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Abstract: In this work, we provide a framework for the design of linear state feedback controllers for a 
class of continuous-time conic nonlinear systems driven by finite energy disturbances. This controller 
design is presented for various performance criteria in a unified framework using linear matrix inequalities 
in the formulation. Illustrative examples are included.   

 

1. INTRODUCTION 

In this work, the problem of linear state feedback controller 
design is addressed using linear matrix inequality (LMI) for a 
class of continuous-time nonlinear systems with conic type 
nonlinearities and driven by finite energy disturbances.  
Various performance criteria are utilized in designing 
controllers leading to a common LMI framework. The 
possible utilization of efficient numerical schemes for solving 
LMI (Boyd, et al., 1994) is the reason to choose this approach. 
In (Jacobson, 1974), a similar nonlinear model with point-
wise quadratic constraints is introduced in a stochastic 
discrete-time context and the finite-horizon quadratic optimal 
controller is derived. Mean-square optimal state estimator 
designs can be found in (Yaz, 1988). Reference (Yaz and Yaz, 
2001) is on the extension of (Yaz, 1988) to generalized 
performance criteria. Infinite and receding horizon controllers 
with quadratic criteria are discussed together with their 
robustness properties in (Yaz, 1989a) and (Yaz, 1989b), 
respectively. System theoretic properties of such systems are 
investigated using the LMI approach in (Yaz and Yaz , 1999).   
In the present work, various control problems including 
guaranteed-cost suboptimal versions of H2 , H∞,, etc. are 
tackled within a common deterministic framework using 
LMIs. So, in that sense, we can view the present work as an 
extension of mean –square optimal control results in (Yaz, 
1989a) to the continuous-time deterministic case with 
generalized performance criteria and conic rather than point-
wise quadratic constraints in time. A similar representation 
can be found in dissipative systems literature. Dissipative 
systems giving rise to integral quadratic constraints have a 
long history. Much of the groundwork in this area is laid in 
references (Willems, 1972) and (Fradkov and Yakubovich, 
1973). More recent results and especially with applications to 
robust control and filtering include (Megretsky, 1992; Savkin 
and Petersen, 1995; Savkin and Petersen, 1996; James and 
Petersen, 1996) among others. The present work is also an 
extension of discrete-time nonlinear observer designs to the 
continuous -time control case (Yaz, et al., 2007).  

In the next section, the system model is introduced. Then the 
performance criteria are presented and optimization 
possibilities are pointed out. Next, the solution of the control 
problem is given. Applications to various control criteria are 
illustrated in simulation examples.  
The following notation is used in this work: nRx ∈ denotes 
an n-dimensional vector with real elements and with the 
associated Euclidean norm 2/1)( xxx T=  where 

( )T⋅ represents the transpose. nmRA ×∈ denotes an nm ×  
matrix with real elements. 1−A  is the inverse of matrix A, 

)0( 0 <> AA  means A  is a positive (negative) definite 
matrix, and  Im is an identity matrix of dimension m. 

))()(( maxmin AA λλ  denotes the minimum(maximum) 

eigenvalue of the symmetric matrix A. 2L  is the space of all 
real-valued vectors  with finite energy. 

2. PROBLEM FORMULATION 
Let us assume that the system equation is as follows: 

( , , )x f x u w=                                       (1) 
with the linear state feedback control 

Kxu =                                        (2) 

where nRx∈  is the state, u  is the input and w   is an 2L  
disturbance input.  
Let us also assume the following description for the nonlinear 
dynamics 

  
2( , , ) ( )

( ) ( )T
f f f f f f

f x u w Ax Bu Fw

C x D u E w C x D u E w

− + +

≤ + + + +
 (3) 

This inequality can be viewed as describing the hypersphere 
in which the nonlinearity “f” resides. The center of the 
hypersphere is defined by a linear system  

x Ax Bu Fw= + +  
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and the square of its radius is bounded above by the quadratic 
term on the right hand side of (3). So “f” can deviate from its 
associated linear system by at most the quantity specified by 
this quadratic term. 
Consider the controlled nonlinear model (1)-(3), performance 
output 
       z z zz C x D u E w= + +                    (4) 
and consider the general performance objective 

2 2 0TV z w z wδ β+ + ∈ − ≤                           (5) 

for an energy function TV x Px=  where 0P > .  
Notice that upon integration, inequality (5) yields  

     0 0

2 2

0

( ) ( )

( ( ) ( ) ( ) ( ))

T T

t T

x t Px t x Px

z w z w dδ τ τ β τ τ τ

≤

− + ∈ −∫
                        (6) 

 or by using Rayleigh’s inequalities, 
( 2 2

min max( ) ( )TP x x Px P xλ λ≤ ≤ ), we obtain 
        

 
2 2

min max 0

2 2

0

( ) ( ) ( )

( ( ) ( ) ( ) ( ))
t T

P x t P x

z w z w d

λ λ

δ τ τ β τ τ τ

≤

− + ∈ −∫
      (7) 

that allows several design criteria to be addressed in a unified 
eigenvalue problem (Boyd, et al., 1994)  framework. We can 
design different controllers for a variety of performance 
criteria for this system. 
First of all, in the absence of noise 0,0)( ≥≡ ttw , by 
taking 0>δ , ,0=β and  0=∈ , (7) will yield a bound on 
the energy of the performance output in terms of the initial 
estimation error 0x   

2 2
max 00

1( ) ( )
t

z d P xτ τ λ
δ

≤∫              (8) 

Minimizing )(max Pλ  and maximizing δ will give us a 
smaller bound on the energy of the performance output. This 
is sub-optimal 2H  control (Boyd, et al., 1994) .  

In the noisy case, by setting 1=δ , ,0=β and, 0<∈  

for 0x = 0, gives the result 

ττττ dwdz
tt

∫∫ ∈−≤
0

2

0

2 )()(               (9) 

  
which means a bound on the 2L to 2L   gain of the 

controlled system or a suboptimal H∞  result.  

When 0x  =0, if we use this formulation, we can design 
several dissipative controllers by using different values of  
δ , β , and ∈ . 
If we set 0>δ , ,1=β  and 0=∈ , we get output strict 
passivity: 

ττδτττ dzdwz
tt T

2

00
)()()( ∫∫ ≥            (10) 

Very strict passivity, which is the strict passivity both in the 
terms of the input and the output, can be obtained if we set  

0>δ , ,1=β  and 0∈> : 

2
2

00

2

0
)()()()( ττδτττττ dzdwdwz

ttt T ∫∫∫ +∈≥     (11) 

As described above, this LMI formulation enables us to 
design various controllers according to different performance 
criteria in a common framework.  

3. MAIN RESULT 
The following is the main result of this paper: 
Theorem 1.  Consider the controlled nonlinear system model 
(1)-(3), and the performance output (4). 
For 0,0)( ≥≡ ttw  and given 0, 0δ β> >  and ∈ , if  
 

0

332313

232212

131211

≥
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

ggg
ggg
ggg

G
TT

T                                    (12) 

where 

11

12 13

22 23 33

,

1, 0,

T T T

T T T T
f f z z

g QA AQ BY Y B I

g QC Y D g QC Y D

g I g g I

α

α
δ

= − − − − −

= + = +

= = =

 

holds, for some , 0Y Q > and 0α >  then the controlled 
system will satisfy (8)  with the gain being found by   

1K YQ−= , for 0t ≥ . 

For 0,0)( ≥≠ ttw , for given ,δ β , ∈  and other design 
parameters, if  

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

0
T

T T

T T T

s s s s
s s s s

S
s s s s

s s s s

⎛ ⎞
⎜ ⎟
⎜ ⎟= ≥⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

                (13) 

where  

11

12 13

14 22

23 24 33 34 44

( ) ,
2

, ( )
2

1, , , 0,

T T T

T T
f z z z

T T T T
f f z z

z f

s QA AQ BY Y B I

s QC Y D F s QC Y D

s QC Y D s I E E

s E s E s I s s I

α
β

β

α
δ

= − − − − −

= + − = +

= + = −∈ + +

= = = = =

  

holds, for some Y ,Q > 0 and 0α >  then the controlled 
system will satisfy (9), (10) or (11) with the controller gain 
being found by 1K YQ−= , for 0t ≥ . 
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Sketch of Proof:  
By using the energy function TV x Px=   where 0P > , 
consider (5) along the motion of (1)-(4). Adding and 
subtracting 2 [( ) ]Tx P A BK x Fw+ + in (5), using 

≤baT2  ,1 bbaa TT −+αα  for any nRba ∈, ,α  > 0, 
lead to 

( ) 0T T x
x w H

w
⎛ ⎞

≤⎜ ⎟
⎝ ⎠

              (14) 

where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2212

1211

hh
hh

H T    (15) 

with 
 

2
11

1

12

1

1
22

( ) ( )

( ) ( ) ( ) ( )

( )
2

( ) ( )

( )
2

T

T T
f f f f z z z z

T
z z

T
f f f z z z

T T
f f z z

h P A BK A BK P P

C D K C D K C D K C D K

h C D K PF

C D E C D K E

h E E I E E

α

α δ

β

α δ

βα

−

−

−

=− + − + −

− + + − + +

= + −

− + − +

=− −∈ + +

 

After using Schur’s complement (Boyd, et al., 1994) to 
convert this nonlinear matrix inequality to an LMI, 
substituting inverse of  P   for Q , pre-and post-multiplying 
by the block diagonal matrix ( , )Q I and rearranging, we 
obtain LMI (12) for the case of no noise, and LMI (13) for 
the case of additive noise.  
 

4. SIMULATION RESULTS 

This example is provided to present some initial simulation 
results on the time responses of various controller designs 
proposed in this work. The following system model is 
considered.  

1 1

2 1
2

00.3 1 0
( )

sin1 1 1
x x

u F w t
x xx

•

•

⎡ ⎤ − ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ = + + + ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
 
for both the no - noise case and the noisy case.  
Note that the system linearized about the origin is unstable.  
In the following example, the sub-optimal H2 observer 
( 0,0)( ≥≡ ttw ), output strict passivity, and very strict 
passivity were chosen to show the verification of the 
proposed design methodology. 
 

 

 

 

The values of design parameters used in the simulations are 
given in Table 1.  

 Suboptimal 
H2 

Output Strict 
Passivity 

Very Strict 
Passivity 

β 0 1 1 

∈  0 0 0.01 

δ 1 0.5 0.5 

Cz 0.1 I2 0.1 I2 0.1 I2 

Dz [.1;.1] [.1;.1] [.1;.1] 

Ez 0 0.1 0.1 

Cf 0.1 I2 0.1 I2 0.1 I2 

Df [0.1;0.1] [.1;.1] [.1;.1] 

Ef 0 0.1 0.1 

F [0;0] [.5;.5] [.5;.5] 

Table 1. Design Parameter Values 

For the simulation of the sub-optimal H2 controller, the 

controller gain is found to be 
-0.3286
-2.3538

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. For the case 

of the output strict passivity, K is found to be 
-0.1202
-3.4079

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, and the gain K for the very strict passivity 

case is found to be 
0.2200

-3.3202
K

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
.  

The state variable plots for each case are given in Fig.s 1-3.  

 
Fig. 1. Plots of x1 and x2 for the Sub-optimal H2 case  
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Fig. 2. Plots of x1 and x2 for the Output Strict Passivity   

 

 
Fig. 3. Plots of x1 and x2 for the Very Strict Passivity   

 
The co-plots of state variables for each case are given in Fig. 
4.  Notice the change in the peak value, shape and speed of 
the transient response for different criteria. 

 

Fig. 4. Co-plots of x1 and x2 for the selected criteria 

 
5. CONCLUSION 

In this work, we have considered linear state feedback 
controller designs for a class of continuous-time nonlinear 
systems with general performance criteria. We have shown 
that a common framework using a linear matrix inequality 
formulation can be used to solve controller design problems 
for various performance criteria. One can see from the 

simulation examples that the use of different criteria will give 
rise to different time response performance characteristics 
such as response speed, overshoot, etc. 
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