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Abstract: This paper shows how globally attractive limit cycle oscillations can be induced
in a system with a nonlinear feedback element. Based on the same principle as the Van
der Pol oscillator, the feedback behaves as a negative damping for low velocities but as an
ordinary damper for high velocities. This nonlinear damper can be physically implemented with
a continuous variable transmission and a spring, storing energy in the spring when the damping
is positive and reusing it when the damping is negative. The resulting mechanism has a natural
limit cycle oscillation that is energy conservative and can be used for the development of robust,
dynamic walking robots.

1. INTRODUCTION

The results described in this paper are motivated by the
search for robust, energy efficient walking robots. Over the
last decade, researchers around the world in both industry
and universities have been working on walking robots
and succeeded in building numerous working examples
Duindam [2006], Wisse [2004]. While industry mainly
focuses on so-called static walkers such as Honda’s Asimo
and Sony’s QRIO, some universities based their research
on dynamic walking of which examples can be found in
Dertien [2005], Collins and Ruina [2005], Wisse and van
Frankenhuyzen [2003]. The benefit of dynamic walking is
that it exploits the natural dynamics of the mechanics of
the walker, which results in highly energy efficient and
natural looking locomotion.

Research on dynamic walking was initiated by McGeer
McGeer [1990] in the early nineties. Originally inspired
by toys, he developed several passive walking mechanisms
that could walk down a shallow slope only powered by
gravity. From his results the view emerged that dynamic
walkers could be created based on the same principle, with
the addition of actuators to provide energy instead of using
gravity.

The stable gait of a dynamic walker can be interpreted as
a stable limit cycle of the system Wisse [2004]. Once the
walker has converged to the stable gait it keeps repeating
the same pattern over and over again. Unfortunately the
dynamic walkers that have been built so far suffer from
a lack of robustness. The stability of the gate is easily
destroyed by even relatively small disturbances, usually
resulting in the robot falling down. Apparently the limit
cycle of the system, although being stable, has only a
narrow area of attraction. Current research is focused on
improving this shortcoming and is expected to yield more
robust behavior.

The dynamics of a walking robot are generally nonlinear
and on top of that the regular impacts with the ground
causes a switching behavior that makes it hard to un-
derstand the dynamics of these systems in an analytical

way. This explains why the current generation of dynamic
walkers is more often a result of trial and error and param-
eter optimization rather than a thorough analysis of the
dynamic behavior that is responsible for the stable limit
cycle oscillation. Although also this paper does not give a
full analysis of the nonlinear dynamics, a new approach
is taken in the design of dynamic walkers that focuses
on generation of stable limit cycles. Inspired by nonlinear
oscillators famous for their globally attractive limit cycles
such as the Van der Pol oscillator, a new way is proposed
for inducing limit cycle oscillation in mechanisms based
on energy feedback. The result described in this paper is
a mechanism that has a natural limit cycle oscillation, is
energy efficient and on top of that fairly easy to implement.
It is expected that this concept will enable us to build
robust, dynamic walkers that excel in a combination of
simplicity and performance.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces some necessary background information
on nonlinear oscillators that exhibit stable limit cycle
oscillations. In section 3 an implementation is proposed
that is energy conservative, based on the theory of port-
Hamiltonian systems. In section 4 an example is given of
how the proposed implementation can be used in a phys-
ical system. Finally in section 5 this paper is concluded
and future research on this subject is discussed.

2. LIMIT CYCLES AND NONLINEAR OSCILLATORS

A limit cycle is a periodic solution of a differential equation
with the additional property that it is isolated. In the
phase space of the system a periodic solution is a trajectory
that is a closed orbit. Isolated means that any neighboring
trajectory of the limit cycle is not closed, they spiral either
towards or away from the limit cycle. Mathematically it
could also be said that there exists an open neighborhood
that contains only one periodic solution. If all neighboring
trajectories spiral towards the limit cycle it is stable or
attractive, otherwise it is unstable or half-stable in some
exceptional cases. For the design of robust walking robots
it is interesting to look at stable limit cycles, with a basin
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of attraction that is as large as possible. The possibility
of a limit cycle solution is restricted to nonlinear systems.
In a linear system, if x(t) is a solution then because of
linearity also c · x(t) is a solution for any constant c. In
the phase space this can be seen as an infinite number of
closed trajectories encircling the single equilibrium point
in the origin, however non of these trajectories is isolated.

2.1 Lienard systems

There exist nonlinear systems which are known to have a
globally attractive limit cycle. An example is the famous
Van der Pol oscillator that is described by:

ẍ + μ(x2 − 1)ẋ + Kx = 0. (1)
It was discovered by the Dutch scientist Balthasar van der
Pol during the early development of radio technology in
which vacuum tubes were used. The equation is similar
to the damped harmonic oscillator but with a nonlinear
damping term μ(x2−1)ẋ. For positive μ the damping term
is negative for |x| < 1 and positive for |x| > 1. This results
in small amplitude oscillations being pumped up, while
large amplitude oscillations are damped down. Intuitively
it is understandable that this must lead to a stable
oscillation of intermediate amplitude. An oscillator closely
related to the Van der Pol oscillator is the somewhat less
famous Rayleigh oscillators that is based on the same
principle. In this oscillator the damping term only depends
on the derivative ẋ, which is also what is used in the
examples further on in this paper. The equation describing
the Rayleigh oscillator is:

ẍ + μ(ẋ2 − 1)ẋ + Kx = 0. (2)
The relation between the two oscillators described above
can be found by first differentiating (2) with respect to
time and then replacing ẋ with y.

The Van der Pol equation is a specific case of a Lienard
system as described by the equation below:

ẍ + f(x)ẋ + g(x) = 0. (3)
Here f(x) and g(x) may be nonlinear functions. Lienards
theorem Strogatz [1994] states that (3) has a unique, stable
limit cycle surrounding the origin of the phase space if the
following conditions are satisfied:

(1) f(x) and g(x) are continuously differentiable for all x
(2) g(−x) = −g(x) for all x (g(x) is odd)
(3) g(x) > 0 for x > 0
(4) f(−x) = f(x) for all x (f(x) is even)
(5) The odd function F (x) =

∫ x

0
f(u) du has exactly one

positive zero at x = a, is negative for 0 < x < a, is
positive and nondecreasing for x > a, and F (x) → ∞
as x → ∞

The conditions on g(x) ensure that its behavior is like
that of a restoring force like a spring and the conditions
on f(x) ensure a damping behavior that is amplifies small
amplitude oscillations, but damp down large amplitude
oscillations. More information on nonlinear oscillators and
nonlinear dynamics in general can be found in books as for
example Strogatz [1994], Wiggins [1990] or Khalil [1996].

2.2 Passivity based oscillators

Another approach to the analysis of limit cycle oscillations
is taken in Stan [2005]. Here the authors use dissipativity

passive system

φk(·)

yu

−
+

Fig. 1. Passive system with nonlinear feedback

theory to characterize oscillators as open systems. This
makes it possible to interconnect a network of oscillators
and analyze their common behavior. For the purposes of
this paper focus is on isolated oscillators only, but the
passivity approach is useful because it allows looking at
system connections from an energy based point of view. A
system is passive with respect to its input u(t) and output
y(t) if there exists as storage function S(x(t)), S(0) = 0
such that:

S(x(t)) ≥ 0 and Ṡ(x(t)) ≤ u(t) · y(t). (4)
Starting point for the analysis in Stan [2005] is the above
described Van der Pol oscillator and the Fitzhugh-Nagumo
oscillator, which is a simplified model of spike generation
in neurons. The author generalizes these two types of
oscillators to a form as shown in Fig. 1. The forward path
consists of a passive system and the negative feedback is
formed by a nonlinearity φk(y) that is the sum of a passive
part φ(y) and an anti-passive or active part −ky.

φk(y) = φ(y) − ky (5)
Here φ(y) is a smooth, static nonlinearity in the sector
(0,∞) (thus passive), and moreover φ(y) is a stiffening
nonlinearity, i.e. lim|y|→∞

φ(y)
y = ∞. Now take Gk(s)

the system formed by the linearized passive system with
negative feedback −ky. Increasing k will eventually lead to
instability of Gk(s) as poles cross the imaginary axis and
move onto the right half s-plane. Define k∗ the smallest
k > 0 for which Gk(s) has a pole on the imaginary axis.
Under the assumption of absolute stability of the system
shown in Fig. 1 for k = k∗ two scenarios are possible:

Scenario 1, Van der Pol type For k = k∗ a pair of
complex conjugate poles cross the imaginary axis at non-
zero speed causing a supercritical Hopf bifurcation. In this
bifurcation the stable origin becomes unstable and a stable
limit cycle emerges from the origin.

Scenario 2, Fitzhugh-Nagumo type For k = k∗ a sin-
gle pole crosses the imaginary axis causing a pitchfork
bifurcation that results in a bistable system. Extending
the negative feedback with a slow adaptation mechanism

1
τs+1 transforms the bistable system into a system with a
globally stable limit cycle.

In the isolated case where the system is not connected
(u = 0), the system will exhibit a self-sustained stable limit
cycle oscillation for k � k∗. The existence of this limit cycle
is not guaranteed for all k > k∗ since further bifurcations
may occur that alter the system behavior.

2.3 Port Hamiltonian Systems

Key point for the limit cycle oscillations is the nonlinear
element that is locally generative, but globally dissipative.
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The interaction of the passive part of the system with
the nonlinearity can be described by an exchange of
energy through a power port connecting the two parts.
The amount of power P (t) equals the product u(t) · y(t)
and the total exchange of energy is the time integral of
the power E(t) =

∫ t

0 P (u) du. A powerful framework for
modeling dynamical systems that are described by an
energy function and connections through powerports is
that of port-Hamiltonian systems given by the following
set of differential equations:

ẋ = (J(x) − R(x))
∂H(x)

∂x
+ g(x)u

y = gT (x)
∂H(x)

∂x
+ (K(x) − S(x))u

(6)

In these equations x represents the state, H(x) is the
energy function or Hamiltonian, J(x) and K(x) are skew-
symmetric matrices that model powercontinuous elements,
R(x) and S(x) are positive semi-definite matrices that
model dissipative elements and (u, y) is the port through
which the system can interact with the outer world. These
systems have the property that Ḣ(x) ≤ uT y, so these
systems are passive with storage function H(x).

3. ENERGY CONSERVATIVE IMPLEMENTATION

Nonlinear oscillators as the Van der Pol oscillator are gen-
erally considered nonconservative since energy dissipation
takes place in the nonlinear element. When the nonlinear-
ity behaves generatively, energy has to be supplied from
an external source. However it is easy to see that for every
periodic solution the change in energy of the system must
be zero because energy can be expressed as a function of
the state.

ΔE = E(x(t + T )) − E(x(t))
x(t + T ) = x(t)

}
⇒ ΔE = 0 (7)

Therefore, instead of using a nonlinearity that dissipates
energy it would be useful to have an element that buffers
energy so that it can be reused later. In this section it
is described how to model an element that has the same
characteristics as the nonlinearity, but buffers energy in-
stead of dissipating it. The usage of this element results in
oscillators that do not dissipate any energy once converged
to the stable limit cycle.

Although not commonly known, bondgraphs as introduced
by Paynter Paynter [1961] can be very useful in the
analysis of systems that are connected with powerports.
The following analysis is based on bondgraph terminology,
but is presented in a general form so that no bondgraph
knowledge is required to understand the ideas presented.

3.1 Power continuous transmissions

To be able to shape the characteristic of the buffer a power
continuous transmission (PCT) is used with transmission
ratio n as described by the constitutive relations below
and of which a graphical representation is shown in Fig. 2.

out1 = n · in2

out2 = n · in1
(8)

The transmission is power continuous in the sense that the
power that flows into the system at one port, flows out at

power continuous
transmission

in2

out2

out1

in1

Fig. 2. Power continuous transmission

the other port in the same amount. No energy is stored
or dissipated by the transmission. This property is easily
deduced with the constitutive relations of (8):

P1 = in1 · out1

= (
1
n
· out2) · (n · in2)

= out2 · in2

= P2.

(9)

It is good to realize that this power continuous property
still holds if the transmission factor n is not constant.
Such a transmission is referred to as being modulated by
a factor n(·). In bondgraphs, this element is known as
a (modulated) transformer. Physical examples of power
continuous transmissions with a constant transmission
ratio are an ideal electric transformer or a set of frictionless
gears.

It can be shown that the modulation factor n(·) can be
chosen such that the power flow is always in the same
direction, that is choosing n(·) such that the PCT becomes
a one way device. The positive direction of power flow is
defined as the direction from (in1, out1) to (in2, out2).
In perspective of Fig. 2, power flows from left to right
if in1 · out1 > 0 and consequently from right to left if
in1 ·out1 < 0. Suppose n = in1 ·in2 is taken as modulation
factor, resulting in:

P1 = in1 · out1 = in1 · n · in2

= in2
1 · in2

2

≥ 0.

(10)

As can be seen the flow of power is always in the positive
direction with this modulation factor. Similarly, the flow is
always in the negative direction if n = −in1 · in2 is taken.
The structure of the PCT with this modulation is depicted
in Fig. 3.

power continuous
transmission

in2

out2

out1

in1

×
n

powerflow

Fig. 3. Modulated PCT, with powerflow from port 1 to
port 2

3.2 Storage element

Besides the power continuous transmission to guide the
flow of power also a storage element is needed to store
and supply the energy associated with the power flows,
which in bondgraph terms is implemented by I- or C-
type buffers. Such a storage element can be modeled by
a simple integrator as shown in Fig. 4. In the storage
element the input is integrated to obtain a state x and the
output equals the partial derivative of the stored energy
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out

in
∫

∂H
∂x

x

Fig. 4. Storage element

with respect to the state. In the linear case this simplifies
to x

C , where the constant C represents the capacity of
the storage element. This describes for example a spring
with the velocity as input, length as state, capacity 1

K
and output the force, or a mass with the force as input,
impulse as state, mass as capacity and velocity as output.
The amount of energy stored in the element is found by
calculating the integral over the product of the input and
output. ∫

in · out dt =
∫

∂H

∂x
ẋ dt = H(x) (11)

In the linear case this equals:

H(x) =
∫

x

C
ẋ dt =

1
2C

x2. (12)

3.3 Replacing the nonlinear element

It is now possible to show how the combination of a
modulated power continuous transmission and a storage
element can be used as a substitution for the nonlinear
element. Starting from the nonlinearity φ(·) where the
output is a nonlinear function of the input, that is:

out = φ(in) (13)
and using a structure as shown in Fig. 5, the following
relation can be deduced:

out = n · bout = n · ∂H

∂x
out = φ(in)

⎫⎬
⎭ n =

φ(in)
∂H
∂x

(14)

That is the structure of Fig. 5 where modulation factor
n is according to (14) will have the same input-output
characteristic as nonlinearity φ(·). When the power inflow
is positive and φ(·) behaves as a dissipative element, now
energy is stored in the buffer instead of being dissipated.
When φ(·) would have a generative characteristic, the
buffer supplies the previously stored energy. It can do so as
long as there is energy stored in to buffer, that is as long as
∂H
∂x > 0. At the same time it is clear that φ(·) can be freely
chosen, so it is possible to replace any nonlinearity with
this system. In section 4 an example and possible physical
implementation of this system is given.

3.4 Conservative Van der Pol oscillator

Using the buffer as sketched above to replace the nonlinear
damping term in the Van der Pol equation, it can be

power continuous
transmission

bout

bin

out

in

×
n

∫
1
C

φ(·)

Fig. 5. Modulated PCT with storage element

∫
∫

∫
nn

passive system

nonlinearity

q

p

r

−
+

−

Fig. 6. Van der Pol oscillator in conservative form

written in a form that is conservative. First the Van der
Pol oscillator is rewritten to equal the form of Fig. 1.

ẍ + φ(x, ẋ) + x, φ(x, ẋ) = μ(x2 − 1)ẋ (15)
A block diagram of the system is shown in Fig. 6 where

the following variables are used: q = x, p = ẋ, r the state of
the storage element with capacity C = 1 and n = φ(·)/r.
The equations describing the system in matrix form are:[

q̇
ṗ
ṙ

]
=

[ 0 1 0
−1 0 −n
0 n 0

] [
q
p
r

]
. (16)

Which is a port-Hamiltonian system with state vector x
and skew-symmetric matrix J denoted by:

x = [q p r]T J =

[ 0 1 0
−1 0 −n
0 n 0

]
. (17)

The Hamiltonian of the system is:

H(x) =
1
2
xT · x =

1
2
q2 +

1
2
p2 +

1
2
r2. (18)

This is a conservative system as can be seen by calculating
the time derivative of H(x):

Ḣ(x) =
∂H

∂x
ẋ

= xT Jx

= 0

(19)

where equality to zero follows from the skew-symmetric
property of J .

It can be verified that the behavior of the system in
conservative form is the same as that of the normal Van
der Pol oscillator by a numerical simulation. In Fig. 7 a
solution of the system for μ = 1 is shown with initial
conditions x = [2, 2, 10]. The figure shows convergence to
a limit cycle in the (q,p,r)-space, and the projection of
the trajectory on the (q,p)-surface shows the limit cycle
associated with the normal Van der Pol oscillator, thereby
verifying that the behavior of the conservative system is
indeed the same.

3.5 Extension to systems with dissipation

In the previous example the passive part consists of
conservative elements only. If the passive part contains
also dissipative elements then the total energy flow into
the nonlinearity will be smaller than the amount of energy
it has to supply. As a result the stored energy in the buffer
will decrease as time evolves until the buffer becomes
empty. To overcome such problems energy has to be
injected into the system that compensates the dissipation
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Fig. 7. Simulation of the conservative Van der Pol imple-
mentation

of energy in the passive part. Connecting an actuator
directly to the system however will generally influence
the dynamics of the system and thereby possibly disturb
the stability properties of the limit cycle. With the use
of the storage element it is possible to circumvent this
problem in an elegant way. Instead of injecting energy in
the system, it is possible to directly inject energy into the
storage element. As the modulation factor of the power
continuous transmission compensates for any variation
of energy storage this can be done without influencing
the system behavior. Energy injection can be done by
extending the storage element to a two port system as
shown in Fig. 8 where port 1 connects to the system

out1

in1

∫
1
C

out2

in2++

Fig. 8. Two port storage element

through the power continuous transmission as before and
port 2 is used to supply the required energy. If the storage
element is implemented as a torsional spring for example,
one side of the spring connects to the system and the other
side to a motor which winds up the spring similarly like
what is done in an analogue wristwatch.

4. APPLICATIONS AND IMPLEMENTATION

The last part of this paper discusses an application and
possible physical implementation of the system described
so far. As the motivation for this paper comes from
research on walking robots the application will be in that
field. The leg of a walking robot can be roughly interpreted
as an inverse pendulum, or double inverse pendulum in
case of legs with knees and therefore it is chosen to look at
how limit cycle oscillations can be induced in a pendulum.

4.1 Pendulum

The pendulum is a classic physical example of a nonlinear
differential equation. The differential equation describing

the damped pendulum of Fig. 9 with pointmass m, length
l, damping d and input torque T is:

θ̈ +
d

m · l θ̇ + g sin θ − T

m · l = 0. (20)

The system is passive with respect to input T and
output θ̇, so limit cycle oscillation is expected if a negative
feedback of the form −T = θ̇3 − kθ̇ is used. Although not
strictly a Lienard system, the system with this feedback
is similar to the Rayleigh oscillator and the nonlinearity
fulfills the conditions described in section 2. It can be
seen that the term kθ̇ will compensate the damping term

d
m·l θ̇ and thus limit cycle oscillation may be expected
for k > d

m·l . That is, the system is stable for small k,
increasing k results in a Hopf-bifurcation in which the
stable equilibrium becomes unstable and a globally stable
limit cycle surrounding the origin appears.

These expectations are verified by numerical simulation
of which the results are shown in Fig. 10 and 11. The
parameters used in the simulation are: m = 1, l = 1, d = 2
and g = 9.81. In Fig. 10 k = 1, which results in a damped,
stable system as the damping of the pendulum is stronger
than the active part of the nonlinear feedback. Increasing
k results in a limit cycle oscillation as is shown in Fig. 11
for a value k = 4.

4.2 Implementation

In order to build the pendulum with nonlinear feedback in
a power continuous way, a physical implementation for the
modulated power continuous transmission and storage ele-
ment have to be found. The (input, output) combinations
of the transmission are of the form (rotational velocity,
torque) so the device must transform rotation to rotation.

l

m

θ

T
g

Fig. 9. Classic pendulum
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Fig. 10. Damped pendulum
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Fig. 11. Pendulum in limit cycle

A set of gears would suffice if the transmission ratio would
be constant, but in this case the ratio must be variable.
A physical device with a variable transmission ratio is
called a continuous variable transmission (CVT). There
are several possible implementations to create a physical
CVT. In the automobile industry it is most common to
use two adjustable pulleys connected by a steel belt. The
pulleys are created in such a way that their radius can
be increased by compressing the pulley. The change of the
radius results in a different transmission ratio. Another
possible implementation is schematically drawn in Fig. 12.
This implementation consists of a pair of lined up conic
cylinders that are connected by a belt. By adjusting the
position of the belt on the cylinders with active control,
a continuous range of transmission ratios can be selected.
These are just schematic ideas. In reality the coefficient

n

Fig. 12. CVT implementation with conic cylinders

n should vary between negative and positive values and
this can be achieved with a planetary gear. This is at the
moment under study and conceptual designs are available.
The basic idea is to create a CVT with n ∈ [nmin, nmax]
creating a speed relation ω1 = nω2. Furthermore, we
can create a gearing system realizing a relation with an
additional axis of the form αω1 = βω2+ω3, which together
with the CVT would realize a relation between ω1 and ω3

as:
ω3 = mω2 m := (αn − β).

This implies that by choosing proper fixed gear rations α
and β, we can achieve a desired range m ∈ [mmin, mmax]
for negative mmin and positive mmax:(

α
β

)
=

(
nmin −1
nmax −1

)−1 (
mmin

mmax

)

5. CONCLUSIONS AND FUTURE WORK

It was shown how stable limit cycle oscillations can be
induced in a passive system with the use of a nonlinear
feedback. Similarly to the Van der Pol oscillator, this
feedback pumps up small amplitude oscillation, but damps
down large amplitude oscillation thus resulting in a stable

oscillation of intermediate amplitude. The passive system
and the nonlinear feedback continuously exchange energy.
Whereas in the Van der Pol oscillator energy that flows
into the nonlinear feedback is dissipated, it was shown
how to convert this into a conservative system. With the
combination of a modulated power continuous transmis-
sion and a storage element any nonlinear characteristic can
be implemented by choosing the appropriate modulation
factor. Energy that otherwise would be dissipated can now
be reused and fed back to the system. It was also shown
how the concept can be extended with a two port storage
element to compensate for energy losses in the passive part
of the system.

Systems that exhibit stable limit cycle oscillation are
interesting for the development of robust, dynamic walking
robots. Future research will focus on how the concept
described in the paper can be implemented in a walking
robot. It would be interesting to analyze what the exact
influence of the nonlinear feedback is on the shape of the
resulting limit cycle. Other points of interest are how the
system can be generalized to higher dimensions and how
the oscillation can be synchronized with impacts of the
feet with the ground.

ACKNOWLEDGEMENTS

The authors would like to acknoledge the input and
contribution for the study on the CVT of Jos Ansink.

REFERENCES

Steve Collins and Andy Ruina. A bipedal walking robot
with efficient and human-like gait. IEEE International
Conference on Robotics and Automation, pages 1983–
1988, 2005.

Edwin Dertien. Realisation of an energy-efficient walking
robot. Master’s thesis, University of Twente, june 2005.

Vincent Duindam. Port-Based Modeling and Control for
Efficient Bipedel Walking Robots. PhD thesis, University
of Twente, Maart 2006.

Hassan K. Khalil. Nonlinear Systems. Prentice-Hall, 1996.
Tad McGeer. Passive dynamic walking. International

Journal of Robotics Research, 9(2):62–82, 1990.
Henry A. Paynter. Analysis and Design of Engineering

Systems. M.I.T. Press, 1961.
Guy-Bart Stan. Global analysis and synthesis of oscilla-

tions: a dissipativity approach. PhD thesis, Universite
de Liege, March 2005.

Steven H. Strogatz. Nonlinear Dynamics and Chaos.
Addison-Wesley, 1994.

Stephen Wiggins. Introduction to Applied Nonlinear Dy-
namical Systems and Chaos. Number 2 in Texts in
Applied Mathematics. Springer-Verlag, 1990.

Martijn Wisse. Essentials of dynamic walking. PhD thesis,
Delft University, September 2004.

Martijn Wisse and Jan van Frankenhuyzen. Design and
construction of mike: a 2d autonomous biped based on
passive dynamic walking. International Conference on
Adaptive Motion of Animals and Machines, 2003.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15671


