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Abstract: A key issue in decentralized decision-making is ensuring that the decentralized
optimal solution results in the overall optimum. In this paper, we present a method to achieve
tractable coordination schemes for large-scale dynamic systems. We will focus on the Interaction
Prediction Principle, first introduced by Msearovic et al. [1970b], and present an extension to
achieve zero-offset. The proposed approach is illustrated using a forced-circulation evaporator
system, in which we show how to decompose it and how to coordinate between its different
units.
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1. INTRODUCTION

Many applications in manufacturing engineering and
chemical process engineering are faced with computational
difficulties due to the large number of decision variables or
the complexity and high order of the underlining systems.
Decomposing these optimal control problems into smaller
sub-problems may be an adequate manner to deal with the
computational difficulties, but we still have to implement
efficient coordination algorithms in order to ensure that
the overall optimum is achieved.

Decomposition-coordination literature often focuses on
static problems. We refer the reader to the works of
Dantzig and Wolfe [1961], Benders [1962], Cohen [1978],
Lasdon et al. [2001]. The main contributions to the dy-
namic decomposition literature are the early works of
Msearovic et al. [1970a,b] and Cohen [1977].

For static optimization problems, three decomposition
coordination algorithms can be used. In Cohen [1978], a
nice unification of these approaches is presented.

(1) The price-driven method consists on fixing an overall
price for the resource consumptions: each decentral-
ized unit optimizes its own assessment, while the
coordinator fixes the price system.

(2) The quantity-driven method also known as the re-
source allocation method consists on fixing a con-
sumption level for each decentralized unit: the coor-
dinator allocates the available resources to the units.

(3) The prediction-driven method consists on fixing a
price for the shared resources between the decentral-
ized units and fixing a consumption level for the own
resources of each sub-system: the coordinator fixes
the price system and allocates the resources.

In this paper, we present an extension of the prediction-
driven decomposition method to dynamic problems: the
Interaction Prediction Principle (IPP) algorithm. The

main contribution of this paper is set within the pro-
cess control framework. To our knowledge, there is no
published work about the applications of the prediction
driven decomposition method to optimal control problems,
in order to achieve zero-offset as it is often required in
process control. For that sake, we focus on identifying
the convergence issues associated with the IPP and we
present a method to achieve a reasonable trade-off between
algorithm convergence and zero-offset.

To highlight the advantages of the proposed decentraliza-
tion scheme, a case study is presented. We will deal with a
a forced-circulation evaporator system, decompose it into
two sub-units and apply the modified IPP algorithm in
order to achieve a zero-offset with a decentralized control
scheme.

2. DECOMPOSING AN OPTIMAL CONTROL
PROBLEM

There is a rich literature concerning decomposition-
coordination methods for general static optimization prob-
lems. These methods can be successfully extended to the
dynamic case, leading to different decentralization algo-
rithms. In particular, if we apply the prediction-driven de-
composition method to a linear quadratic optimal control
problem, it results in the so called Interaction Prediction
Principle (IPP).

In this paper, we will not present the IPP as an extension
of static decomposition methods. Instead, we will use a
Pontryagin decomposition scheme in order to present the
IPP algorithm. We refer the reader to Cohen and Miara
[1990] where a similar approach was taken.

2.1 The overall problem

We consider the following linear quadratic (LQ) optimal
control problem with a finite time horizon:
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min
x,u

1
2

∫ tf

0

(
x>(t)Qx(t) + u>(t)Ru(t)

)
dt,

s.t. ẋ(t) = Ax(t) +Bu(t),
x(0) = ξ,

(1)

where x(t) ∈ Rm is the state vector, u(t) ∈ Rn is the
input (control) vector and A, B, Q and R are matrices
with appropriate dimensions (Q and R are symmetric). We
assume that all the states are available for measurement.

The Pontryagin necessary optimality conditions of the op-
timal control problem (1) leads to the following equations:

ẋ(t) = Ax(t) +Bu(t),
x(0) = ξ,

µ̇(t) = −A>µ(t)−Qx(t),
µ(tf ) = 0,
0 = Ru(t) +B>µ(t).

(2)

Remark 1. These conditions are also sufficient if Q is non-
negative definite and R is positive definite. In that case,
solving the problem (1) is equivalent to solving the set
of equations (2). In the sequel, we will assume these
conditions on the weighting matrices Q and R.

2.2 Decomposing the Pontryagin optimality conditions

We assume that the vector x is decomposable on N
components x> = (x>1 , . . . , x

>
N )>, xi ∈ Rmi , and u> =

(u>1 , . . . , u
>
N )>, ui ∈ Rni . We consider a decomposition

on N sub-units, following a block decomposition for the
matrices defining the LQ problem. In order to have an
additive cost, we also assume that Q and R are block
diagonal (Qij = 0 and Rij = 0 for all i 6= j).

The block diagonal elements of the matrices A and B
represent the intra-unit dynamics and the off-diagonal
elements represent the inter-units interactions. Therefore,
the process dynamic of each sub-unit i (i = 1, . . . , N) can
be denoted as:{

ẋi(t) = Aiixi(t) +Biiui(t) + vi(t),
xi(0) = ξi,

(3)

where vi represents the interaction variable(s) between the
dynamics of the different sub-units

vi(t) =
∑
j 6=i

(Aijxj(t) +Bijuj(t)) . (4)

Similarly, we can decompose the co-state dynamic. This
leads to the following equations for each sub-unit i (i =
1, . . . , N):{

µ̇i(t) = −A>iiµi(t)−Qiixi(t)− ηi(t),
µi(tf ) = 0,

(5)

where ηi represents the interaction variable(s) between the
co-state dynamics of the different sub-units

ηi(t) =
∑
j 6=i

A>jiµj(t). (6)

The gradient equation in the optimality conditions (2) can
also be decomposed following the same principle. For all
units i = 1, . . . , N , we obtain:

0 = Riiui(t) +B>iiµi(t) + νi(t), (7)

where νi is such that:

νi(t) =
∑
j 6=i

B>jiµj(t). (8)

For each sub-unit i = 1, . . . , N , the conditions (3), (4), (5),
(6), (7) and (8) could be interpreted as the Pontryagin
optimality conditions of the following optimal control
problem:

min
xi,ui,ηi,νi

1
2

∫ tf

0

(
x>i (t)Qiixi(t) + u>i (t)Riiui(t)

+ 2η>i (t)xi(t) + 2ν>i (t)ui(t)
)
dt,

s.t. (3), (4), (6) and (8).

(9)

2.3 The IPP algorithm

If each unit solves its own sub-problem (9), we will even-
tually achieve the centralized optimal control trajectories
associated with the overall problem (1). However, one
challenge in adding artificial variables to the sub-problems
is the introduction of non-convexities. Furthermore, it is
more preferable to handle optimal control problems with-
out algebraic constraints such as (4), (6) and (8).

To avoid these difficulties, we perform an iterative algo-
rithm between the sub-units and a coordinator. The coor-
dinator predicts at each step the value of the interaction
variables given by the equations (4), (6) and (8). The sub-
units will take these values as parameters and perform an
easy convex control problem without algebraic constraints.

This algorithm, first introduced by Msearovic et al.
[1970a,b], is called the Interaction Prediction Principle
in reference to the fact that the interaction variables are
predicted. We present hereafter the application of the IPP
to the problem (1) (refer to Cohen [1977] for a deeper
presentation of the IPP).
Algorithm 1. • At the first step [0]

The coordinator gives N initial predictions of the
inputs u[0]

i , i = 1, . . . , N .
• At the step [k]

· The coordinator integrates the state dynamic (10)
with the predicted input u = u[k] to obtain a
predicted output x[k].{

ẋ(t) = Ax(t) +Bu(t),
x(0) = ξ,

(10)

· The coordinator integrates the co-state dynamic
(11) with the predicted output x = x[k] to obtain
a predicted price µ = µ[k].{

µ̇(t) = −A>µ(t)−Qx(t),
µ(tf ) = 0,

(11)

· Each sub-unit solves its own optimal control
problem (12) with the predicted inputs, outputs
and prices given by the coordinator.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9959



min
xi,ui

1
2

∫ tf

0

(
x>i (t)Qiixi(t) + u>i (t)Riiui(t)

+
∑
j 6=i

2µ[k]>
j (t)(Ajixi(t) +Bjiui(t))

)
dt,

s.t. ẋi(t) = Aiixi(t) +Biiui(t)

+
∑
j 6=i

Aijx
[k]
j (t) +Biju

[k]
j (t),

xi(0) = ξi.
(12)

This leads to solving N quadratic Riccati equa-
tions:

Ṗi(t) + Pi(t)Aii +A>iiPi(t)

− Pi(t)BiiR−1
ii B

>
iiPi(t) +Qii = 0,

Pi(tf ) = 0, (13)
and N differential equations:

ṗi(t) +
(
A>ii − Pi(t)BiiR−1

ii B
>
ii

)
pi(t)

− Pi(t)BiiR−1
ii

∑
j 6=i

B>jiµ
[k]
j (t)


+ Pi(t)

∑
j 6=i

Aijx
[k]
j (t) +Biju

[k]
j (t)


+
∑
j 6=i

A>jiµ
[k]
j (t) = 0,

pi(tf ) = 0. (14)

The feedback solution is:

ui(t) = −R−1
ii

(
B>iiPi(t)xi(t) +B>ii pi(t)

+
(∑
j 6=i

B>jiµ
[k]
j (t)

))
. (15)

• At the step [k + 1]
Re-inject u[k+1] solution of (15) into (10).
• At the step [∞]

Stop when
∥∥u[k+1] − u[k]

∥∥
L2([0,tf ];Rm)

≤ ε.
Remark 2. This algorithm can be interpreted as a predic-
tion driven decomposition where we decompose both opti-
mization variables and resources. Each unit is responsible
of the minimization of its own cost function while taking
into account a valuation of the interaction with the other
units (Ajixi+Bjiui). To value these interaction variables,
a coordinator will compute a price system (µ).

3. TRADE-OFF BETWEEN CONVERGENCE AND
ZERO-OFFSET

In process control, as in control of other apparatus, we
often require that the optimal state trajectory reaches (or
be as close as possible of) the equilibrium state within
the given time horizon. In linear quadratic optimal control
problems, we can always select the weighting matrices
Q and R to achieve the desired controller performance.
Therefore, we are able to tune the controller to attain zero-
offset within the given time horizon.

The main concern and contribution of this paper is to
ensure the convergence of the coordination algorithm be-
tween the different sub-units, while keeping the same per-
formance as that of the overall system. For that purpose,
we first focus on the convergence of the IPP algorithm.

3.1 Convergence of the IPP algorithm

The main contribution of the IPP is to tackle the non-
convexity issues of problem (9) by iteratively predicting
the interaction variables (vi, ηi, νi, i = 1, . . . , N). In
addition, as any iterative optimization algorithm, it still
requires convexity and coercivity assumptions on the other
variables (ui, i = 1, . . . , N). This is reflected by the
assumptions of Theorem 1 (see Cohen [1978]).

Before presenting Theorem 1, we first introduce the so
called integrated cost functions required for the convexity
and coercivity assumptions. Let us denote by x = S(u)
the solution of the dynamic of the overall problem (1). We
denote by J the overall cost function such that:

J (u) =
1
2

∫ tf

0

(
(S(u))>QS(u) + u>Ru

)
dt.

For all i = 1, . . . , N and for a fixed initial condition ξi,
the solution of the differential equation (3) introduces the
following mapping:

xi = Si(ui, vi), ∀i = 1, . . . , N, (16)
where ui, vi, xi are functions of the time t ∈ [0, tf ].
Using (16) in the right hand side of equation (4), we can
rewrite (4) ∀i = 1, . . . , N :

vi =
∑
j 6=i

Hij(uj , vj) =
∑
j 6=i

(AijSj(uj , vj) +Bijuj) . (17)

In the same manner, we can use (16) to rewrite the cost
function of (1) such that:

J(u, v) =
1
2

N∑
i=1

∫ tf

0

(
(Si(ui, vi)(t))

>
Qii (Si(ui, vi)(t))

+u>i (t)Qiiui(t)
)
dt.

(18)
Theorem 1. We assume that the functionals J and J are
strictly convex on u and that they are twice differentiable.
We denote the matrices Γ = d2J

du2 , ∆i = ∂2J
∂ui

and ∆
the block diagonal matrix generated from the ∆i, , i =
1, . . . , N . If ∆−Γ

2 is a coercive operator 1 , then we have the
strong convergence of the sequence u[k] solutions of (12)
to u∗ solution of (1) and the convergence of J (u[k]) to
J (u∗).

Proof. See [Cohen, 1978, Theorem 1]

3.2 A proximal approach to ensure both zero-offset and
convergence

For a given initial state condition and a time horizon,
the decentralized control scheme presented by the IPP
impose some conditions on the weighting matrices Q and
R in order to fulfill the coercivity assumptions of the
1 K is a coercive operator if and only if ∃c > 0, ∀x, 〈Kx, x〉 ≥
c ‖x‖2.
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convergence theorem 1. This may interfere with the zero-
offset objective that often require tuning these matrices in
order to achieve a desired control performance. The fact
is that the problem may be not coercive enough to ensure
the convergence of the IPP for the selected matrices Q and
R.

Therefore, we are faced with a trade-off:

(1) The weighting matrices Q and R should be selected
to achieve the required control objectives.

(2) The matrices Q and R have to satisfy the conditions
given by theorem 1.

To realize this trade-off we have to make the sub-problems
more coercive while keeping the same aggressiveness of the
optimal control. This can be achieved by introducing an
extra term in the objective of each sub-problem (12) of the
IPP algorithm 1:

(xi−x[k]
i )>γQii(xi−x[k]

i )+(ui−u[k]
i )>γRii(ui−u[k]

i ), (19)

where γ > 0.

This technique is not new in the static optimization liter-
ature. It is often called proximal algorithm and the added
term (19) is called the prox-term. We refer to Rockafellar
[1976] for a general presentation of this method and to
Cohen [1977] for an application in the IPP framework.
Nevertheless, to our knowledge, no literature was found
concerning the application of proximal algorithms in or-
der to achieve zero-offset for decentralized optimal state
trajectories, which is the main interest on this paper.

We propose the following Proximal IPP algorithm:
Algorithm 2. • At the first step [0]

The coordinator gives N initial predictions of the
inputs and fix a large enough value of γ.
• At the step [k]

· The coordinator integrates the state dynamic (10).
· The coordinator integrates the co-state dynamic

(11).
· Each sub-unit solves its own modified optimal

control problem (12)+(19). This leads to solving
N modified quadratic Riccati equations

Ṗi(t) + Pi(t)Aii +A>iiPi(t)

−Pi(t)Bii((1+γ)Rii)−1B>iiPi(t)+(1+γ)Qii = 0,
Pi(tf ) = 0, (20)

and N modified differential equations.

ṗi(t)+
(
A>ii − Pi(t)Bii((1 + γ)Rii)−1B>ii

)
pi(t)−

Pi(t)Bii((1+γ)Rii)−1

−γR>iiu[k]
i +

∑
j 6=i

B>jiµ
[k]
j (t)


+ Pi(t)

∑
j 6=i

Aijx
[k]
j (t) +Biju

[k]
j (t)

− γQ>iix[k]
i

+
∑
j 6=i

A>jiµ
[k]
j (t) = 0,

pi(tf ) = 0. (21)

The feedback solution is:

ui(t) = −((1+γ)Rii)−1

(
B>iiPi(t)xi(t)+B

>
ii pi(t)

− γR>iiu
[k]
i +

∑
j 6=i

B>jiµ
[k]
j (t)

)
. (22)

• At the step [k + 1]
Re-inject u[k+1] solution of (22) into (10).

• At the step [∞]
Stop when

∥∥u[k+1] − u[k]
∥∥
L2([0,tf ];Rm)

≤ ε.

4. CASE STUDY

4.1 Problem description

In this section, a case study is performed to illustrate the
effectiveness of the proposed algorithm.

Fig. 1. Schematic of the forced-circulation evaporator
(Newell and Lee [1989]).

We consider a forced-circulation evaporator system given
in Newell and Lee [1989]. A schematic of the evaporator
system is shown in Figure 1. In this process, a feed
stream is mixed with a recycled liquor and this mixture
is pumped through a vertical-tube heat exchanger. In
this heat exchanger, heat supplied by a steam flow is
used to boil the liquor mixture which is then sent to a
separator. Next, the liquid and the vapor are separated.
The vapor extracted from the separator vessel passes
through a condenser where it condenses by exchanging
heat with a cooling water stream. A fraction of the liquid
extracted from the separator is obtained as product, while
the rest of the liquid is recycled back to the vertical-tube
heat exchanger.

The evaporator process model contains three measured
states, three inputs and five disturbance variables. The
name and description of the measured states and input
variables, as well as their steady-state values and engi-
neering units are given in Table 1. The disturbance vari-
ables are circulating flow rate F3, feed flow rate F1, feed
concentration X1, feed temperature T1 and cooling water
inlet temperature T200. In this work, we consider these
disturbance variables fixed.

The linearized model for the evaporator process given in
p.12 in Newell and Lee [1989], can be arranged in a state
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Table 1. Evaporator output and input variables

Evaporator Description Equilibrium
variables value

Output L2 Separator level 1 m
variables X2 Product composition 25 %

P2 Operating pressure 50.5 kPa

Input F2 Product flow rate 2 kg/min
variables P100 Steam pressure 194.7 kPa

F200 Cooling water flow rate 208 kg/min

space representation (with fixed disturbance variables) as
following:

ẋ(t) = Ax(t) +Bu(t), (23)
where

x> = (L2 X2 P2) , u> = (F2 P100 F200) ,
and

A=

0 0.10445 0.37935
0 −0.1 0
0 −0.10340× 10−1 −0.54738× 10−1

 ,

B =

−0.1 0.37266 0
−0.1 0 0

0 0.36914× 10−1 −0.75272× 10−2

 .

The dynamics of the system are expressed in normalized
deviation variables (Newell and Lee [1989]).
The optimal control for the evaporator system is deter-
mined by minimizing the following cost function:

1
2

∫ tf

0

(x>(t)Qx(t) + u>(t)Ru(t))dt. (24)

4.2 Problem decomposition

We decompose the overall system into 2 subsystems. The
first subsystem includes state variables L2 and X2 and in-
put variables F2 and P100. The second subsystem involves
state variable P2 and input variable F200. The optimization
problem (24) is then divided into two subproblems, each
with cost functions given by equation (12).

In the IPP algorithm, there is no limitation in the num-
ber of subsystems and this decomposition-coordination
method can be successfully applied to subsystems with
any combination of different variables. To decompose the
evaporator system, we took advantage of the fact that
cooling water flow rate (F200) has no direct effect on the
rate of change of the separator level (L2) nor the rate of
change of the product composition (X2). In addition, there
is no direct effect of the operating pressure (P2) on the rate
of change of variable X2.

For each sub-unit i = 1, 2, the optimization problem is
posed as in (9), with the following decomposition:

x=
(
x>1 x>2

)> = ( L2 X2 P2 )> ,

u=
(
u>1 u>2

)> = ( F2 P100 F200 )> ,

A=
(

A11 A12

A21 A22

)

=

 0 0.10445 0.37935
0 −0.1 0
0 −0.10340× 10−1 −0.54738× 10−1

 ,

B =
(

B11 B12

B21 B22

)

=

−0.1 0.37266 0
−0.1 0 0

0 0.36914× 10−1 −0.75272× 10−2

 ,

µ = ( µ1 µ2 )> = ( µ1a µ1b µ2 )> .

4.3 Simulation results

The decomposition-coordination algorithm was simulated
for the evaporator process described in Section 4.1. The
following parameters were used in the simulation: γ = 1,
Q = I3; R = 100I3; Q11 = I2; Q22 = 1; R11 = 100I2;
R22 = 100, where I3 and I2 denote the identity matrices
of dimensions 3 and 2, respectively. Figures 2-4 show the
results based on a 100 minutes closed-loop simulation with
initial conditions x(0) = ξ = (1 1 1)>. The simulation
results are shown in normalized deviation variables.

Figures (2a) and (2b) show the trajectory of the controlled
outputs (L2, X2 and P2) and the control inputs (F2, P100

and F200). It can be observed that the proposed scheme
stabilizes the process (which is open-loop unstable) and
drives the controlled variables to their desired targets.

Fig. 2. (a) Trajectory of controlled outputs; (b)Trajectory
of control inputs.

Figure (3) shows the dynamic price provided by the
coordinator and updated at every iteration. As imposed
by the final condition µ(tf ), the price vector converges to
the origin at the end of the simulation time.

Finally, we show in Figure (4), the relative error on the
inputs

(∥∥u[k] − u∗
∥∥ / ‖u∗‖), the relative error on the out-

puts
(∥∥x[k] − x∗

∥∥ / ‖x∗‖) and the error on the cost func-
tion

(∥∥J (u[k])− J (u∗)
∥∥ / ‖J (u∗)‖

)
. The errors shown in

Figure (4) are reported in logarithmic scale and are cal-
culated as the normalized difference between the solution
obtained with the IPP algorithm and the solution of overall

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9962



Fig. 3. Price provided by the coordinator.

problem. The solution of the overall problem is denoted
with the superscript (*). It can be observed that after 29
iterations between the subsystems and the coordinator,
the error is kept below a specified tolerance (10−3). This
indicates that, at convergence, the performance of the
decomposed problem resulted in the optimal performance
of the overall problem.

Fig. 4. (a) Logarithm of error on the output variables:
error on L2 (dotted line), error on X2 (dash-dot line),
error on P2 (solid line); (b) Logarithm of error on
the control input: error on F2 (dash-dot line), error
on P100 (solid line), error on F200 (dotted line); (c)
Logarithm of error on the cost function.

In this simulation example, the prox-term (see equation
(19)) was included in the objective function of each sub-
system to ensure the convergence of the IPP algorithm.
The effect of the parameter γ in the optimization problem
was studied for the evaporator process example. For given
matrices Q, R and final integration time tf , there is a set
of parameters γ ≥ γ0 which ensures that the convergence
conditions (Theorem 1) are satisfied. The parameter γ0

is a critical value below which the convergence is not
guaranteed. As it is shown in Table 2, when the parameter
γ is increased (for γ0 < γ), it slows down the convergence
of the algorithm, resulting in more iterations to achieve
the overall optimum. In the example under study, the
value of γ0 is smaller than 0.5. This phenomenon can
be interpreted as follows: the proximal term is made to
penalize the deviation of the algorithm from the previ-
ous optimal results. At each step of the modified IPP
algorithm, each sub-unit makes its actual decisions with

small deviations with respect to the previous iteration.
Therefore, the algorithm is slowed down to give to sub-
units and coordinator more time to interact in order to
achieve the overall optimum. When designing the IPP al-
gorithm, the parameter γ should be selected such that the
computational load in solving the algorithm is appropriate.

Table 2. Effect of parameter γ in the evapora-
tor process

Parameter γ Number of Iterations

< 0.5 algorithm diverges
1 29
2 45
5 85
10 145

5. CONCLUSION

The objective of this paper was to highlight the main is-
sues arising in the application of coordinated-decentralized
schemes to process regulation problems. The coordinated-
decentralized technique selected was the Interaction Pre-
diction technique which is a decomposition-coordination
method for dynamical systems.

The main contribution of this paper was to investigate the
trade-off between the convergence of the IPP algorithm
and the zero-offset objective for process control problems
and show, inspired from the proximal algorithms, an
efficient method to tackle this issue. We applied the
modified algorithm to a chemical engineering example.
The obtained results showed that the decentralized sub-
units satisfy the zero-offset objective and lead to the same
optimal results than the overall process.
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