri

J(r)

−
1

N

N∑

i=1

∇ri
J(r)] −

1

N

N∑

i=1

∑

j∈Ni

g(‖rij‖)
rij

‖rij‖
.

Since g(‖rij‖)
rij

‖rij‖
= −g(‖rji‖)

rji

‖rji‖
, also because the

graph G is assumed to be always connected and Ni is symmet-
ric, so we have

N∑

i=1

∑

j∈Ni

g(‖rij‖)
rij

‖rij‖
= 0. (8)

Thus,

v̇i− ˙̄v = −kpevi
+

∑

j∈Ni

g(‖rij‖)
rij

‖rij‖
+ kp[∇ri

J −
1

N

N∑

i=1

∇ri
J(r)].

Since the swarm is assumed to move in an environment
that has identical effect on each agent, i.e., ∇ri

J(r) =

∇rj
J(r),∀i 6= j. For example [24], J(r) =

∑N
i=1 J(ri) =∑N

i=1 aT · ri + b, where a ∈ R
n and b ∈ R. Then ∇ri

J(r) −
1
N

∑N
i=1 ∇ri

J(r) = 0. So we have

v̇i − ˙̄v = −kpevi
+

∑

j∈Ni

g(‖rij‖)
rij

‖rij‖
. (9)

Define

Eij(‖rij‖) =

∫ d0

‖rij‖

g(τ)dτ. (10)

Clearly,

Eij =





‖rij‖ < d0 : =

∫ d0

‖rij‖

g(τ)dτ > 0,

d0 ≤ ‖rij‖ ≤ d1 : = 0,

‖rij‖ > d1 : = −

∫ ‖rij‖

d1

g(τ)dτ > 0.

(11)

We consider both cases when g(‖rij‖) is continuous and
discontinuous along the boundaries of interaction zones (i.e.,
d0 and d1).

Theorem 3.1 Consider a swarm of N mobile agents moving
in an environment that has identical effects on all agents. The
topological graph G of the swarm is given by initial condition
and keeps fixed. Assume G is always connected. Then with any
set of continuous interactions g(‖rij‖) that satisfy the condition
(6), the general decentralized controller (5) makes all agents’
velocity asymptotically converge to a common value (v̄).

Proof: For continuous g(‖rij‖), the error dynamics in
uniform environments is also continuous and

ėvi
= −kpevi

+
∑

j∈Ni

g(‖rij‖)
rij

‖rij‖
. (12)

Since g(‖rij‖) is continuous, Eij is continuously differen-
tiable and

Ėij = −g(‖rij‖)[v
T
i · ∇rij

‖rij‖ + vT
j · ∇rji

‖rji‖]. (13)

Use the candidate Lyapunov function

V1 =
1

2

N∑

i=1

eT
vi

evi
+

1

2

N∑

i=1

∑

j∈Ni

Eij(‖rij‖). (14)

From (11) we know V ≥ 0. And

V̇1 = −kp

N∑

i=1

eT
vi

evi
+

N∑

i=1

(vi − v̄)T
∑

j∈Ni

g(‖rij‖)
rij

‖rij‖

−
N∑

i=1

∑

j∈Ni

g(‖rij‖)(v
T
i · ∇rij

‖rij‖) (15)

Similarly to (8), we have
∑N

i=1

∑
j∈Ni

g(‖rij‖)v̄
T ·

rij

‖rij‖
= 0.

So,

V̇1 = − kp

N∑

i=1

eT
vi

evi
+

N∑

i=1

∑

j∈Ni

g(‖rij‖)(v
T
i ·

rij

‖rij‖
)

−

N∑

i=1

∑

j∈Ni

g(‖rij‖)(v
T
i · ∇rij

‖rij‖). (16)

For a time variant vector P ∈ R
n, we know

∇P ‖P ‖ =
P

‖P ‖
, (17)

Therefore,

V̇1 = −kp

N∑

i=1

eT
vi

evi
. (18)

Clearly V̇1 ≤ 0, then evi
is stable for any agent. Moreover, from

LaSalle’s invariance principle, we know that the error states will
converge to the largest invariant set in which evi

= 0. This
means that the agents’ velocities will asymptotically converge
to v̄. �
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For more general case, if g(‖rij‖) is not continuous at d0

and d1, but still assumed to be continuous inside the interaction
zone. We have the following theorem.

Theorem 3.2 Consider a swarm of N mobile agents with a
fixed topology given by initial condition. Assume the environ-
ment has identical effects on all agents. Assume the topological
graph G of the swarm is always connected. Then with any set of
mutual interactions that satisfy the condition (6) and discontin-
uous at d0 and d1 but continuous inside the interaction zones,
the decentralized controller (5) enables all agents’ velocities to
asymptotically converge to a common value (v̄).

Proof: Due to the discontinuous mutual interactions, the
error dynamics is non-smooth. Under the assumption that the
environment has identical effects on all agents, we have the
following differential inclusion [26][30] for the error dynamics
:

ėvi
∈a.e. K[evi

] = −kpevi
+

∑

j∈Ni

g(‖rij‖)
rij

‖rij‖
. (19)

Because g(‖rij‖) is not continuous at d0 and d1, then
Eij(‖rij‖) is discontinuous and non-differentiable at d0 and d1.
We have its general gradient [30] as

∂Eij =





‖rij‖ < d0 : = −g(‖rij‖),
‖rij‖ = d0 : = co[−g(d−0 ), 0],
d0 < ‖rij‖ < d1 : = 0
‖rij‖ = d1 : = co[−g(d+

1 ), 0],
‖rij‖ > d1 : = −g(‖rij‖).

(20)

in which co[ · ] is the closed convex hull.
Use the candidate Lyapunov function

V2 =
1

2

N∑

i=1

eT
vi

evi
+

1

2

N∑

i=1

∑

j∈Ni

Eij(‖rij‖). (21)

From (11) we know V2 ≥ 0. Clearly V2 is smooth about evi
;

but because of nonsmooth Eij , it is not smooth about ‖rij‖.
Because g(‖rij‖) 6= ∞, Eij is locally Lipschitz, then V2

is also locally Lipschitz. From Rademacher’s Theorem [30],
we know that it is differentiable almost everywhere. In order
to derive the set-valued Lie derivative of V2 [28][29], we need
to show it is regular everywhere [30].

Lemma 3.1 The function V2 in (21) is regular everywhere
in its domain.

Proof: Because eT
vi

evi
is convex, it is regular [28]; and

since for fixed topology, Ni is time-invariant for every i, thus,
we just need to prove Eij is regular in order to show V2 is
regular. Because Eij is smooth everywhere except at d0 and d1,
we only need to prove it is regular at d0 and d1. To show its reg-
ularity at d0 and d1, we need to prove E◦

ij(d1, w) = E′
ij(d1, w)

[30], where E′
ij(d1, w) = limh↓0

Eij(d1+hw)−Eij(d1)
h

and

E◦
ij(d1, w) = limy→d1

suph↓0
Eij(y+hw)−Eij(y)

h
.

For the sake of brevity, the rest of this proof is omitted. One
can refer to [18] for similar details.

Since V2 is locally Lipschitz, we have its generalized gradient :

∂V2 = co{lim∇V2(evi
, ‖rij‖), ‖rij‖ /∈ ΩV , i, j = 1, ..., N},

in which ΩV is the set of measure zero where the gradient of
V2 is not defined. Specifically,

∂V2 = [eT
v1

, ..., eT
vN

,
1

2
∂E11, ...,

1

2
∂Eij , ...,

1

2
∂ENN ]T . (22)

For simplicity, denote ζij = 1
2∂Eij , then

∂V2 = [eT
v1

, ..., eT
vN

, ζ11, ..., ζij , ..., ζNN ]T . (23)

From the chain rule of set-valued Lie derivative of V2 [27],
we know

dV2

dt
∈a.e. ˙̃

V2, (24)

where

˙̃
V2 =

⋂

ξ∈∂V2

ξT · {K[ev1
], .., K[evN

],
d‖r11‖

dt
, ..,

d‖rij‖

dt
, ..,

d‖rNN‖

dt
}T .

Using (23) we have

˙̃
V2 =

⋂

ξ∈∂V2

{

N∑

i=1

eT
vi
· K[evi

] +

N∑

i=1

∑

j∈Ni

ζij

d‖rij‖

dt
}. (25)

To find out
˙̃

V2 on the whole domain of ‖rij‖, we discuss it
piece-wisely. For simplicity, let

Γ =

N∑

i=1

eT
vi
· K[evi

] +

N∑

i=1

∑

j∈Ni

ζij

d‖rij‖

dt
. (26)

If for ∀i, ‖rij‖ < d0 or ‖rij‖ > d1 where j ∈ Ni, i.e., in
the domain of attraction and repulsion zones, we have K[evi

] =
−kpevi

+
∑

j∈Ni
g(‖rij‖)

rij

‖rij‖
and ζij = − 1

2g(‖rij‖). Then,

Γ = −kp

N∑

i=1

eT
vi

evi
−

N∑

i=1

∑

j∈Ni

g(‖rij‖)v̄
T rij

‖rij‖
+

N∑

i=1

∑

j∈Ni

g(‖rij‖)(v
T
i ·

rij

‖rij‖
) −

1

2

N∑

i=1

∑

j∈Ni

g(‖rij‖)
d‖rij‖

dt
. (27)

Because
N∑

i=1

∑

j∈Ni

g(‖rij‖)
d‖rij‖

dt
=

N∑

i=1

∑

j∈Ni

g(‖rij‖){v
T
i · ∇rij

‖rij‖

+ vT
j · ∇rji

‖rji‖} = 2
N∑

i=1

∑

j∈Ni

g(‖rij‖)v
T
i · ∇rij

‖rij‖,

and since
∑N

i=1

∑
j∈Ni

g(‖rij‖)v̄
T rij

‖rij‖
= 0, then by using

(17), (27) becomes

Γ = −kp

N∑

i=1

eT
vi

evi
. (28)

If for ∀i, d0 < ‖rij‖ < d1 where j ∈ Ni, i.e., in the domain
of alignment zone, we have K[evi

] = −kpevi
and ζij = 0, so

Γ = −kp

N∑

i=1

eT
vi

evi
+

N∑

i=1

∑

j∈Ni

0 ·
d‖rij‖

dt
= −kp

N∑

i=1

eT
vi

evi
.

(29)

If for ∀i, ‖rij‖ = d0 where j ∈ Ni, then ζij ∈ Q , co[
− 1

2g(d−0 ), 0], and K[evi
] = −kpevi

+co[g(d−0 ), 0]
∑

j∈Ni

rij

‖rij‖
.

Then we have:

˙̃
V2 |‖rij‖=d0

=
⋂

ζij∈Q

{

N∑

i=1

eT
vi
· K[evi

] +

N∑

i=1

∑

j∈Ni

ζij

d‖rij‖

dt
}

=
⋂

ζij∈Q

{

N∑

i=1

−kpe
T
vi

evi
+

N∑

i=1

∑

j∈Ni

co[g(d−0 ), 0]

(vi − v̄)T ·
rij

‖rij‖
+

N∑

i=1

∑

j∈Ni

ζij [
drij

dt
]T · ∇rij

‖rij‖}
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=
⋂

ζij∈Q

{

N∑

i=1

−kpe
T
vi

evi
+ (co[g(d−0 ), 0] + 2ζij)

N∑

i=1

∑

j∈Ni

vT
i ·

rij

‖rij‖
} ⊆ {

N∑

i=1

−kpe
T
vi

evi
} +

⋂

ζij∈Q

{(co[g(d−0 ), 0] + 2ζij)

N∑

i=1

∑

j∈Ni

vT
i ·

rij

‖rij‖
}.

Since ⋂

ζij∈co[− 1

2
g(d−

0
), 0]

{co[g(d−0 ), 0] + 2ζij} = {0}, (30)

then

˙̃
V2 |‖rij‖=d0

⊆ {
N∑

i=1

−kpe
T
vi

evi
}. (31)

For ‖rij‖ = d1 where j ∈ Ni, ζij ∈ co[− 1
2g(d+

1 ), 0], and

K[evi
] = −kpevi

+ co[g(d+
1 ), 0]

∑
j∈Ni

rij

‖rij‖
. Similarly to the

above, we have:

˙̃
V2 |‖rij‖=d1

⊆ {

N∑

i=1

−kpe
T
vi

evi
}. (32)

Therefore, on the whole domain, we have

˙̃
V2 ⊆ {α | α =

N∑

i=1

−kpe
T
vi

evi
≤ 0}. (33)

From (24) we know all d
dt

V2 ≤ 0, which means that evi
is

stable for any agent. Furthermore, since the swarm’s topology is
fixed, so the system is autonomous. Thus, from the nonsmooth
version of LaSalle’s invariance principle [27][28], we know that
(evi

, ‖rij‖) approaches the largest invariant set in

S̄ = cl({(evi
, ‖rij‖) | 0 ∈

˙̃
V2, i, j = 1, ..., N})

= cl({(0, ‖rij‖) | i, j = 1, ..., N}). (34)

where cl(·) is the closure of a set. This means all agents’
velocities asymptotically converge to a common value (v̄). �

Remark 1. For Theorem 3.2, if g(·) is continuous at d0 and
d1, the differential inclusion K[evi

] and general gradient ∂Eij

will be singletons, and the calculus of set inclusion associated
with the general gradient will become equalities. So one can
consider Theorem 3.1 is a special case of Theorem 3.2.

Remark 2. Note that all the information the controller (5)
needs can be locally sensed, thus, the topological graph in this
paper refers to sensing graph rather than communication graph
[14][25]. The advantage of this configuration is that by the
proposed controller, the agents do not communicate their states
with each other, i.e., communication modules are not needed.
Subsequently all the issues caused by communication setup
(such as time delay and communication noise) are avoided.

4. SIMULATIONS

In this section, simulation results of a swarm moving with a
fixed topology are presented to verify the proposed controller.

We select the mutual interaction to be piece-wise linear
function as: for ‖rij‖ < d0: g(‖rij‖) = −30‖rij‖ + 320; and
for ‖rij‖ > d1: g(‖rij‖) = −30‖rij‖+400, in which d0 = 10
and d1 = 14. The alignment zone lies in [d0, d1]. Clearly
g(‖rij‖) is not discontinuous at d0 and d1. The design constant
is kp = 5. We assume that the environment has identical effect
on all agents.

Fig. 3–6 show a swarm (N = 12) with a fixed topology
to move in a 2D linear environment. The potential profile of
the environment is ∇ri

J(r) = [−1.4, −1.4]T . Agents’ initial
positions and velocities are random. The swarm’s topological
graph is determined by agents’ initial conditions. Fig. 3 shows
agents’ trajectories on x − y plane. The stars and circles
represent agents’ initial and final positions, respectively. The
convergence of agents’ velocities is shown in Fig. 4. It is clear
to see that all agents’ velocities are asymptotically converged.
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Agents’ trajectories on x−y plane (N=12)

Fig. 3. Agents’ trajectories on x-y plane when the swarm moves
in a 2D linear environment (N = 12).
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Fig. 4. Agents’ velocity errors when the swarm moves in a 2D
linear environment (N = 12).

The swarm’s topologies at initial and final stages are shown
in Fig. 5 and 6, respectively. It is not hard to see that the adjacent
matrices of the graphs in Fig. 5 and 6 are the same, i.e., the
swarm’s topology keeps unchanged. Note that due to the mutual
interactions among agents, the spacing between two adjacent
agents may change. In the final stage, agents are more evenly
dispersed in the group.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, we study a swarm of mobile agents with
fixed topology moving in a uniform environment. We pro-
pose a general decentralized controller that utilizes Attrac-
tion/Alignment/Replusion (A/A/R) interactions among neigh-
bors to achieve the collective group behavior. Under the as-
sumption of connected graph, We show that the proposed de-
centralized controller leads to all agents’ velocities to asymp-
totically converge to a common value.

The case of swarms with dynamic topologies will be dis-
cussed in continued work. Future research will focus on issues
arising from practical applications, such as sensing noise, dis-
turbance and fluctuation of the environment.
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Fig. 5. Swarm’s initial topology on x-y plane (N = 12).
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Fig. 6. Swarm’s topology at final stage (N = 12).
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