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Abstract: This paper studies a new type of control framework for dynamical stochastic systems,
called statistic tracking control. Non-Gaussian systems are considered and the tracked objective
is the statistical information of a given target probability density function (PDF). Following
neural network approximation to the performance function, the concerned problem is transferred
into the tracking of given weights. Different from the previous related works, the time delay T-S
fuzzy models with the exogenous disturbances are applied to represent the nonlinear weighting
dynamics. Meanwhile, the generalized PI controller structure and the improved convex LMI
algorithms are proposed to fulfil the tracking problem. Furthermore, in order to enhance the
robust performance, the peak-to-peak measure is applied to optimize the tracking performance.

1. INTRODUCTION

Non-Gaussian variables exist in many complex stochas-
tic systems due to nonlinearity which may posses asym-
metric and multiple-peak stochastic distributions (Wang,
2000). For non-Gaussian systems, mean and variance are
insufficient to characterize the stochastic properties. On
the other hand, motivated by several typical examples
in practical systems, a group of control strategies that
control the shape of output PDF for general stochastic
systems have been developed (Wang, 2000; Yue&Wang
2003; Shalom&Li, 2000; Forbes, 2004; Guo&Wang, 2005).
This novel control framework has been called as stochastic
distribution control. In this paper, we present a new type
of stochastic tracking control framework for non-Gaussian
systems called statistic tracking control (STC). Different
from both the conventional stochastic tracking (Astrom,
1970) and the output PDF tracking problems (Wang, 2000;
Guo&Wang, 2005), the goal of control here is to ensure
that the statistical information of the system output is
made to follow that of a target PDF. In comparison with
previous works, the main results obtained in this paper
have two features. Firstly, since the mean and variance are
two commonly used control objectives for Gaussian sys-
tems, our control objective is a reasonable generalization
for non-Gaussian systems. Secondly, the obtained statistic
tracking will eliminate the constraints widely seen in the
B-spline approximation for the PDFs (Wang, 2000).

In recent years, fuzzy technique has been widely and suc-
cessfully used in nonlinear system modeling and control.
The well known T-S fuzzy model (Takagi&Sugeno, 1985;
Tanaka, Ikeda & Wang, 1996) was recognized as a popular
and powerful tool for approximating a complex nonlinear
system. Recently, T-S fuzzy model has been applied to
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complex nonlinear models, for example, descriptor system
(Taniguchi, Tanaka & Wang, 2000), time-delay nonlinear
model (Cao &Frank, 2000; Lee, Jeung & Park; 2001) and
stochastic system (Wang, Daniel & Liu, 2004). In the liter-
ature, various techniques have been developed for stability
analysis of T-S fuzzy systems (Tanaka, Ikeda & Wang,
1996; Wang, Daniel& Liu, 2004; E.Kim, H. Lee, 2000).
On the other hand, the T-S fuzzy model has also been
studied for the nonlinear tracking control problem (Ying,
1999; Tseng, Chen & Uang, 2001; Zheng, Wang & Lee,
2002). In (Ying,1999), feedback linearization technique
was proposed to design fuzzy tracking controller. Variable
structure control approach has been applied to solve the
tracking problems for T-S fuzzy systems (Zheng, Wang &
Lee, 2002). A simple observer-based fuzzy controller was
developed in (Tseng, Chen & Uang, 2001) to reduce the
tracking errors in terms of LMI approach.

Similar to the PDF tracking control problem, after using
NN approximation theory for the performance function, it
is shown that the STC design problem can be transformed
into a tracking problem for the weighting dynamics. Dif-
ferent from the previous works (Wang, 2000; Guo&Wang,
2005), the T-S fuzzy models are firstly utilized to describe
the nonlinear weighting dynamics that can not be modeled
exactly, which represents a significant extension to the
previous results. In this paper, a robust tracking problem
is studied for the T-S fuzzy weighting model where there
exist non-zero equilibriums, time delay and exogenous
disturbances. Meanwhile, a generalized PI controller can
be obtained through improved LMI algorithms such that
the stability, tracking performance for the target weighting
vector or the dynamic reference model and robustness
are guaranteed simultaneously. Furthermore, in order to
enhance the robust performance, the peak-to-peak mea-
sure is applied to optimize the tracking performance which
generalizes the corresponding result for linear systems with
zero equilibrium (Scherer & Weiland, 2000).
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2. FORMULATION OF STC PROBLEM

For a dynamical stochastic system, denote u(t) ∈ Rm as
the control input, η(t) ∈ [a, b] as the stochastic output,
whose conditional PDF is denoted by γ(y, u(t)), where y
is the variable in the sample interval [α, β]. It is noted
that γ(y, u(t)) is a dynamic functional of y along with
the time variable t. In the previous works, the PDF
tracking problem has been studied with some effective
design algorithms (Wang, 2000; Shalom&Li, 2000; Forbes,
2004; Guo&Wang, 2005). B-spline expansions have been

used to approximate γ(y, u(t)) or
√

γ(y, u(t)) and the
control objective is to find u(t) such that γ(y, u(t)) is
convergent to the target PDF g(y).

The idea results from a simple observation. It is well known
that mean and variance can characterize the stochastic
property of a Gaussian variable. Generally, the moments
from the lower order to higher order can decide the shape
of a non-Gaussian PDF. In addition, entropy has also been
widely used in communication and control theories as a
measure of the average information contained in a given
PDF (Yue&Wang, 2003). Thus, the PDF tracking can be
achieved via tracking the statistical information, which
motivated the so-called STC problem.

To illustrate the design algorithm, in this paper we con-
sider a special STC problem. The considered performance

index is
∫ β

α
δ(γ, u(t))dy, where

δ(γ, u(t)) = Q1γ(y, u(t)) ln(γ(y, u(t))) + Q2yγ(y, u(t))
(1)

where Q1 and Q2 are two parameters. In (1) the integral
of the first term is the entropy and that of the second term
is the mean of the output PDF respectively.

Based on the previous PDF control theory, we construct
B-spline expansions to approximate δ(γ, u(t)) as follows

δ(γ, u(t)) = C(y)V0(t) + ε(y, t) (2)

C(y) = [B1(y) . . . Bn(y)] V0(t) = [v1(t) . . . vn(t)]T (3)

Bi(y) (i = 1, 2, · · · , n) are pre-specified basis functions and
vi(u(t)) := vi(t), (i = 1, 2, · · · , n) are the corresponding
weights. ε(y, t) represents the bounded modeling error.
Assuming ε(y, t) can be replaced by ε(y, t) = C(y)w0(t),
where w0(t) can also be regarded as an unknown pertur-
bation. Hence, (2) can be rewritten as

δ(γ, u(t)) = C(y)V0(t) + C(y)w0(t) = C(y)V (t) (4)

Based on (1) and (4), for the target PDF we can find the
corresponding weights which can be denoted as Vg(t). That
is, δ(g, u(t)) = C(y)Vg(t). The tracking objective is to find
u(t) such that δ(γ, u(t)) − δ(g, u(t)) = C(y)e(t) converges
to 0, where e(t) := V (t) − Vg(t).

3. PI CONTROLLER DESIGN BASED ON T-S
FUZZY WEIGHTING MODEL

Once B-spline models have been made for the performance
function, the next step is to find the dynamic relationships
between the control input and the weight vector. However,
most published results only concerned linear precise mod-
els, it is noted that a linear mapping cannot change the
PDF shape of the stochastic output, which confines the
practical applications. Recently, the T-S fuzzy model has

been proved to be a very good representation for a certain
class of nonlinear dynamic systems in control systems and
signal processing. So we consider the nonlinear weighting
dynamics which could be described by the following T-S
fuzzy model with r plant rules:
Plant Rule i: If θ1 is µi1 and · · · and θp is µip, then

V̇ (t) = A0iV (t) + F0iVτ (t) + B01iu(t)

+B02iuτ (t) + E0iw(t) (5)
where V (t) ∈ Rn is the independent weighting vectors,
u(t) and w(t) represent the control input and the ex-
ogenous perturbation respectively. Vτ (t) = V (t − τ(t))
represents the time delay weighting vectors, and uτ (t) =
u(t − τ(t)) is the control input with time delay term.
A0i, F0i, B01i, B02i and E0i are known coefficient matrices
with compatible dimensions. θj(x) and µij (i = 1, · ·
·, r, j = 1, · · ·, p) are respectively the premise variables
and the fuzzy sets, r is the number of If-Then rules, and p
is the number of the premise variables. The time-varying
delays τ(t) satisfy 0 < τ̇(t) < β < 1.

By fuzzy blending, the overall fuzzy model is inferred as

V̇ (t) =
r

∑

i=1

hi(θ)(A0iV (t) + F0iVτ (t) + B01iu(t)

+B02iuτ (t) + E0iw(t)) (6)
where θ = [θ1, · · · , θp], ωi : Rp → [0, 1], i = 1, · · · , r is the
membership function of the system with respect to plant
rule i, and hi(θ) = ωi(θ)/

∑r

i=1 ωi(θ). It is obvious

hi(θ) ≥ 0,
r

∑

i=1

hi(θ) = 1

Based on the above mentioned T-S fuzzy model (6), we in-

troduce a new state variable x(t) := [V T (t),
∫ t

0
eT (τ)dτ ]T .

Then the following augmented system with disturbance
w(t) and reference input Vg(t) can be established as



































ẋ(t) =
r

∑

i=1

hi(θ)(Aix(t) + Fixτ (t) + B1iu(t)

+B2iuτ (t) + Eiw(t) + HVg)

z(t) =
r

∑

i=1

hi(θ)(Cix(t) + Diw(t))

x(t) = φ(t), t ∈ [−τ(t), 0]

(7)

where z(t) is the controller output, and

Ai =

[

A0i 0
I 0

]

Fi =

[

F0i 0
0 0

]

B1i =

[

B01i

0

]

B2i =

[

B02i

0

]

Ei =

[

E0i

0

]

H =

[

0
−I

]

To solve the tracking problem for weight vectors, a direct
application of PI control strategy would lead to
Plant Rule j: If θ1 is µj1 and · · · and θp is µjp, then

u(t) =
r

∑

j=1

hj(θ)(KPjV (t) + KIj

t
∫

0

e(τ)dτ) (8)

where KPj and KIj are controller gains to be determined.

With such an augmented system (7), tracking problem can
be further reduced to a stabilization framework because
the PI controller can be formulated by

u(t) =
r

∑

j=1

hj(θ)[Kjx(t)], Kj = [KPj KIj ] (9)
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Remark: It should be pointed out that although some
nonlinear tracking approaches have been provided in the
last decade, less results can be applied to the above T-
S fuzzy model. They do not consider non-zero equilib-
rium and exogenous disturbance simultaneously. In the
following, we will perform LMIs with convex algorithms to
achieve the above control objectives. On the other hand,
it is noted that B-spline expansions and weight modeling
procedures result in modeling errors and uncertainties
which were ignored previously (Wang, 2000; Guo&Wang,
2005). In this paper, the uncertain vector w(t) comprises of
two parts; perturbation within T-S fuzzy weighting model
(5) and modeling error in PDF approximation denoted
w0(t).

4. MAIN RESULTS

4.1 Peak-to-peak performance

L1 performance index is the measure used to describe the
level of disturbance attenuation, which is also called peak-
to-peak performance(Scherer & Weiland, 2000).

Definition: The peak-to-peak control gain for a nonlinear
system is defined by sup‖w‖∞≤1‖z(t)‖∞. The peak-to-peak
control problem is to find controller u(t) such that the
peak-to-peak gain is minimized or satisfies

sup‖w‖∞≤1‖z(t)‖∞ < γ2 (10)

or sup0≤‖w‖≤∞
‖z(t)‖∞
‖w(t)‖∞

< γ2, where γ is a given constant.

Since Vg(t) is a known vector, we denote yd := ‖Vg(t)‖2.
The following result provides a criterion for the L1 perfor-
mance problem of the unforced system of (7), which also
generalizes the corresponding result for linear systems with
zero equilibrium (Scherer & Weiland, 2000).

Theorem 1 : For the known parameters µi(i = 1, 2, 3) ,
α > 0 and γ > 0, suppose that there exist S, P > 0 and
for i = 1, · · · , r, j = 1, · · · , r such that the following matrix
inequalities









sym(AT
i P ) + µ2

1P + S PFi PEi PH
FT

i P −(1 − β)S 0 0
ET

i P 0 −µ2
2I 0

HT P 0 0 −µ2
3I









< 0

(11)












µ2
1P 0

1

2
(CT

i + CT
j )

0 (γ − µ2
2 − µ2

3yd)I
1

2
(DT

i + DT
j )

1

2
(Ci + Cj)

1

2
(Di + Dj) γI













> 0 (12)

[

αI P
P P

]

> 0













P 0
1

2
(CT

i + CT
j )

0 (γ − αxT
mxm)I

1

2
(DT

i + DT
j )

1

2
(Ci + Cj)

1

2
(Di + Dj) γI













> 0 (13)

are solvable, then the unforced system (7) is stable, and

sup0≤‖w‖≤∞
‖z(t)‖∞
‖w(t)‖∞

< γ2 holds.

4.2 Peak-to-peak tracking performance

Considering the state feedback control with PI controller
structure, substituting u(t) =

∑r

j=1 hj(θ)[Kjx(t)] into (7),
we can get



























ẋ(t) =
r

∑

i=1

hi(θ)
r

∑

j=1

hj(θ)[(Ai + B1iKj)x(t)

+(Fi + B2iKj)xτ (t) + Eiw(t) + HVg(t)]

z(t) =
r

∑

i=1

hi(θ)[Cix(t) + Diw(t)]

(14)

The following results provide a solution for the considered
nonlinear tracking control problem with disturbance at-
tenuation performance.

Theorem 2: For the known parameters µi(i = 1, 2, 3),
α > 0 and γ > 0, suppose that there exist S > 0, Q = P−1

and for i = 1, · · · , r, j = 1, · · · , r such that the following
matrix inequalities









Πij FiQ + B2iRj Ei H
QFT

i + RT
j BT

2i −(1 − β)QSQ 0 0

ET
i 0 −µ2

2I 0
HT 0 0 −µ2

3I









< 0 (15)

where

Πij = sym(AiQ) + sym(B1iRj) + µ2
1Q + QSQ













µ2
1Q 0

Q

2
(CT

i + CT
j )

0 (γ − µ2
2 − µ2

3yd)I
1

2
(DT

i + DT
j )

1

2
(Ci + Cj)Q

1

2
(Di + Dj) γI













> 0

(16)
[

αI I
I Q

]

> 0













Q 0
Q

2
(CT

i + CT
j )

0 (γ − αxT
mxm)I

1

2
(DT

i + DT
j )

1

2
(Ci + Cj)Q

1

2
(Di + Dj) γI













> 0 (17)

are solvable, the closed-loop system (14) is stable and satis-

fies both limt→∞V (t) = Vg and sup0≤‖w‖≤∞
‖z(t)‖∞
‖w(t)‖∞

< γ2.

The PI control gain Kj can be solved via Rj = KjQ.

4.3 Peak-to-peak tracking based on reference model

In this stage, a dynamic reference model is considered here
as a part of the target model whose output Vm(t) converges
to Vg(t) as t → ∞. It is supposed that the reference vectors
Vm(t) satisfy

V̇m(t) = AmVm(t) + Bmr (18)

where Am, Bm are constant matrices of appropriate dimen-
sion and r is a constant input. The considered problem is
transformed into a dynamic tracking for error vector

e1(t) = V (t) − Vm(t) (19)

Based on system (5, 18), we redefine a new state variable

x̄(t) := [V T (t),

t
∫

0

eT
1 (τ)dτ, V T

m (t)]T (20)
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Then the new T-S fuzzy weighting model can be trans-
formed as



























˙̄x(t) =
r

∑

i=1

hi(θ)(Āix̄(t) + F̄ix̄τ (t) + B̄1iu(t)

+B̄2iuτ (t) + Ēiw(t) + B̄mr)

z̄(t) =
r

∑

i=1

hi(θ)(C̄ix̄(t) + D̄iw(t))

(21)

where

Āi =

[

Ai H
0 Am

]

F̄i =

[

Fi 0
0 0

]

B̄1i =

[

B1i

0

]

B̄2i =

[

B2i

0

]

Ēi =

[

Ei

0

]

B̄m =

[

0
Bm

]

C̄i =

[

Ci

C1i

]

D̄i =

[

Di

D1i

]

Based on the T-S fuzzy model (21), the new PI control
strategy can be formulated as

u(t) =

r
∑

j=1

hj(θ)K̄j x̄(t), K̄j = [KPj ,KIj , 0] (22)

Substituting (22) into (21) yields

˙̄x(t) =
r

∑

i=1

hi(θ)
r

∑

j=1

hj(θ)[(Āi + B̄1iK̄j)x̄(t)

+(F̄i + B̄2iK̄j)x̄τ (t) + Ēiw(t) + B̄mr] (23)

Theorem 3: For the known parameters µi(i = 1, 2, 3)
, α > 0 and γ > 0, suppose that there exist S̄ =
diag[S, S1] > 0, Q̄ = diag[Q,Q1] = diag[P−1, P−1

1 ] > 0
and for i = 1, · · · , r, j = 1, · · · , r such that the matrix
inequalities (24-26) are solvable, then the T-S fuzzy model
(21) is stable and satisfies both limt→∞V (t) = Vm(t) and

sup0≤‖w‖≤∞
‖z(t)‖∞
‖w(t)‖∞

< γ2. In this case, the PI control

gain Kj can be solved via Rj = KjQ, and S̃ = QSQ,

S̃1 = Q1S1Q1.

5. AN ILLUSTRATIVE EXAMPLE

Suppose that the statistical information can be approxi-
mated using the square root B-spline models described by
(2) with n = 3, y ∈ [0, 1.5] and for i = 1, 2, 3

Bi(y) =

{

| sin 2πy| y ∈ [0.5(i − 1); 0.5i]
0 y ∈ [0.5(j − 1); 0.5j] i 6= j

(27)

For simplicity, in the simulation it is supposed that the
target PDF can be denoted as

γg(y) =
1√
2πb

exp(− (y − a)2

2b2
) (28)

where a = 0.5 + ln
√

2π + 1.7
π

, b = 1. From (1), it can be
obtained that

Σ3
i=1(VgiBi(y)) = Q1γg(y)ln(γg(y)) + Q2yγg(y)

where Q1 = 1, Q2 = 1. As a result, we have

Σ3
i=1(Vgi

∞
∫

−∞

(Bi(y)dy)) = (−1

2
)(1 + ln(2πb2)) + a (29)

Owing to
∫ ∞

−∞
Bi(y)dy = 1

π
i = 1, 2, 3, it can be shown

that the reference weights corresponding to the target
statistical information of the target PDF satisfy the con-
dition Σ3

i=1(Vgi) = 1.7. As such, the reference weights
can be denoted as Vg = [0.3 0.6 0.8]T . Consider a T-
S fuzzy model with exogenous perturbation, together with
the i = 1, 2. The model parameters are omitted here to
save space.

















sym(AiQ) + sym(B1iRi) + S̃ + µ2
1Q HQ1 FiQ + B2iKj 0 Ei 0

Q1H
T sym(AmQ1) + S̃1 + µ2

1Q1 0 0 0 Bm

QFT
i + KT

j BT
2i 0 −(1 − β)S̃ 0 0 0

0 0 0 −(1 − β)S̃1 0 0
ET

i 0 0 0 −µ2
2I 0

0 BT
m 0 0 0 −µ2

3I

















< 0 (24)



















µ2
1Q 0 0

1

2
(QCT

i + QCT
j )

0 µ2
1Q1 0

1

2
(Q1C

T
1i + Q1C

T
1j)

0 0 (γ − µ2
2 − µ2

3r)I
1

2
(D̄T

i + D̄T
j )

1

2
(CiQ + CjQ)

1

2
(C1iQ + C1jQ)

1

2
(D̄i + D̄j) γI



















> 0 (25)

[

αI I I
I Q 0
I 0 Q1

]

> 0,



















Q 0 0
1

2
(QCT

i + QCT
j )

0 Q1 0
1

2
(Q1C

T
1i + Q1C

T
1j)

0 0 (γ − αx̄T
mx̄m)I

1

2
(D̄T

i + D̄T
j )

1

2
(CiQ + CjQ)

1

2
(C1iQ + C1jQ)

1

2
(D̄i + D̄j) γI



















> 0 (26)
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Fig. 1 Responses of the weighting vectors
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Fig. 2 3D mesh plot of the performance function

In this example, we choose Gaussian functions as our
member functions, which are

Mi =
exp(−(x2±1)2

σ2 )

exp(−(x2+1)2

σ2 ) + exp(−(x2−1)2

σ2 )

Through solving the LMIs (19-23), the PI control gains
can be computed as follows

KP1 =

[

36.5 −4.2 3.4
−2.2 42.7 −2.3
−1.6 −5.7 35.5

]

,KI1 =

[

47.9 −5.2 4.5
2.5 52.0 1.1
−4.2 −5.3 45.8

]

KP2 =

[

17.1 −1.9 −0.2
1.2 16.9 −1.5
2.5 −0.5 18.6

]

,KI2 =

[

23.0 −3.5 −2.0
3.9 22.1 −1.1
3.3 0.9 22.5

]

Fig 1 is the responses of weighting vector and shows the
performances of tracking. Fig 2 shows the 3-D mesh plot
of the statistic performance function.

6. CONCLUSION

This paper considers the robust tracking problem for the
statistic information of non-Gaussian processes by using
generalized PI controller. B-spline neural networks and
T-S fuzzy model are applied to formulate the tracking
problem. Compared with the previous works, the main
results here have three features: 1) The T-S fuzzy model,
as a system identifier, is first applied into STC problem.
2) Exogenous disturbances, non-zero equilibrium and time
delay are all considered in the T-S fuzzy model tracking
control. 3) Using the LMI methods, multiple control ob-
jectives including stabilization, tracking performances and
robustness can be guaranteed simultaneously.
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Appendix A. PROOF FOR THE THEOREM 1

Proof: Defining a Lyapunov function condition as
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S1(x(t), t) = xT (t)Px(t) +

t
∫

t−τ(t)

xT (β)Sx(β)dβ (30)

Obviously it can be seen that
dS1

dt
= 2xT (t)Pẋ(t)+xT (t)Sx(t)−(1−τ̇(t))xT

τ (t)Sxτ (t)

=
r

∑

i=1

hi(θ)x
T (t)Υix(t) − (1 − τ̇(t))xT

τ (t)Sxτ (t)

+2
r

∑

i=1

hi(θ)x
T (t)PFixτ (t) + ‖µ2w(t)‖2

+‖µ3Vg(t)‖2 −
r

∑

i=1

hi ‖
1

µ2
ET

i Px(t) − µ2w(t) ‖2

− ‖ 1

µ3
HT Px(t) − µ3Vg(t) ‖2

≤
r

∑

i=1

hi(θ)ζ
T (t)Φiζ(t) + ‖µ2w(t)‖2 + µ2

3yd (31)

where

ζ = [xT (t), xT
τ (t)]T , Φi =

[

Υi PFi

FT
i P −(1 − β)S

]

Υi = AT
i P + PAi + S +

1

µ2
2

PEiE
T
i P +

1

µ2
3

PHHT P (32)

Based on Schur complement formula, (11) implies that for
any w(t) satisfying ‖w(t)‖∞ ≤ 1, Φi < −µ2

1P hold. With
(31), it can be seen that

dS1(x(t), t)

dt
≤ −µ2

1x
T (t)Px(t) + µ2

2 + µ2
3yd (33)

where µ2
3yd can be considered as a known parameter. Thus,

dS1(x(t),t)
dt

< 0, if xT (t)Px(t) > µ−2
1 (µ2

2 + µ2
3yd) holds. So

for any x(t), it can be verified that

xT (t)Px(t) ≤ max{xT
mPxm, µ−2

1 (µ2
2 + µ2

3yd)}
‖xm‖ = sup

−τ(t)≤t≤0

‖x(t)‖ (34)

which also implies that the unforced system (7) is stable.

From(34), we get xT (t)Px(t) ≤ xT
mPxm or xT (t)Px(t) ≤

µ−2
1 (µ2

2 + µ2
3yd). Defining η(t) = [xT (t), wT (t)]T , Hi =

[Ci, Di] and Hj = [Cj , Dj ], we have

‖z(t)‖2 = Σr
i=1Σ

r
j=1hi(θ)hj(θ)η

T (t)HT
i Hjη(t)

≤ 1

4
Σr

i=1Σ
r
j=1hihjη

T (t)(Hi + Hj)
T (Hi + Hj)η(t)

Combining with (12), it can be seen that
[

µ2
1P 0
0 (γ − µ2

2 − µ2
3yd)I

]

− 1

4γ

[

CT
i + CT

j

DT
i + DT

j

]

[ Ci + Cj Di + Dj ] > 0

which guarantees under xT (t)Px(t) ≤ µ−2
1 (µ2

2 +µ2
3yd) and

‖w(t)‖∞ ≤ 1 that
1

γ
‖z(t)‖2 < (µ2

2 + µ2
3yd) + (γ − µ2

2 − µ2
3yd)w

T (t)w(t) = γ

(35)

On the other hand, from (13), it can also be shown that
[

P 0
0 (γ − αxT

mxm)I

]

− 1

4γ

[

CT
i + CT

j

DT
i + DT

j

]

[ Ci + Cj Di + Dj ] > 0

Similarly to the above proof, under xT (t)Px(t) ≤ xT
mPxm

and ‖w(t)‖∞ ≤ 1, we can get

1

γ
‖z(t)‖2 < αxT

mxm + (γ − αxT
mxm)wT (t)w(t) = γ (36)

Hence, the L1 norm of the unforced system is less than γ2.

Appendix B. PROOF FOR THE THEOREM 2

Proof: Based on Theorem 1 and Lyapunov-Krasovskii
function condition (30), we can get

dS1

dt
= 2xT (t)Pẋ(t) + xT (t)Sx(t) − (1 − τ̇)xT

τ (t)Sxτ (t)

≤
r

∑

i=1

hi

r
∑

j=1

hjζ
T (t)Ωijζ(t) + ‖µ2w(t)‖2 + µ2

3yd (37)

where ζ = [xT (t), xT
τ (t)]T and

Ωij =

[

Ξij PFi + PB2iKj

FT
i P + KT

j BT
2iP −(1 − β)S

]

Ξij = sym(AT
i
P ) + sym(KT

j BT
1iP ) + S

+
1

µ2
2

PEiE
T
i P +

1

µ2
3

PHHT P (38)

Based on Schur complement formula, we can get

Ωij ≤
[

−µ2
1P 0
0 0

]

So for any w(t) satisfying ‖w(t)‖∞ ≤ 1, it can be seen that

dS1(x(t), t)

dt
≤ −µ2

1x
T (t)Px(t) + µ2

2 + µ2
3yd (39)

Similarly to the proof of Theorem 1, it can be seen that
(34) still holds for the closed-loop system, which implies
that (14) is still stable in the presence of w(t) and Vg. Sim-
ilar to Theorem 1, it can be claimed that the closed-loop
system satisfies the peak-to-peak disturbance attenuation
performance from LMIs (16-17).

For a couple of w(t) and Vg, we suppose that ϑ1(t) and
ϑ2(t) are two trajectories of the closed-loop system corre-
sponding to a fixed initial condition. Define σ(t) := ϑ1(t)−
ϑ2(t), the dynamics for σ(t) can be described as

σ̇(t) =
r

∑

i,j=1

hihj [(Ai + B1iKj)σ(t) + (Fi + B2iKj)στ (t)]

(40)
Similar to (30), Lyapunov function can be constructed as

S2(σ(t), t) = σT (t)Pσ(t) +

t
∫

t−τ(t)

σT
τ (β)Sστ (β)dβ (41)

Hence it can be seen
dS2(σ(t), t)

dt
≤ −µ2

1σ
T (t)Pσ(t) ≤ −µ2

1λmin(P )‖σ(t)‖2

where λmin(P ) is denoted as the minimal eigenvalue about
P . It can be verified that σ = 0 is the unique asymp-
totically stable equilibrium point of the system (40). It
means that the closed-loop system (14) also has a unique
asymptotically stable equilibrium point. It can be con-

cluded that limt→∞
d
dt

(
∫ t

0
e(τ)dτ) = 0, which shows that

limt→∞V (t) = Vg(t).
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