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Abstract: For a class of perturbed feedback linearizable nonlinear systems, we consider the
computation and assignment of prescribed ultimate bounds on the system states. We employ
a recently proposed componentwise bound computation procedure, which directly takes into
account both the system and perturbation structures by performing componentwise analysis. We
first derive sufficient conditions to ensure that the trajectories originating from initial conditions
in an appropriate set are ultimately bounded. Secondly, and most importantly, for state-
feedback-linearizable nonlinear systems with matched perturbations, we provide a systematic
design procedure to compute a state feedback control that ensures a prescribed ultimate
bound for the closed-loop system states. The procedure combines nonlinear state-feedback-
linearizing control with a state-feedback matrix computed via an eigenstructure assignment
method previously reported by the authors. A simulation example illustrates the simplicity and
systematicity of the proposed design method.

1. INTRODUCTION

This paper considers the computation and assignment via
state feedback of ultimate bounds on the closed-loop tra-
jectories of perturbed state-feedback-linearizable nonlinear
systems. Perturbations in dynamic systems may arise from
unknown disturbance signals, model uncertainty, compo-
nent ageing, etc. Bounds on the perturbation variables are
typically known and may be used to obtain, under cer-
tain conditions, ultimate bounds on the perturbed system
trajectories.

A standard approach for the computation of ultimate
bounds is the use of level sets of suitable Lyapunov func-
tions [see, for example, Section 9.2 of Khalil (2002)]. An
alternative approach was proposed in Kofman (2005), Kof-
man et al. (2007a) and Haimovich (2006), where compo-
nentwise ultimate bound formulae were derived exploiting
the system geometry in modal coordinates as well as the
perturbation structure, without requiring the computation
of a Lyapunov function for the system. For some system
and perturbation structures, this componentwise approach
was shown to provide bounds that are much tighter than
those obtained via standard Lyapunov analysis.

For linear systems with matched perturbations (that is,
perturbations that span the same space spanned by the
control input), an ultimate bound on the closed-loop
trajectories can be arbitrarily assigned by state feedback
control (Schmitendorf and Barmish, 1986). Several control
design methods, based on a Lyapunov approach, which
can achieve an arbitrarily small ultimate bound for linear
uncertain systems have been reported in the robust control
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literature (see, for example, Barmish et al., 1983; Trinh
and Aldeen, 1996; Cao and Sun, 1998; Oucheriah, 1999).

Taking a departure from Lyapunov analysis and exploit-
ing the aforementioned componentwise approach for ulti-
mate bound computation, we proposed in Kofman et al.
(2008, 2007b) a new controller design method for lin-
ear, continous-time systems that guarantees a prespecified
ultimate bound on the closed-loop system trajectories.
The method takes advantage of the dependency of the
componentwise ultimate bound expressions on the system
eigenstructure. Using techniques of eigenvalue and eigen-
vector assignment by state feedback, we showed that a
state feedback gain can be designed such that the ulti-
mate bound expression decreases to zero as a “scaling”
parameter, associated with the magnitude of the closed-
loop eigenvalues, increases. The proposed design procedure
is systematic in the sense that, once a desired “normalized”
configuration is chosen for the closed-loop eigenvalues, it
only requires to increase the scaling parameter at most
once for the desired ultimate bound on each component of
the state to be achieved.

In the current paper we extend the design method of
Kofman et al. (2008, 2007b) to perturbed state-feedback-
linearizable nonlinear systems (Isidori, 1995). The latter
are systems which, under suitable nonlinear feedback and
coordinate transformation, can be expressed as a linear
asymptotically stable system with nonlinear perturbation
terms. For these systems, we derive sufficient conditions
to ensure that the trajectories originating from initial
conditions in an appropriate set are ultimately bounded.
Moreover, for state-feedback-linearizable nonlinear sys-
tems with matched perturbations, we provide an algorithm
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to systematically design a state feedback control that
ensures a prescribed ultimate bound for the closed-loop
system states. The proposed algorithm combines standard
nonlinear feedback linearizing control [see, for example,
Isidori (1995)] with a state-feedback matrix designed based
on the method of Kofman et al. (2008, 2007b). An exam-
ple of a synchronous generator illustrates the simplicity
and systematicity of the approach. Simulation results for
this example under persistent perturbations satisfying ap-
propriate bounds also demonstrate the potential of the
method to obtain relatively tight bounds on the closed-
loop trajectories.

The remainder of the paper is organized as follows.
Section 2 presents the class of nonlinear systems un-
der consideration and outlines the goals of the paper.
Section 3 reviews some preliminary results needed to
achieve the desired goals. Section 4 presents the main
contributions of the paper, namely, a systematic method
to compute componentwise ultimate bounds for state-
feedback-linearizable systems and a systematic control de-
sign methodology so that any desired ultimate bound is
achieved in the case of matched perturbations. Section 5
illustrates the results with an example of a synchronous
generator. Finally, Section 6 concludes the paper.

Notation. In the sequel, R and C denote the sets of
real and complex numbers, respectively. |M | and Re(M)
denote the elementwise magnitude and real part, respec-
tively, of a (possibly complex) matrix or vector M . The
expression x � y (x ≺ y) denotes the set of component-
wise (strict) inequalities between the elements of the real
vectors (or matrices) x and y, and similarly for x � y
(x ≻ y). R+ and R+,0 denote the positive and nonnegative
real numbers, respectively. For c ∈ C, c denotes its complex
conjugate.

2. PROBLEM STATEMENT

Consider the following continuous-time nonlinear system
with n states, m inputs, and k disturbance variables:

ẋ = f(x) +

m
∑

i=1

gi(x)ui +

k
∑

j=1

hj(x)wj , (1)

where x(t) ∈ Rn, f(0) = 0, and such that f, g1, . . . , gm,
h1, . . . , hk are smooth (C∞) vector fields defined on an
open set Ux ⊂ Rn containing the origin. The disturbance
variables w1, . . . , wk are assumed to be bounded as follows:

|wj(t)| ≤ θj(x(t)), for all t ≥ 0, for j = 1, . . . , k, (2)

where θj(x) ≥ 0 for all x ∈ Ux. We write (2) in condensed
form as follows:

|w(t)| � θ(x(t)), for all t ≥ 0, (3)

with w = col(w1, . . . , wk) and θ = col(θ1, . . . , θk). Also,
we hereafter denote u = col(u1, . . . , um), g = [g1| . . . |gm]
and h = [h1| . . . |hk]. Associated with (1) is the nominal
system

ẋ = f(x) +
m

∑

i=1

gi(x)ui = f(x) + g(x)u. (4)

The nominal system (4) is assumed to be state-feedback-
linearizable in Ux (Isidori, 1995), that is, there exist a
coordinate transformation (diffeomorphism) z = Φ(x) and

a pair of feedback functions α(x) and β(x), all defined on
Ux, so that β(x) is nonsingular for all x ∈ Ux and

[

∂Φ

∂x
(f(x) + g(x)α(x))

]

x=Φ−1(z)

= A0z, (5)

[

∂Φ

∂x
(g(x)β(x))

]

x=Φ−1(z)

= B0, (6)

where

A0 = diag(A1, . . . , Am), B0 = diag(b1, . . . , bm), (7)

Ai ∈ Rdi×di , bi ∈ Rdi×1,

Ai =



















0 1 0 . . . 0
...

. . . 1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . 1
0 . . . . . . . . . 0



















, bi =















0
...
...
0
1















, (8)

for i = 1, . . . , m, and
∑m

i=1 di = n. Therefore, in this case
application of the state-feedback law u = α(x) + β(x)v
to system (1), where v = col(v1, . . . , vm) is a new input,
jointly with the change of coordinates z = Φ(x), yields

ż = A0z + B0v +

[

∂Φ

∂x
h(x)

]

x=Φ−1(z)

w. (9)

Application of the additional state-feedback law v = Kz
to (9) or, equivalently, application of

u = α(x) + β(x)KΦ(x) (10)

to (1), yields

ż = (A0 + B0K)z +

[

∂Φ

∂x
h(x)

]

x=Φ−1(z)

w. (11)

A particular important type of systems of the form (1)
is given by the case of “matched perturbations”, namely
the case when h(x) = g(x)γ(x), for some matrix γ(x) of
smooth functions defined on Ux. For this type of systems,
application of (10) yields the closed-loop system

ż = (A0 + B0K)z + B0

[

β−1(x)γ(x)
]

x=Φ−1(z)
w. (12)

This work has the following goals:

G1) to provide sufficient conditions to ensure that the
trajectories of system (1), under a feedback law of
the form (10), are ultimately bounded.

G2) to estimate an ultimate bound for such closed-loop
system, and

G3) to design matrix K in (10) so that the system state
trajectories are ultimately bounded and satisfy a
given ultimate bound in the case of matched pertur-
bations.

Before proceeding with some preliminary results required
to achieve the above goals, we observe that the setting
(1)-(3) can accommodate any combination of the following
types of uncertainty:

• Uncertainty in the system evolution function, where
ẋ(t) = (f(x)+∆f(x))+g(x)u(t), and |∆f(x)| � φ(x),
∀t ≥ 0; in this case, we can take h(x) = In in (1) and
θ(x) = φ(x) in (3).

• Uncertainty in the system input function [assuming a
feedback u = κ(x) in (1)], where ẋ(t) = f(x)+(g(x)+
∆g(x))κ(x), and |∆g(x)| � γ(x), ∀ t ≥ 0; in this case,
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we can take h(x) = In in (1) and θ(x) = γ(x)|κ(x)|
in (3).

• Bounded disturbances, where |w(t)| � w̄, ∀t ≥ 0; in
this case, we can take θ(x) = w̄ in (3).

3. PRELIMINARY RESULTS

In this section, we state previous results that are needed
to achieve the goals outlined above. Section 3.1 presents
a method for computing a componentwise ultimate bound
for a linear system with an additive perturbation having
a bound that may depend on the linear system state.
Section 3.2 recalls a result that shows how a linear state
feedback may be designed to assign closed-loop eigenvalues
and eigenvectors for a linear system.

3.1 Ultimate Bound of a Perturbed Linear System

The following result computes a componentwise ultimate
bound for a LTI system in presence of perturbations that
are componentwise bounded by functions of the system
state. This result is a modified version of Theorem 2 of
Kofman et al. (2007a).

Theorem 1. Consider the system

ẋ(t) = Ax(t) + Hv(t), (13)

where x(t) ∈ Rn, v(t) ∈ Rk, H ∈ Rn×k, and A ∈ Rn×n

is Hurwitz with (complex) Jordan canonical form Λ =
V −1AV . Suppose that

|v(t)| � δ(x(t)) ∀t ≥ 0, (14)

where δ : Rn → Rk
+,0 is a continuous map verifying

|x1| � |x2| ⇒ δ(x1) � δ(x2). (15)

Consider the map T : Rn → Rn
+,0 defined by

T (x) , |V |SHδ(x), (16)

where
SH ,

∣

∣[Re(Λ)]−1
∣

∣

∣

∣V −1H
∣

∣ . (17)

Suppose that there exists xm ∈ R
n satisfying, T (xm) ≺

xm. Then,

1) b , limr→∞ T r(xm) exists and satisfies 0 � b ≺ xm.
2) If |V −1x(0)| � SHδ(xm), then

a) |V −1x(t)| � SHδ(xm) for all t ≥ 0.
b) Also, given a positive vector ǫ ∈ Rn

+, a finite time
tf exists so that for all t ≥ tf ,

i) |V −1x(t)| � SHδ(b) + ǫ.
ii) |x(t)| � b + |V | ǫ.

The proof of this theorem is almost identical to that of
Theorem 2 of Kofman et al. (2007a), the only difference
being the presence of matrix H . In the sequel, we will
equivalently express Theorem 1 part 2)b)ii) as follows:

• If |V −1x(0)| � SHδ(xm), then x is ultimately
bounded to the region {x : |x| � b}.

3.2 Eigenvalue and Eigenvector Assignment by Feedback

The following result is part of Theorem 4.1 of Kofman et al.
(2007b) and also part of Theorems 4.2 and 4.3 of Kofman
et al. (2008). This result shows how a state-feedback
matrix can be computed so that desired eigenvalues and
eigenvectors are assigned to the closed-loop linear system.

In addition, the result establishes how some matrices
change as the desired eigenvalues are scaled according to
a scaling factor µ.

Theorem 2. Take µ > 0 and select an eigenvalue matrix
Λµ = µΛ̃ = µdiag(λ̃1, . . . , λ̃n), where λ̃i ∈ C, i = 1, . . . , n,

satisfy λ̃i 6= λ̃j whenever i 6= j, Re(λ̃i) < 0, and if

λ̃i /∈ R, then either λ̃i−1 = λ̃i or λ̃i+1 = λ̃i. Select complex
numbers ei,j ∈ C, i = 1, . . . , m, j = 1, . . . , n so that

ei,j+1 = ei,j whenever λ̃j+1 = λ̃j and such that the matrix
V defined as

V ,

[

V1,1 ... V1,n

...
. . .

...
Vm,1 ... Vm,n

]

, Vi,j ,







ei,j(µλ̃j)−(di−1)

...
ei,j(µλ̃j)−1

ei,j






, (18)

has linearly independent columns, where di, i = 1, . . . , m,
are the dimensions of Ai and bi in (7)–(8). Define

Rµ , |V |
∣

∣[Re(Λµ)]−1
∣

∣

∣

∣V −1B0

∣

∣ , (19)

and,

Kµ = (BT
0 B0)

−1BT
0 (V ΛµV −1 − A0). (20)

Then,

i) The entries of the matrix µRµ are nonincreasing
functions of µ.

ii) A0 + B0Kµ = V ΛµV −1.

4. MAIN RESULTS

In this section, we present the main contribution of the pa-
per. Namely, we provide a systematic method to compute
componentwise ultimate bounds for the state-feedback-
linearizable system (1),(3) and a systematic control de-
sign methodology so that any desired ultimate bound is
achieved in the case of matched perturbations, that is, for
a closed-loop system of the form (12).

4.1 Componentwise Ultimate Bound Analysis

The following theorem presents sufficient conditions to
ensure the ultimate boundedness of the state trajectories
of a perturbed system under state-feedback linearization.
This theorem also shows how to compute an ultimate
bound.

Theorem 3. Consider system (1), where the perturbation
w(t) satisfies (3). Suppose that the associated nominal
system (4) is state-feedback-linearizable, and let z = Φ(x)
be the coordinate transformation, and α(x) and β(x) be
the feedback functions, so that (1) is transformed into
(11) under application of the feedback law (10). Let K

be chosen so that A , A0 + B0K is Hurwitz, and let
Λ = V −1AV be the (complex) Jordan canonical form of A.

Consider SI, defined in (17) with H = I, and let R , |V |SI.
Define

δ(z) , sup
ζ:|ζ|�|z|

[∣

∣

∣

∣

∂Φ

∂x
h(x)

∣

∣

∣

∣

θ(x)

]

x=Φ−1(ζ)

(21)

and let T (z) , Rδ(z). Let Uz , Φ(Ux) and suppose
that T (zm) ≺ zm for some zm ∈ Uz. In addition, let

Bm , {z : |V −1z| � SIδ(zm)} and suppose that Bm ⊂ Uz.
Then,
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i) bz , limr→∞ T r(zm) exists and if x(0) ∈ Φ−1(Bm)
the trajectories of the closed-loop system (1),(10) are
ultimately bounded to the region

|x| � b , sup
z:|V −1z|�SIδ(bz)

|Φ−1(z)|. (22)

ii) If, in addition, h(x) = g(x)γ(x) [matched perturba-
tions, recall (12)], then i) above also holds if we replace
SI above with SB0 [defined as in (17) with H = B0

and B0 as in (6)] and δ above by δm, defined as

δm(z) , sup
ζ: |ζ|�|z|

[

∣

∣β−1(x)γ(x)
∣

∣ θ(x)
]

x=Φ−1(ζ)
. (23)

Proof. Defining

v(t) ,

[

∂Φ

∂x
h(x)

]

x=Φ−1(z(t))

w(t), (24)

system (11) can be rewritten as

ż(t) = Az(t) + v(t) (25)

From (3) and (21), it follows that |v(t)| � δ(z(t)) where
δ(z) verifies (15). If, in addition, h(x) = g(x)γ(x), then
v(t) = B0s(t) [see (12)], where

s(t) =
[

β−1(x)γ(x)
]

x=Φ−1(z(t))
w(t) (26)

satisfies |s(t)| � δm(z(t)) [see (23)] and δm also veri-
fies (15). Then, Theorem 1, part 1) establishes the ex-
istence of bz. Next, applying Theorem 1, part 2)a) to
system (25) we conclude that any trajectory starting from
an initial condition z(0) ∈ Bm does not leave the region
Bm ⊂ Uz. Moreover, it follows from Theorem 1, part 2)b)i)
that z(t) is ultimately bounded to the region Bz = {z :
|V −1z| � SIδ(bz)} ⊂ Bm ⊂ Uz. A similar argument ap-
plied to the case of matched perturbations yields that z(t)
is ultimately bounded to the region Bz = {z : |V −1z| �
SB0δm(bz)} ⊂ Bm ⊂ Uz.

Taking into account that x = Φ−1(z) (with Φ−1 being
a diffeomorphism defined in Uz), and that z(t) cannot
abandon Uz, it follows that x(t) is ultimately bounded to
the region Bx = Φ−1(Bz). Then, taking b as the supremum
of |x| in Bx we obtain the ultimate bound of Eq.(22). 2

4.2 Robust control design

The next theorem establishes design conditions to achieve
a desired ultimate bound in a perturbed system with state-
feedback-linearization under the hypothesis of matched
perturbations. The result is then translated into a design
algorithm that constitutes the core of the proposed sys-
tematic control design methodology.

Theorem 4. Consider system (1), where the perturbation
w(t) satisfies (3). Suppose that the associated nominal
system (4) is state-feedback-linearizable, and let z = Φ(x)
be the coordinate transformation, and α(x) and β(x) be
the feedback functions, so that (5)–(8) hold. Assume also
that h(x) = g(x)γ(x) (matched perturbations). Select
V, Λµ according to Theorem 2, calculate Rµ from (19),
and consider δm as defined in (23) and

Tµ(z) , Rµδm(z) (27)

Let zc ∈ Uz, zc ≻ 0, be such that {z : |z| � zc} ⊂ Uz.
Then,

i) The components of the vector µTµ(zc) are non-
increasing functions of µ for µ > 0.

ii) Let µ > 0 be such that Tµ(zc) ≺ zc. Then, the
feedback law (10) with K = Kµ given by (20)
ensures that the closed-loop system (12) is ultimately
bounded to the region

|x| � b , sup
z:|V −1z|�SB0δm(bz)

|Φ−1(z)| (28)

where SB0 and δm are as defined in Theorem 3 ii) and
bz = limr→∞ T r

µ(zc) ≺ zc.

Proof. i): the proof follows straightforwardly from Theo-
rem 2 i) and the fact that δm(z) does not depend on µ.

ii): Defining v(z, w) , β−1(Φ−1(z))γ(Φ−1(z))w, the
closed-loop system (11) under matched perturbations and
with K = Kµ takes the form

ż(t) = (A0 + B0Kµ)z(t) + B0v(z(t), w(t)). (29)

According to Theorem 2 ii), Aµ , A0 +B0Kµ = V ΛµV −1,

which, since Λµ = µdiag(λ̃1, . . . , λ̃n) and Re(λ̃i) < 0
ensures that Aµ is Hurwitz.

From (3) and (23), it follows that |v(z, w)| � δm(z). Also,
it can be straightforwardly verified that δm satisfies (15).
Then, taking H = B0 and applying Theorem 1 ii) to
system (29) we conclude that any trajectory such that
|V −1z(0)| � SB0δ(zc) cannot leave the region Bc = {z :
|V −1z| � SB0δ(zc)}. Notice that Bc is entirely contained
in the region {z : |z| � zc} ⊂ Uz and then Bc ⊂ Uz.
Then, application of Theorem 3 yields that x is ultimately
bounded to the region (28). 2

Theorem 4 i) states that the components of the vector
Tµ(zc) decrease (at least inverse-linearly) with µ. There-
fore, the condition Tµ(zc) ≺ zc can always be achieved
through the choice of a sufficiently large value of µ. The-
orem 4 ii) can be applied in order to design matrix K in
(10) so that the closed-loop system exhibits an arbitrary
ultimate bound. The following algorithm implements this
idea.

Algorithm 1. Given a desired componentwise ultimate
bound b∗ ∈ Rn

+,0 for the state x,

(i) Find the change of coordinates z = Φ(x), jointly with
the feedback functions α(x) and β(x), so that (5)–(8)
are satisfied.

(ii) Take zc ≻ 0 so that |z| � zc ⇒ z ∈ Uz, and,

sup
z:|z|�zc

|Φ−1(z)| � b∗ (30)

(iii) Calculate δm(z) according to (23).
(iv) Select an arbitrary µ > 0, and Λµ and V as specified

in Theorem 2.
(v) Compute Rµ from (19).
(vi) Evaluate Tµ(zc) according to (27). If Tµ(zc) ≺ zc, go

to step (viii).
(vii) Compute 2 maxi((Tµ(zc))i/zci

) and set the new µ
equal to this value. Reevaluate V according to (18).

(viii) Compute K = Kµ according to (20).

Algorithm 1, according to Theorem 4, .finds the feedback
matrix Kµ of the feedback law (10) that guarantees an
ultimate bound b given by (28). This bound b can be
proven to be less than or equal to b∗ (the desired ultimate
bound) as follows.

2 (Tµ(zc))i denotes the i-th component of Tµ(zc). Similarly for zci
.
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First, notice that the condition |V −1z| � SB0δm(bz) in
(28) implies that |z| ≺ zc since |z| = |V V −1z| � |V | ·
|V −1z| � |V |SB0δm(bz) = Tµ(bz) = bz ≺ zc.

Thus, the supremum of |Φ−1(·)| on z : |z| � zc is greater
than or equal to the supremum on z : |V −1z| � SB0δm(bz).
Then, comparing (28) and (30) it follows that b � b∗.

Remark 1. The design procedure begins by feedback lin-
earizing the nonlinear plant. Then, eigenvalue/eigenvector
assignment is performed, similarly to Kofman et al. (2008).
We stress that the procedure is not just a straightforward
application of the latter results since, even after feedback
linearization, the perturbations exhibit nonlinear depen-
dence on the state variables. The ultimate bound is hence
estimated via the technique developed in Kofman et al.
(2007a), where the ultimate bound estimate is given by the
fixed point of a nonlinear map instead of the simple closed-
form expression of Kofman et al. (2008). In addition, the
nonlinear coordinate transformation required poses an ad-
ditional problem, because relationships between bounds on
the original and the linear coordinates must be computed.
The contribution of this work lies precisely in providing a
solution to all these problems.

5. EXAMPLES

The dynamics of a synchronous generator on an infinite
bus can be expressed by Eq.(1), with

f(x) =

[

x2

−p[(1 + x3) sin (x1 + d) − sin d] − qx2

−rx3 + s[cos (x1 + d) − cos d]

]

,

g(x) = g1(x) = h(x) = h1(x) = [0 0 1]
T

,

where p, q, r, s, d are real parameters and where we
consider a bounded perturbation term |w(t)| � wm. The
associated nominal plant (4) is state-feedback-linearizable.
The map z = Φ(x), where

Φ(x) =

[

x1

x2

−p[(1 + x3) sin (x1 + d) − sind] − qx2

]

,

jointly with the feedback functions

α(x) =
−px2(1 + x3) cos(x1 + d) − pq sind + q2x2

p sin (x1 + d)
+

+q(1 + x3) + rx3 − s[cos (x1 + d) − cos d])

and

β(x) = −
1

p sin (x1 + d)
,

is such that (5)–(8) are satisfied with

A0 = A1 =

[

0 1 0
0 0 1
0 0 0

]

, B0 = b1 =

[

0
0
1

]

,

for all x ∈ Ux = {x : 0 < x1 +d < π}. Also, Uz = Φ(Ux) =
{z : 0 < z1 + d < π}.

The goal is to design the feedback matrix K in (10) so that
the closed-loop system (1),(10) is ultimately bounded to
the region |x| � b∗ = [0.1 0.05 0.001]T . We consider the
set of parameters p = 136.0544, q = 4, r = 0.4091, s =
0.2576, d = π/4, and the perturbation bound wm = 0.001.
We next follow Algorithm 1.

Step (i) of Algorithm 1 was performed above. At Step (ii),
zc can be chosen in many ways. A possible selection is

zc = [0.0500 0.0025 5.0098]
T

. (31)

Note that |z| ≺ zc ⇒ z ∈ Uz. Step (iii) requires the
calculation of δm(z), according to (23), where γ(x) = 1
and θ(x) = wm = 0.001. This computation yields

δm(z) =

{

p sin(|z1| + d)wm if (|z1| + d) < π/2,

pwm otherwise.

At Step (iv) we take µ = 1, and propose the eigenvalue
configuration Λµ = µ diag(−1,−5,−20). For V , we take
e1,j = 1 for j = 1, 2, 3 in (18). This choice yields

V =

[

1.0000 0.0400 0.0025
−1.0000 −0.2000 −0.0500
1.0000 1.0000 1.0000

]

. (32)

Step (v) yields Rµ = [0.0167 0.0333 0.1667]T and
for Step (vi) we calculate Tµ(zc) = Rµδm(zc) =
[0.001682 0.003363 0.01682]T . Since the condition Tµ(zc) ≺
zc is not satisfied, we proceed with Step (vii), computing
maxi ((Tµ(zc))i/zci

) = 1.3452, setting µ = 1.3452 and
recalculating V for this new value of µ. Finally, Step (viii)
gives the feedback matrix Kµ = [−243.4 − 226.2 − 34.98].

Theorem 4 ensures that the ultimate bound of the closed-
loop system (1),(10) with K = Kµ is at least as tight
as b∗. We can also employ (28) to estimate a (possibly)
tighter bound. The fixed point bz of map Tµ iterated
from zc is bz = [0.6591 1.7733 11.93]T10−3, and then,
using (28) we conclude that |x(t)| is bounded to bx =
[0.6591 1.7733 0.7101]T10−3.

Figures 1 and 2 show the region defined in the state space
by the bound bx and simulation results for the closed-loop
trajectories with zero initial conditions and for different
perturbations satisfying Eq.(2). For this simulation, sev-
eral sinusoidal and pulse train perturbations of different
frequencies were applied.
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Fig. 1. Ultimate bound region (dashed box) and closed-
loop trajectories for different perturbations.

We observe from the figures that the proposed design
procedure achieves relatively tight bounds under a large
range of persistent perturbations. Also note from the
steps carried out in this example, the systematicity of the
approach and the simplicity of the computations involved.
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Fig. 2. Ultimate bound region (dashed box) and closed-
loop trajectories for different perturbations.

6. CONCLUSIONS

For a class of perturbed feedback-linearizable nonlinear
systems, we have presented a systematic design procedure
to compute a state feedback control that ensures a pre-
scribed ultimate bound for the closed-loop system states.
The procedure utilizes a componentwise bound computa-
tion method previously introduced by the authors, and
combines nonlinear state-feedback-linearizing control with
linear state feedback computed via eigenstructure assign-
ment. The proposed procedure was illustrated on an ex-
ample of a synchronous generator.

Future work will consider the more practical output feed-
back case, both for linear and nonlinear systems
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