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Abstract: This paper presents a predictive and nonlinear robust control strategy to solve the path tracking
problem for a quadrotor helicopter. The dynamic motion equations are obtained by the Lagrange-Euler
formalism. The control structure is performed through a model-based predictive controller (MPC) to track
the reference trajectory and a nonlinear H∞ controller to stabilize the rotational movements. Simulations
results in presence of aerodynamic disturbances and parametric uncertainty are presented to corroborate
the effectiveness and the robustness of the proposed strategy. Copyright c© 2008 IFAC.

1. INTRODUCTION

This paper deals with a quadrotor UAV, in which the VTOL
(Vertical Take-Off and Landing) is one of the concepts usually
used to develop control laws. This kind of helicopter tries to
reach a stable hovering and flight using the forces equilibrium
produced by the four rotors [Castillo et al., 2005b]. One of the
advantages of the quadrotor configuration is its load capacity.
Moreover, this helicopter is highly maneuverable, which allows
take-off and landing as well as flight in hard environment. As
a drawback, this type of UAV presents a weight and energy
consumption augmentation due to the extra motors.

Many efforts have been made to control the quadrotor heli-
copter and many strategies have been developed to solve the
path tracking problem for this type of system (see, for example,
Mistler et al. [2001], Bouabdallah et al. [2004], Bouabdallah
and Siegwart [2005], Castillo et al. [2005a]). Several control
strategies have been tested on the quadrotor helicopter, but most
of them do not consider external disturbances and parametric
uncertainty of the model.

In some publications the quadrotor helicopter has been con-
trolled using a linear H∞ controller based on linearized models.
In Chen and Huzmezan [2003], a simplified nonlinear model of
the UAV movements was presented. The path tracking problem
was divided into two parts, the first one to achieve the angular
rates and vertical velocity stabilization by a 2DOF H∞ con-
troller using the loop shaping technique. The same technique
was used to control the longitudinal and lateral velocities, the
yaw angle and the height in the outer loop. A predictive control
was designed to solve the path tracking problem.

In this paper a predictive and nonlinear robust control strategy
to solve the path tracking problem of the quadrotor helicopter
is proposed. A state space predictive controller based on the
variant time error model is used to track the reference trajec-
tory. A nonlinear H∞ controller is synthesized to stabilize the
helicopter rotational movements .

The objective of MPC is to compute a future control sequence in
a defined horizon in such a way that the prediction of the plant
output is driven close to the reference. This is accomplished by
minimizing a multi-stage cost function in respect to the future

control actions. An analytical solution can be obtained for a
quadratic cost if the model is linear and there are no constraints,
otherwise an iterative method of optimization should be used
[Camacho and Bordons, 1998]. Because of its formulation MPC

also allows the use of previously known references for the
control law calculation [Normey-Rico et al., 1999].

The goal of the nonlinear H∞ control theory, introduced by
van der Schaft in his prominent article [van der Schaft, 1992],
is to achieve a bounded ratio between the energy of the so-
called error signals and the energy of the disturbance signals.
In general, the nonlinear approach of this theory considers
two Hamilton-Jacobi-Bellman-Isaacs partial derivative equa-
tions (HJBI PDEs), which replace the Riccati equations in the
case of the linear H∞ control formulation. The main problem in
the nonlinear case is the absence of a general method to solve
these HJBI PDEs.

In Ortega et al. [2005] a strategy to control mechanical systems
considering the tracking error dynamic equation was proposed.
In such strategies a nonlinear H∞ control, formulated via game
theory, was applied. This strategy provides, by an analytical
solution, a constant gain similar to the results obtained with the
feedback linearization procedures.

The remainder of the paper is organized as follows: in Section
II, a description of the quadrotor helicopter modelling is given.
The predictive controller for the translational movements is
presented in Section III. In Section IV, the nonlinear H∞

controller for the rotational subsystem is developed. Some
simulation results are presented in Section V. Finally, the major
conclusions of the work are drawn in Section VI.

2. SYSTEM MODELLING

2.1 Description

The autonomous aerial vehicle used in this paper is a miniature
four rotor helicopter. The movement of the UAV results from
changes in the velocities of the rotors. Longitudinal motions
are achieved by means of front and rear rotors velocity, while
lateral displacements are performed using the speed of the right
and left propellers. Yaw movement is obtained from the differ-
ence in the counter-torque between each pair of propellers, i.e.,
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accelerating the two clockwise turning rotors while decelerat-
ing the counter-clockwise turning rotors, and vice-versa.

The dynamic model of the system is obtained under the as-
sumption that the vehicle is a rigid body in the space subject to
one main force (thrust) and three torques. However, this type of
vehicle is a flight system of lightweight structure and, therefore,
gyroscopes effects resulting from the rotation of the rigid body
and the four propellers must be included in the dynamic model
[Bouabdallah et al., 2004].

Besides, a helicopter is an underactuated mechanical system
with six degrees of freedom and only four control inputs. Due
to the complexities presented, some assumptions are made
for modelling purposes [Koo and Sastry, 1999]. The moment
effects caused by the rigid body on the translational dynamic
are neglected, as well as the ground effect. The center of
mass and the body fixed frame origin are assumed coincident.
Moreover, the helicopter structure is assumed to be symmetric,
which results in a diagonal inertia matrix.

2.2 Helicopter Kinematics

The helicopter as a rigid body is characterized by a frame
linked to it. Let B = {Bb

1,B
b
2,B

b
3} be the body fixed frame,

where the Bb
1 axis is the helicopter normal flight direction, Bb

2

is orthogonal to Bb
1 and positive to starboard in the horizontal

plane, whereas Bb
3 is oriented in ascendant sense and orthogonal

to the plane Bb
1OBb

2. The inertial frame I = {Ex,Ey,Ez} is
considered fixed with respect to the earth (see Fig. 1).

ψ

φ

θ
ξ

Fig. 1. Quadrotor helicopter scheme.

The vector ξ = {x,y,z} represents the position of the helicopter
mass center expressed in the inertial frame I . The vehicle
orientation is given by a rotation matrix RI : B → I , where
RI ∈ SO(3) is an orthonormal rotation matrix [Fantoni and
Lozano, 1995]. The rotation matrix is obtained through three
successive rotations around the axes of the body fixed frame.
The first one is given by a rotation around the Ex axis by roll
angle, (−π < φ < π), followed by a rotation of pitch angle,
(−π/2 < θ < π/2), around the Ey axis from the new axis

Bb
2. Finally, a rotation of the yaw angle, (−π < ψ < π), is

carried out around the Ez axis from the new axis Bb
3 to carry

the helicopter to the final position.

From these three rotations, the following rotation matrix from
B to I is obtained:

RI =





CψCθ CψSθSφ −SψCφ CψSθCφ+SψSφ
SψCθ SψSθSφ +CψCφ SψSθCφ −CψSφ
−Sθ CθSφ CθCφ



 (1)

where C· = cos(·) and S· = sin(·).

The kinematic equations of the rotational and translational
movements are obtained by means of the rotation matrix. The
translational kinematic can be written as:

v = RI ·V (2)

where v = [u0 v0 w0]
T and V = [uL vL wL]T are linear

velocities expressed in the inertial frame and body fixed frame,
respectively.

The rotational kinematic can be obtained from the relationship
between the rotation matrix and its derivative with an skew-
symmetric matrix [Craig, 1989, Olfati-Saber, 2001] as follows:

ṘI = RI ·S(ω) (3)

η̇ = W−1
η ω





φ̇
θ̇
ψ̇



 =





1 sinφ tanθ cosφ tanθ
0 cosφ −sinφ
0 sinφ secθ cosφ secθ









p

q

r



 (4)

where η = (φ ,θ ,ψ), ω = (p,q,r) are the angular velocities in
the body fixed frame.

2.3 Lagrange-Euler Equations

The helicopter motion equations can be expressed by the
Lagrange-Euler formalism based on the kinetic and potential
energy concept:

Γi =
d

dt

(

∂L

∂ q̇i

)

−
∂L

∂qi
(5)

L = Ec −Ep

where L is the Lagrangian, Ec is the total kinetic energy, Ep is
the total potential energy, qi is the generalized coordinate and
Γi are the generalized forces/torques given by nonconservative
forces/torques

The generalized coordinates for a rigid body rotating in the
three-dimensional space can be written as [Castillo et al.,
2005a]:

q = [x y z φ θ ψ]T ∈ ℜ6

The Lagrangian expression of the helicopter is given by:

L(q, q̇) = EcTrans
+EcRot

−Ep (6)

where EcTrans
is the translational energy and EcRot

is the rota-
tional energy.

Firstly, the translational energy term is developed requiring the
knowledge of each generalized coordinate velocity. The linear

velocity is given by (2), where ξ̇ = v and the quadratic velocity

is ξ̇ 2 (x,y,z) = (ẋ2 + ẏ2 + ż2). Thus, the translational kinetic
energy can be written as:

EcTrans
=

1

2

∫

ξ̇ 2 (x,y,z)dm =
m

2
ξ̇ 2 (x,y,z) =

m

2
ξ̇ T ξ̇

Let EcRot
be the rotational kinetic energy in B expressed in I ,

and let dEcRot
be the kinetic energy of a particle with differential

mass dm in B. Then:

dEcRot
=

1

2

(

I v2
B

)

dm =
1

2

(

I v2
Bx +I v

2

By +I v
2

Bz

)

dm (7)

Therefore, the rotational kinetic energy can be obtained solving
(7). Furthermore, from the hypothesis assumed on the inertia
matrix, the cross products can be neglected and consequently
the inertia matrix becomes diagonal. Like this the rotational
kinetic energy is given by:

EcRot
=

1

2

∫

I v2
Bdm =

1

2
Ixx

(

φ̇ − ψ̇ sinθ
)2

+
1

2
Iyy

(

θ̇ cosφ + ψ̇ sinφ cosθ
)2

+
1

2
Izz

(

θ̇ sinφ − ψ̇ cosφ cosθ
)2

(8)
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or in a compact form using (4):

EcRot
=

1

2
Ixx p2 +

1

2
Iyyq2 +

1

2
Izzr

2 =
1

2
ωT Jω (9)

If the Jacobian from ω to η̇ in (4) is named as Wη and the
following matrix is defined:

J = J (η) = W T
η JWη (10)

then the kinetic energy equation (9) can be rewritten as function
of the generalized coordinate η as follows:

EcRot
=

1

2
η̇T J η̇ (11)

The potential energy Ep expressed in terms of the generalized
coordinates is given by:

Ep = mgz (12)

The complete movement equation is obtained from the La-
grangian expression (6), as follows:

[

Fξ

τη

]

=
d

dt

(

∂L

∂ q̇i

)

−
∂L

∂qi

(13)

where τη ∈ ℜ3 represents the roll, pitch and yaw moments

and Fξ = RI F̂ + AT is the translational force applied to the
helicopter due to the main control input U1 in z axis direction,
with RI F̂ = RIE3

U1 and AT the external disturbances.

Since the Lagrangian does not contain kinetic energy terms

combining ξ̇ and η̇ , the Lagrange-Euler equations can be
divided into translational and rotational dynamics, being the
Lagrange-Euler equations of the translational movement:

mξ̈ +mgE3 = Fξ (14)

Then, (14) can be expressed by means of state vector ξ ,
yielding:























ẍ =
1

m
(cosψ sinθ cosφ + sinψ sinφ)U1 +

Ax

m

ÿ =
1

m
(sinψ sinθ cosφ − cosψ sinφ)U1 +

Ay

m

z̈ = −g+
1

m
(cosθ cosφ)U1 +

Az

m

(15)

The Lagrange-Euler equations for the coordinate η , written in
the general form, are [Castillo et al., 2005a]:

M(η)η̈ +C(η , η̇)η̇ = τη (16)

where M(η) = J (η).

Thus, the mathematical model that describes the helicopter
rotational movement obtained from the Lagrange-Euler formal-
ism is given by:

η̈ = M(η)−1 (τη −C(η , η̇)η̇) (17)

3. ERROR BASED STATE SPACE CONTROLLER
(E-SSPC) FOR PATH TRACKING

In this section a control law to solve the path tracking problem
by translational movements is designed. A linear state space
MPC strategy based on the error model is performed. From
the error model, two predictive controllers are synthesized. The
first one controls the height through of the input U1, whereas the
second one makes use of this signal as a time variant parameter
in the linear x and y motions to compute the virtual inputs.

Thus, the system (15) is rewritten in state space form ˙̂x(t) =
f (x̂(t), û(t)) for the controller design, where x̂(t)= [z(t) w0(t)
x(t) u0(t) y(t) v0(t)]

T stands for the state space vector of
the system.

From (15) and the new state space vector, the system dynamic
equation can be written in the following form:

˙̂x(t) = f (x̂(t), û(t)) =

























w0(t)

−g+(cosθ(t)cosφ(t))
U1(t)

m
u0(t)

ux(t)
U1(t)

m
v0(t)

uy(t)
U1(t)

m

























(18)

with:
ux(t) = (cosψ(t)sinθ(t)cosφ(t)+ sinψ(t)sinφ(t))
uy(t) = (sinψ(t)sinθ(t)cosφ(t)− cosψ(t)sinφ(t))

(19)

Equations (15) show that the movement through the x and y
axes depends on the control input U1. In fact, U1 is the designed
total thrust vector to obtain the desired linear movement, while
ux and uy can be considered as the orientations of U1 that cause
the movement through the x and y axes, respectively.

The objective of this approach is to guarantee that the UAV
follows a previously defined reference trajectory without any
displacement error. However, due to the fact that the destination
coordinates varies in time, a reference virtual vehicle having the
same quadrotor helicopter mathematical model is placed on the
track:

˙̂xre f (t) = f (x̂re f (t), ûre f (t)) (20)

where x̂re f (t) = [zre f (t) w0re f
(t) xre f (t) u0re f

(t) yre f (t) v0re f
(t)]T

and ûre f (t) = [U1re f
uxre f

uyre f
]T are the reference states and control

inputs, respectively.

The input control U1(t) is considered a time variant parameter
to the reference x and y motions. Moreover, because the decen-
tralized control structure, the roll, pitch and yaw angles are also
considered as parameters that vary in time.

Thus, by subtracting the system (20) from the system (18)
and using the Euler’s method, the proposed translational error
model, as a time variant discrete linear model, is given by:

x̃(k +1) = A · x̃(k)+B(k) · ũ(k) . (21)

where x̃(k) = x̂(k)− x̂ref(k) represents the vector error and
ũ(k) = û(k)− ûref(k) the control input error.

Therefore, the error model (21) is split up in two subsystems:
height error and x and y motions error as follows:

x̃z (k +1) =

[

1 1

0 T

][

z̃(k)
w̃0(k)

]

+

[

0
T

m
cos(θ(k))cos(φ(k))

]

Ũ1(k) (22)

x̃xy(k+1) =









1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

















x̃(k)
ũ0(k)
ỹ(k)
ṽ0(k)









+













0 0
T

m
U1(k) 0

0 0

0
T

m
U1(k)













[

ũx(k)
ũy(k)

]

(23)

So that, from the height and longitudinal-lateral error models
the control laws can be designed in such way that the system is
forced to track the reference trajectory. The first one computes
the control input U1. The idea used in this controller consists in
the computation of a control law in such a way that minimizes
the cost defined by:

Jz =
[

ˆ̃xz − x̃zr

]′
Qz

[

ˆ̃xz − x̃zr

]

+
[

Ũ1 − Ũ1r

]′
Rz

[

Ũ1 − Ũ1r

]

, (24)

where Qz and Rz are diagonal definite positive weighting
matrices and N2z and Nuz are the horizons [Rossiter, 2003]. The

predictions of the plant output ˆ̃xz(k + j|k) are computed using
a linearized time variant state space model of the vehicle by the
equation (22), obtaining:

ˆ̃xz = Pz(k|k) · x̃z(k|k)+Hz(k|k) · Ũ1 , (25)
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where Ũ1(k) = U1(k)−U1re f
(k) and x̃z(k) is the height state

error, and the height reference vectors are:

x̃zr

∆
=









x̂zr (k +1|k)− x̂zr (k|k)
.
.
.

x̂zr (k +N2|k)− x̂zr (k|k)









, Ũ1re f

∆
=









Û1r (k|k)− Û1r (k−1|k)
.
.
.

Û1r (k +Nu−1|k)− Û1r (k−1|k)









.

Minimizing the equation (24) when the constraints are not
considered, the control law can be obtained as:

Ũ1 =
[

H′
z ·Qz ·Hz +Rz

]−1
·
[

H′
z ·Qz · (x̃zr −Pz · x̃z(k))+Rz · Ũ1re f

]

, (26)

although only Ũ1(k) is needed at each instant k [Camacho
and Bordons, 1998]. In the constrained case, an optimization
algorithm solves (24) at each sampling time. However, in this
work constraints are not considered. So that, by (26), U1(k) =
Ũ1(k)+U1re f

(k) is obtained.

Then, the next step performs the x and y motion control inputs.
The same previous procedure, using the error model (23), to
compute the control law is carried out, and is given by:

ũxy =
[

H′
xy ·Qxy ·Hxy +Rxy

]−1
·
[

H′
xy ·Qxy ·

(

x̃xyr
−Pxy · x̃xy(k)

)

+Rxy · ũxyr

]

,
(27)

where ũxy = [ũx(k) ũy(k)]
T , and

[

ux(k)
uy(k)

]

=

[

ũx(k)
ũy(k)

]

+

[

uxre f
(k)

uyre f
(k)

]

The error reference states and control inputs are obtained from
the same form that for height controller case.

From ux(k) and uy(k) the reference roll, φre f , and pitch, θre f ,
angles for the helicopter rotational loop using equation (19) are
computed.

4. NONLINEAR H∞ CONTROLLER FOR
STABILIZATION

In this section the rotational subsystem control law to achieve
robustness in presence of sustained disturbances and parametric
uncertainty is developed. A nonlinear H∞ controller is able to
execute this task. The controller design for mechanical system
models using Lagrange-Euler equations is carried out by a
direct method.

4.1 Nonlinear H∞ Control Theory

The dynamic equation of an nth order smooth nonlinear system
which is affected by an unknown disturbance can be expressed
as follows:

ẋ = f (x, t)+g(x, t)u+ k(x, t)ω , (28)

where u ∈ ℜp is the vector of control inputs, ω ∈ ℜq is
the vector of external disturbances and x ∈ ℜn is the vector
of states. Performance can be defined using the cost variable

z ∈ ℜ(m+p) given by the expression:

z = W

[

h(x)
u

]

, (29)

where h(x) ∈ ℜm represents the error vector to be controlled

and W ∈ ℜ(m+p)×(m+p) is a weighting matrix. If states x are
assumed to be available for measurement, then the optimal H∞

problem can be posed as follows [van der Schaft, 1992]:

Find the smallest value γ∗ ≥ 0 such that for any γ ≥ γ∗ exists a
state feedback u = u(x, t), such that the L2 gain from ω to z is
less than or equal to γ , that is:

∫ T

0
‖z‖2

2dt ≤ γ2
∫ T

0
‖ω‖2

2dt . (30)

The internal term of the integral expression on the left-hand
side of inequality (30) can be written as:

‖z‖2
2 = zT z =

[

hT (x) uT
]

W TW

[

h(x)
u

]

and the symmetric positive definite matrix W TW can be parti-
tioned as follows:

W TW =

[

Q S

ST R

]

(31)

Matrices Q and R are symmetric positive definite and the fact
that W TW > 0 guarantees that Q−SR−1ST > 0.

Under these assumptions, an optimal control signal u∗(x, t) may
be computed for system (28) if there is a smooth solution
V (x, t), with V (x0, t) ≡ 0 for t ≥ 0, to the following HJBI
equation [van der Schaft, 2000]:

∂V

∂ t
+

∂ TV

∂x
f (x, t)+

1

2

∂ TV

∂x

[

1

γ2
k(x, t)kT (x, t)−g(x, t)R−1gT (x, t)

]

∂V

∂x

−
∂ TV

∂x
g(x, t)R−1ST h(x)+

1

2
hT (x)

(

Q−SR−1ST
)

h(x) = 0

(32)

for each γ >
√

σmax(R) ≥ 0, where σmax stands for the
maximum singular value. In such a case, the optimal state
feedback control law is derived as follows [W. Feng and I.
Postlethwaite , 1994]:

u∗ = −R−1

(

ST h(x)+gT (x, t)
∂V (x, t)

∂x

)

. (33)

4.2 Rotational Subsystem Nonlinear H∞ Control

In order to develop the nonlinear H∞ controller the rotational
movements dynamic model (16), obtained from the Lagrange-
Euler formalism, is used. τη adds the control torques and
external disturbances, and is redefined as:

τη = τηa + τηd

where τηa is the applied torques vector and τηd
represents

the total effect of system modelling errors and external distur-
bances.

As a first step to synthesize the control law, the tracking error
vector is defined as follows:

x̂ =







˙̃η
η̃

∫

η̃dt






=







η̇ − η̇d

η −ηd
∫

(

η −ηd
)

dt






(34)

where ηd and η̇d ∈ ℜn are the desired trajectory and the
corresponding velocity, respectively. Note that an integral term
has been included in the error vector. This term will allow to
achieve a null steady-state error when persistent disturbances
are acting on the system [Ortega et al., 2005].

The following control law is proposed for the rotational subsys-
tem:

τηa = M(η)η̈ +C(η , η̇)η̇ −T−1
1

(

M(η)T ˙̂x+C(η , η̇)T x̂
)

+T−1
1 u (35)

The proposed control law can be split up into three different
parts: the first one consists of the first three terms of that
equation, which are designed in order to compensate the system
dynamics (16). The second part consists of terms including the
error vector x̂ and its derivative, ˙̂x. Assuming τηd

≡ 0, these
two terms of the control law enable perfect tracking, which
means that they represent the essential control effort needed
to perform the task. Finally, the third part includes a vector
u, which represents the additional control effort needed for
disturbance rejection.
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It can also be pointed out that, despite the preceding control law
might seem a not well posed system, it will be shown afterwards
that the computed torque does not rely on joint accelerations,
but on their references.

Matrix T in (35) can be partitioned as follows:

T =
[

T1 T2 T3

]

with T1 = ρI, where ρ is a positive scalar and I is the nth-order
identity matrix.

Substituting the expression of the control law from (35) into
the Lagrange-Euler equation of the system (16) and defining

ω = M(η)T1M−1(η)τηd
, one gets:

M(η)T ˙̂x+C(η , η̇)T x̂ = u+ω (36)

This expression represents the dynamic equation of the system
error. Taking into account this nonlinear equation, the nonlinear
H∞ control problem can be posed as follows:

“Find a control law u(t) such that the ratio between the energy

of the cost variable z = W
[

hT(x̂) uT
]T

and the energy of the
disturbance signals ω is less than a given attenuation level γ”.

Taking into account the definition of the vector error, x̂, and the
definition of the cost variable, z, the following structures are
considered for matrices Q and S in (31):

Q =





Q1 Q12 Q13

Q12 Q2 Q23

Q13 Q23 Q3



 , S =





S1

S2

S3



 .

To apply the theoretical results presented in Section 4.1, it is
necessary to rewrite the nonlinear dynamic equation of the error
(36) into the standard form of the nonlinear H∞ problem (see
(28)). This can be done by defining the following expressions:

˙̂x = f (x̂, t)+g(x̂, t)u+ k(x̂, t)ω , (37)

f (x̂, t) = T−1
0





−M−1C O O

T−1
1 I −T−1

1 T2 −I +T−1
1 (T2 −T3)

O I −I



T0,

g(x̂, t) = k (x̂, t) = T−1
0





M(η)−1

O

O





where I is the identity matrix, O the zero matrix, both of n-th
order, and

T0 =





T1 T2 T3

O I I

O O I



 . (38)

As stated in Section 4.1, the solution of the HJBI equation
depends on the choice of the cost variable, z, and particularly
on the selection of function h(x̂) (see (29)). In this paper, this
function is taken to be equal to the error vector, that is, h(x̂) = x̂.
Once this function has been selected, computing the control
law, u, will require finding the Lyapunov function, V (x̂, t), to
the HJBI equation posed in the previous section (see (32)). The
details to achieve this solution can be found in Ortega et al.
[2005].

Matrix T = [ T1 T2 T3 ] can be computed by solving some
Riccati algebraic equations (see Ortega et al. [2005]).

Once matrix T is computed, substituting V (x̂, t) in (33), control
law u∗ corresponding to the H∞ optimal index γ is given by

u∗ = −R−1
(

ST +T
)

x̂ (39)

Finally, if the control law (39) is replaced into (35), and after
some manipulations, the optimal control law can be written as:

τ∗ηa
= M(η)η̈d +C(η , η̇)η̇ −M(η)

(

KD
˙̃η +KP η̃ −KI

∫

η̃dt

)

(40)

A particular case can be obtained when the components of

weighting compound W TW verify:

Q1 = ω2
1 I, Q2 = ω2

2 I, Q3 = ω2
3 I, R = ω2

u I, (41)

Q12 = Q13 = Q23 = 0, S1 = S2 = S3 = 0.

In this case, the following analytical expressions for the gain
matrices have been obtained:

KD =

√

ω2
2 +2ω1ω3

ω1
I +M(η)−1

(

C(η , η̇)+
1

ω2
u

I

)

,

KP =
ω3

ω1
I +

√

ω2
2 +2ω1ω3

ω1
M(η)−1

(

C(η , η̇)+
1

ω2
u

I

)

,

KI =
ω3

ω1
M(η)−1

(

C(η , η̇)+
1

ω2
u

I

)

.

These expressions have an important property: they do not de-
pend on the parameter γ . So, we obtain an algebraic expression
for computing the general optimal solution for this particular
case.

5. SIMULATION RESULTS

The proposed control strategy has been tested by simulations in
order to check the performance attained for the path tracking
problem. Simulations has been performed considering external
disturbances and parametric uncertainties.

The following vertical helix has been defined as the reference
trajectory:

xd =
1

2
cos

( t

2

)

, yd =
1

2
sin

( t

2

)

, zd = 1+
t

10
, ψd =

π

3

The initial conditions of the helicopter are (x,y,z) = (0,0,0.5)m
and (φ ,θ ,ψ) = (0,0,0.5)rad. The values of the model param-
eters used for simulations are the following: m = 0.74 kg,
l = 0.21 m, g = 9.81m/s2 and Ixx = Iyy = 0.004 Kg.m2, Izz =

0.0084 Kg.m2. An amount of ±20% in the uncertainty of the
elements of the inertia matrix has been considered in the simu-
lations.

In the simulations external disturbances on the aerodynamic
moments were considered. The following persistent steps were
applied: Ar = 0.5Nm at t = 5s; Ap = 1Nm at t = 15s; and
Aq = 1Nm at t = 25s. The E-SSPC parameters were adjusted
as follows:

N2z = Nuz = 3Inz , Qz =

[

1 0

0 1

]

, Rz = 0.01

N2xy = Nuxy = 3Inxy , Qxy =









5 0 0 0

0 1 0 0

0 0 5 0

0 0 0 1









, Rxy =

[

90 0

0 90

]

The nonlinear H∞ controller gains were tuned with the follow-
ing values: ω1 = 0.05, ω2 = 0.5, ω3 = 5 y ωu = 0.7.

Figs. 2 to 4 present a perfect tracking of the reference trajectory
when external disturbance originated by aerodynamic moments
are considered. The results illustrate the robust performance
provided by the controller in the case of parametric uncertainty
in the inertia terms. Using the E-SSPC a smooth reference
tracking was performed, mainly, in the beginning of the track
where the vehicle is far from the trajectory. This is due because
the predictive controller considers the future reference in the
computation of the control signal and thus, it tries to predict the
path smoothing the displacement.
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Fig. 2. Path following with external disturbances.
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Fig. 3. Position (x,y,z) with external disturbances.
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Fig. 4. Orientation (φ ,θ ,ψ) with external disturbances.

6. CONCLUSIONS

In this paper a predictive and robust control strategy to solve
the path tracking problem for a quadrotor helicopter has been
presented. The proposed strategy was designed in consideration
of external disturbances like aerodynamic moments. Through
the state space predictive controller for the linear movements
a good and smooth performance in the reference tracking has
been achieved. A robust control based on nonlinear H∞ theory
has been used for the helicopter stabilization, which is able to
reject moment disturbances. Besides, the H∞ controller robust-
ness has been checked under uncertainty in the inertia terms.

Finally, the robustness, the smoothness and the predictive fea-
ture of the presented control strategy has been also corroborated
by simulations.
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