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Abstract: The paper is dedicated to problem of unknown frequency identification of an unmeasured 

biased harmonic disturbance )sin()( 0 φωσσ ++= tty  affecting a nonlinear system. Unlike known 

analogues, this approach allows to regulate time of estimation of unknown frequency ω .  

 
 

1. INTRODUCTION
12

 

 

This paper deals with problem of frequency identification of 

an unmeasured harmonic disturbance 

)sin()( 0 φωσσ ++= tty  affecting a nonlinear system; 0σ , 

σ , φ  are unknown constant values. Problem of frequency 

identification of a sinusoidal signal is a very important basic 

problem, which has different applications in theoretical and 

engineering disciplines, see (Clarke, 2001). Today there are 

many different approaches to identification of unknown 

frequency of a sinusoidal function, see (Bodson and Douglas, 

1997; Hsu, et al., 1999; Mojiri and Bakhshai, 2004; Marino 

and Tomei, 2002;  Xia, 2002;  Obregón-Pulido, et al., 2002; 

Bobtsov, et al., 2002; Hou, 2005). Let us note that today 

approaches to frequency identification are not limited with 

studying the case of a single sinusoid, see (Bodson and 

Douglas, 1997; Hsu, et al., 1999; Mojiri and Bakhshai, 

2004). In particular, papers (Hou M., 2005; Aranovskiy, et 

al., 2007; Bobtsov, 2007) consider problem of frequency 

identification of a biased sinusoidal signal, and papers 

(Marino and Tomei, 2002; Xia, 2002; Obregón-Pulido, et al., 

2002; Bobtsov, et al., 2002) show common case of a 

harmonic signal, which is a sum of n sinusoidal functions 

with different frequencies. 

 

Algorithm proposed in Aranovskiy, et al., 2007 has dynamic 

order equal to three, and in its turn, that is better than the 

most known results, published in  (Marino and Tomei, 2002; 

Xia, 2002; Obregón-Pulido, et al., 2002; Bobtsov, et al., 

2002; Bobtsov, 2007; Hou, 2005). In (Xia, 2002; Obregón-

Pulido, et al., 2002; Bobtsov, et al., 2002; Bobtsov, 2007; 

Hou, 2005) minimal dimension of dynamic order of the 

algorithm is four, and in (Marino and Tomei, 2002) 

dimension of the algorithm amounts to nine. Besides, 
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algorithm of identification, proposed in Aranovskiy, et al., 

2007 allows to regulate rate of convergence of tuned 

parameter (estimation of frequency of signal 

)sin()( 0 φωσσ ++= tty ). 

This paper develops result of Aranovskiy, et al, 2007 for the 

case of frequency identification of an unmeasured harmonic 

disturbance )sin()( 0 φωσσ ++= tty  presenting in a 

nonlinear system. 

 

2. PROBLEM STATEMENT 

 

Consider nonlinear system of the form  
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where p is differentiation operator; )(tg  is output; )(tu  is 

control; ))(( tgf  is nonlinearity; )(ty  is unknown biased 

harmonic signal; )( pa  is unstable polynomial, 

npa =)(deg ; )( pb , )( pd , )( pc  are stable polynomials; 

degrees of polynomials )( pb , )( pd , )( pc  are less then n ; 

coefficients of polynomials )( pa , )( pb , )( pd  and )( pc  are 

known; )(tg , )(tu  and )(gf  are known; 

)sin()( 0 φωσσ ++= tty  is harmonic disturbance with 

unknown bias 0σ , amplitude σ , frequency ω   and phase 

φ . 

 

Let us formulate purpose of control as design of identification 

algorithm, which should ensure realization of condition 

 

0)(ˆlim =−
∞→

t
t

ωω ,  (2) 

 

where )(ˆ tω  is a current estimation of parameter ω  for 

any 0σ , σ , φ  and 0>ω . 
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Passing to Laplace images in (1) we obtain 
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where s  is complex variable, { })()( tgLsG = , 

{ })()( tuLsU = , { }))(()( tgfLsF = , { })()( tyLsY = ,  are 

Laplace images of functions )(tg , )(tu , ))(( tgf , )(ty  

respectively, polynomial )(sH  denotes sum of all terms 

containing nonzero initial conditions. 

Let us transform model (3) the following way 
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whence 
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where parameter 0>λ  и )()()( 1 sassA n −+= λ . 

After inverse Laplace transform equation (4) takes the form 
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where 
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λ
ε  is exponentially decaying 

function of time caused by nonzero initial conditions, and it 

is possible to accelerate its convergence to zero by increasing 

parameter λ. 

Neglecting exponentially decaying item 
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ε , let us parameterize model (5).  

Consider auxiliary filters of the following form  
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Substituting (6)-(8) into (5), we obtain 

 

)()()()()()()()( 3211 tytpdtpbtpatg +++= υυυ , (9) 

 

where )(
)(

)(
)( ty

p

pc
ty

nλ+
= . 

Assumption. Polynomial )( pc  does not have pure imaginary 

roots ωj± . 

For (9) we have 

 

)()()( tytztg += ,   (10) 

 

where )()()()()()()( 3211 tpdtpbtpatz υυυ ++= .  

From (10) we have  

 

)()()( tztgty −= ,       (11) 

 

Consider signal )(
)(

)(
)( ty

p

pc
ty

nλ+
= . As polynomial 

np )( λ+  is Hurwitz and )sin()( 0 φωσσ ++= tty , signal 

)(ty  can be rewritten the following way: 

)sin()( 0 φωσσ ++= tty  and ωω = . So, problem of 

frequency identification of the signal 

)sin()( 0 φωσσ ++= tty  can be turned into problem of 

frequency identification of measured biased harmonic signal  

 

)sin()()()( 0 φωσσ ++=−= ttztgty ,      (12) 

 

and new purpose of control is 

 

0)(ˆlim =−
∞→

t
t

ωω ,  (13) 

 

where )(ˆ tω  is a current estimation of parameter ω  for 

any 0σ , σ , φ  and 0>ω . 

 

 

3. MAIN RESULT 

 

It is known that for generating of signal (12) it is possible to 

use differential equation of the view (3), see Aranovskiy, et 

al., 2007 

 

)()()( 2 tytyty &&&&& θω =−= ,  (14) 

 

where 2ωθ −=  is a constant parameter. 

 

Lemma. Consider an auxiliary second-order filter 
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where p is differentiation operator and  number 0>α . 

Then differential equation (14) can be rewritten in the form  
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where )(tyε  is exponentially decaying function of time 

caused by nonzero initial conditions. 

Proof. After Laplace transform of (14) we obtain 
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where s is complex variable, { })()( tyLsY =  is Laplace image 

of signal )(ty , and polynomial )(sD  denotes sum of all 

terms, containing nonzero initial conditions.  

From (18) we find 
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where exponentially decaying function of time 

})/()({)(
21 αε += −

ssDLty  is determined by nonzero initial 

conditions. 

Substituting (16) into (19) we obtain 

 

)()()()(2)(
2

ttttty yεςθςαςα +++= &&&&& , 

 

which was to be proved. 

 

Remark 1. As exponentially decaying function 

})/()({)(
21 αε += −

ssDLty  depends on parameter α, it is 

possible to accelerate convergence of )(tyε  to zero by 

increasing α. 

 

Now, on base of lemma results one can formulate scheme of 

unknown parameter θ identification. First let us suppose that 

function )(ty&  is measured. Then, neglecting exponentially 

decaying item )(tyε , ideal identification algorithm can be 

written the following way 
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)(ˆ)(ˆ tt θω = ,   (20) 

 

where function )()(2)()( 2 tttyt ςαςαξ &&&& −−=  and number 

0>k . 

The following statement proves efficiency of ideal 

identification algorithm for achieving purpose (2). 

 

Proposition. Let algorithm of identification of unknown 

parameter θ  have the view 
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where number 0>k , and function )(tς  is solution of 

differential equation (15). 

Then purpose of the view (13) is achieved. 

 

Proof of the proposition. Consider estimation error of 

parameter θ  of the following form 
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After differentiation of equation (21) we have 
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Solving differential equation (22) we obtain 
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where function 
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It is obvious that as polynomial 2)( α+p   is Hurwitz, 

function )(tς  takes the view 

 

∆+++= )
~

sin(~~)( 0 φωσσς tt ,       (25) 

 

where 0
~σ , σ~  and φ

~
 are constant coefficients depending on 

parameters of signal )sin()( 0 φωσσ ++= tty  and number 

α ; ∆  is an exponentially decaying item, caused by 

transients. 

Let us neglect ∆ , then after differentiating (25) we obtain 
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Substituting )
~

cos(~)( φωωσς += tt&  into (24) we have 
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where function  
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is bounded for any t, and number 
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Let us substitute (26) into (23) 
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It follows from (27) that 0
~

lim =
∞→

θ
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, and hence 

)()(ˆ)(ˆ ttt ωθω →=  for ∞→t . Proposition is proven. 

 

Remark 2. It follows from equation (27) that function )(ˆ tθ  

converges to parameter θ  faster as coefficient k is increased. 

It means that change of coefficient k leads to reducing or 

increasing of convergence rate of the tuned parameter to its 

real value in identification algorithm (20).   

 

However, in our case only signal y(t) is measured but not its 

derivatives. To derive realizable scheme of identification 

algorithm let us consider the following  variable 
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Differentiating (28) we obtain 
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From equations (28), (29) we receive realizable identification 

algorithm of the following view 
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4. EXAMPLE 

 

Consider nonlinear system described by Duffing equation 

(see for instance Fradkov et al., 1997) 

 

)()()()()()( 00001 tubtycgfdtgatgatg =−−++ &&& , (33) 

 

where 1a , 0a , 0d , 0c  and 0b  are known numbers, nonlinear 

function )())(( 3 tgtgf =  and )sin()( 0 φωσσ ++= tty  is 

unmeasured biased harmonic signal. 

Let us use filters of the view (6)-(8) to generate signal   
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Frequency estimation of signal )()()( tztgty −=  (11) is 

fulfilled by algorithm (20), (30)-(32). 

Results of computer simulation for different values of 

parameters of model (33) are shown in Fig. 1-Fig. 6. 

Fig. 1-Fig. 3 show simulation results for 01 =a , 75.00 −=a , 

75.00 −=d , 10 =c , 10 =b , 2)( =tu , )5sin(71)( tty += ,  

1)0( =g , 0)0( =g& , 0)0()0( == ςς & . 

 

 
Fig. 1. Phase-plane portrait of system (33) 
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Fig. 2. Frequency estimation ( )(ˆ tω ) for parameter 750=k  

 
Fig. 3. Frequency estimation ( )(ˆ tω ) for parameter 1000=k  

 

Fig. 4-Fig. 6 show simulation results for 4.01 =a , 

1.10 −=a , 10 −=d , 10 =c , 10 −=b , 1)( =tu , 

)8.1sin(8.11)( tty += , 1)0( =g , 0)0( =g& , 0)0()0( == ςς & . 

 

 
Fig. 4. Phase-plane portrait of system (33) 

 

 

 
Fig. 5. Frequency estimation ( )(ˆ tω ) for parameter 10000=k  

 
Fig. 6. Frequency estimation ( )(ˆ tω ) for parameter 50000=k  

 

Simulation results show that problem of frequency 

identification of unknown harmonic signal 

)sin()( 0 φωσσ ++= tty  has been solved. Time required 

for identification of unknown harmonic signal can be reduced 

by increasing parameter k  of algorithm (30)-(32).  

 

5. CONCLUSION 

 

Problem of frequency identification of an unmeasured 

harmonic disturbance )sin()( 0 φωσσ ++= tty  has been  

considered for any unknown constant values 0σ , σ , φ , 

0>ω . Designed algorithm of identification (6)-(8), (30)-

(32): 

– has been shown to allow accelerating rate of 

convergence of estimate )(ˆ tθ  to θ  thanks to 

increasing coefficient k (see remarks 1 and 2 and 

example); 

– does not require measurements of the disturbance 

)(ty .  
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