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Abstract: The development and validation of a tool that can estimate the level of compaction of a Hot Mix 
Asphalt (HMA) pavement during its construction is addressed in this paper. Densification of asphalt 
pavements during their construction is usually accomplished through the use of vibratory compactors. 
During compaction, the compactor and the asphalt mat form a coupled system whose dynamics are 
influenced by the changing stiffness of the mat. In this paper, it is shown that the measured vibrations of 
the compactor along with the process parameters such as lift thickness, mix type, mix temperature, and 
compaction pressure can be used to predict the density of the asphalt mat. 

Contrary to existing techniques in the literature where a model is developed to fit the experimental data 
and to predict the density of the mat, a novel neural network based approach is adopted that is model-free 
and uses pattern-recognition techniques to estimate the density. During compaction of a HMA mat, the 
neural network then classifies the observed vibrations as those corresponding to a known level of 
compaction. The results also show that the analyzer can estimate the density continuously, and in real-
time with accuracy levels adequate for quality control in the field. Using this tool, for the first time, the 
overall quality of construction of a HMA pavement can be verified thereby creating the potential to 
improve the quality of the roads.  

 

1. INTRODUCTION 

The construction of an asphalt pavement starts by combining 
heated aggregates with liquid asphalt cement at temperatures 
in the range of 250 to 300 degrees Fahrenheit. At the site, the 
asphalt concrete is deposited directly into a paver or placed in 
a windrow to be picked up and moved through a paver. The 
paver spreads the material across the pavement in a thickness 
ranging from 2.54 to 10.16 centimeters (1 to 4 inches), and 
provides a modest amount of initial compaction. As the 
material cools, compaction is provided by a series of 
vibratory rollers until the desired density is achieved 
(Tunnicliff, et al., 1974).  

Vibratory rollers are commonly used in the field to compact 
asphalt mats. The steel drum of the roller is mounted on an 
axle to which eccentric weights are attached. These weights 
are rotated by means of the vibration motors. The rotation of 
these eccentric weights within the drum causes an impact 
force at the contact between the drum and the asphalt mat. 
The amplitude of these impacts is a function of the 
displacements of the eccentric weights. The spacing between 
subsequent impacts on the mat is a function of the speed of 
rotation of the eccentric weights and the forward speed of the 
roller. 

1.1 Specification of Compaction Quality 

The objective of compaction is to increase the density of the 
asphalt mix so that the desired load bearing and mechanical 
properties of the asphalt mat are achieved. Generally, the 
target density is set on the basis of either relative or absolute 
measure of compaction. A relative measurement of target 
density may use a percentage of a laboratory standard test. 
For example, a specification may require a minimum of 95% 
of the maximum density obtained from a Marshall test 
(White, 1985). Another type of specification commonly used 
is an absolute measure of a void-less mix or a percentage of 
the maximum theoretical density as determined by the 
AASHTO Test Method T-209.  

The quality assessment in the field is usually performed by 
taking point-wise readings using a nuclear density gauge. The 
process is slow and typically 3-5 readings are taken per lane 
mile of the constructed pavement. Extraction of roadway 
cores and the measurement of the density in the laboratory 
provide accurate indication of the quality but the process is 
destructive in nature.  The coring process is also a primary 
cause of potholes and results in other signs of early 
deterioration of the pavement. Moreover, the density levels 
are usually not available at the time of compaction. 
Therefore, compaction issues are not identified before the 
asphalt mix cools down to an extent where additional 
compaction is not possible. Inadequate compaction is one of 
the leading causes for the onset of rutting, cracks, potholes 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 2224 10.3182/20080706-5-KR-1001.2551



 
 

     

 

and other signs of degradation in the pavements. Thus, there 
is a need for the development of a density measuring device 
that can monitor the level of compaction in real-time, 
continuously over the length of the pavement during its 
construction. 

In this paper, the vibrations of the compactor during the 
construction of the pavement are analyzed and pattern 
recognition techniques are used to determine the level of 
compaction. The procedure is based on the hypothesis that 
the compactor and the asphalt mat form a coupled system 
whose vibration characteristics are influenced by the stiffness 
(density) of the pavement (Commuri and Zaman, 2006). The 
hypothesis was validated to a limited extent in the laboratory 
(Commuri and Zaman, 2007). In this paper, the hypothesis is 
validated during the construction of a HMA overlay on a test 
site under controlled test conditions. 

The rest of the paper is organized as follows. In Section 2, 
early attempts to develop Intelligent Compaction tools are 
discussed. Section 3 details the test setup and the 
experimental procedure. The field compaction results and the 
validation of the IACA are presented in Section 4 and the 
conclusions and future work are presented in Section 5.  

2. BACKGROUND ON INTELLIGENT COMPACTION 

The behavior of the HMA under load conditions is dependent 
of the properties of the individual components and of the 
volumetric composition of the mix. In mechanistic-empirical 
modeling of HMA pavements, the stress-strain relationship 
under a continuous sinusoidal loading is defined by the 
complex dynamic modulus. The complex modulus is defined 
as the ratio of the amplitude of the sinusoidal stresses and the 
amplitude of the sinusoidal strain. The “dynamic modulus” is 
defined as the absolute value of the complex modulus. This 
modulus is useful in predicting the response of the pavement 
to compactive loading e.g., deflections, stresses, and strains 
within the pavement structure (including HMA layers).  

The “Witczak” model (Ayers et al., 1998; Commuri and 
Zaman, 2007) is a common empirical relationship used to 
predict the dynamic modulus based on the individual 
components of the HMA. In this model, the dynamic 
modulus at a given loading time and temperature depends on 
a number of design factors like the viscosity of the asphalt 
binder, the effective asphalt content (% by volume), the 
loading frequency (in Hz), the air void content (% by 
volume), the effective bitumen content (% by volume), and 
the properties of the aggregates in the mix. 

The ability to estimate the quality of compaction of a Hot 
Mix Asphalt (HMA) pavement under construction has been 
pursued by many researchers (Jaselskis, 1998; Minchin et. al, 
2003; Mooney, 2005; Sandstorm, 1998; Swanson, 2000; Yoo 
and Selig, 1979). Many of the earlier attempts tried to 
develop a relationship between the frequency components of 
the observed vibrations and the achieved level of compaction. 
However, the effect of the various parameters that can affect 
the vibrations, for instance, the thickness of the asphalt mat, 
the design of the HMA mix, the type of subgrade, the 
compaction equipment used, etc., were ignored to a large 

extent. This made it difficult to achieve the level of accuracy 
needed for quality assessment in the field. Typically, the 
contracting agency requires compaction of the pavement to 
94% of the theoretical maximum density as determined by 
the AASHTO T-209 method. Density below 92% 
compaction, corresponding to 8% air void content in the 
pavement, is the cut off below which the contractor is 
penalized. Thus, it is necessary for the compaction analyzer 
to have accuracy within 2% of the true measurement. 

In research conducted at the University of Oklahoma 
(Commuri and Zaman, 2007), the authors implemented a 
neural network based strategy to estimate the level of 
compaction. The Intelligent Asphalt Compaction Analyzer 
(IACA) that was developed was shown to be capable of 
estimating the density of compaction using laboratory 
Asphalt Vibratory Compactor. The neural network was 
shown to have the ability to classify the features extracted 
from the vibration signals as those corresponding to the 
densities of the asphalt specimen. Further, the generalization 
capabilities of the neural network enabled it to provide 
reasonable density estimations when presented with data 
different from the set used to train the network.  

3. TEST SETUP AND EXPERIMENTAL PROCEDURE 

The experimental setup used to examine the changes in the 
frequency content of vibrations during the compaction 
process is shown in Figure 1. This experimental set up 
comprises of an Ingersoll-Rand DD138HF dual drum 
vibratory compactor instrumented with accelerometers, and a 
real-time data acquisition system to analyze the vibration 
characteristics and predict density. Vibrations of the roller 
during compaction are translated into voltages using a tri-
axial accelerometer capable of measuring accelerations along 
three orthogonal axes. A CXL10HF3 accelerometer from 
Crossbow (Crossbow, 2005), capable of measuring 10g 
acceleration up to 10 kHz, was mounted on the axle of the 
drum of the roller to measure the vibrations of the drum 
during compaction tests. The signal produced by this 
accelerometer is then read by the data acquisition system.  
The data acquisition system used in this case, the xPC target 
(The MathWorks, 2005), is a rapid prototyping tool that can 
convert graphical models of the data acquisition circuitry into 
software that can be executed in real-time. The xPC target is 
an Intel Pentium processor-based embedded computer and is 
configured using Simulink (The MathWorks, 2005).  

The development of the compaction analyzer is based on the 
hypothesis that the features extracted from the vibration 
signal of a compactor are sufficient and reliable to determine 
the level of densification achieved during the compaction 
process (Commuri and Zaman, 2007). The following steps 
are used to achieve this goal: 

Read the signals from the instrumented compactor and filter 
the signals to eliminate noise and other undesirable 
quantities. 

Perform a Fast Fourier Transform (FFT) on the data from the 
accelerometer and determine the power (in decibels) of the 
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signal at different frequencies. Extract the key features of the 
signals, i.e. frequencies and the corresponding power. 

Compare the extracted features with the features 
corresponding to a set of known densities.  

Calculate the predicted density based on the results from the 
previous step and the knowledge of the process parameters, 
i.e. mix type, mat temperature, type of compactor, etc. 

The sensor module consists of accelerometers for measuring 
the vibrations of the compactor during operation, infrared 
temperature sensors for measuring the temperature of the 
mix, means for selecting the amplitude and frequency of the 
vibration motors, and means for recording the mix type and 
lift thickness. The vibration signals were sampled at 1000 
samples/second using a Mathworks xPC real-time computer 
running on an Intel Pentium 4 processor and with IO301 
embedded data acquisition system. The sampled input is 
presented to the feature extractor (FE) module. The FE 
module implements a Fast Fourier Transform (FFT) of the 
input signal to extract the features corresponding to 
vibrations at different salient frequencies. Pre-processing the 
data to extract the features reduces the amount of data to be 
considered in the classification process, and therefore the 
algorithmic complexity of the classifier is reduced. The 
Neural Network Classifier is a multi-layer Neural Network 
(NN) that is trained to classify the extracted features into 
different classes. The Compaction Analyzer then post-
processes the output of the NN and predicts the degree of 
compaction in real time.  

In the experimental setup described in this paper, a window 
of 256 contiguous samples was used to compute the FFT at 
each instant in time. The window had an overlap of 128 past 
values. The size of the window and the overlap were fixed to 
provide equal resolution to the time and frequency content of 
the signal. The output of the FFT is a vector with 256 
elements, where each element corresponds to the signal 
power at the corresponding frequencies. In this case, since the 
signal is sampled at 1 kHz, the frequency spectrum is 
uniformly distributed from 0 to Nyquist frequency, i.e. 500 
Hz. In order to classify these vibrations, the 200 elements 
corresponding to the response above the excitation frequency 
of the compactor are used as input to the classifier.  

The NN classifier implemented is a three layer NN with 200 
inputs, 10 nodes in the input layer, 4 nodes in the hidden 
layer, and 1 node in the output layer. The inputs of the NN 
correspond to the outputs of the feature extraction module, 
i.e. in this case 200 features in the frequency spectrum were 
considered. The output corresponds to a signal indicative of 
the level of compaction reached. The method to extract the 
training data, and validate the performance of the 
Compaction Analyzer is discussed in the next section. 

4.  EXPERIMENTAL RESULTS 

In order to minimize the effect of the subgrade on the 
vibrations of the compactor, a test pad consisting of a 
continuously reinforced concrete pavement (CRCP) is 
designed so as to provide a stiff uniform subgrade over which 
HMA overlays can be performed. It is anticipated that the 

properties of such a subgrade would not alter during the 
course of the compaction. Thus, any changes observed in the 
vibration spectrum of the compactor during construction 
would be a result of changing properties of the asphalt mat. 

The test site selected was a stretch of unused road on Mendel 
Plaza near Max Westheimer Airport in Norman. The center 
line of the street was located and a section 7.62 meters (25 
feet) wide by 106.7 meters (350 feet) long and soil 
characterization tests were performed. The results of the tests 
were then used to stabilize the subgrade, and design and build 
a reinforced concrete slab 4.27 meters (14 feet) wide and 
106.7 meters (350 feet) long and 15.24 centimeters (6 inches) 
thick for use in the project. 

The performance of the IACA prototype was analyzed during 
the compaction of asphalt mixes on the controlled test strip 
described above. Initially, several overlays were constructed 
using the S3 (PG64-22OK) mix and the vibrations of the 
machine were collected and the corresponding spectrograms 
were computed. Several readings were also taken during each 
roller pass using a PQI 301 non-nuclear density gauge. On 
completion of the overlay, several cores were extracted from 
the compacted pavement and their density was measured in 
the laboratory in accordance with the AASHTO T 166 and 
OHD L-45 specifications.  

The vibration data from the spectrogram was correlated with 
the density measurements in order to extract the data for 
training the neural network. Locations on the mat with 
densities of 90%, 92%, 94% were identified and the FFT 
output corresponding to these locations were identified using 
the GPS measurements. Eight columns of FFT data, 
corresponding to a linear travel of 1 foot, were selected at 
each of these locations to constitute the training data for the 
neural network. The training error for each epoch of the 
training is shown in Figure 5. The training is stopped once 
the required precision ( 610− , corresponding to 1 prediction 
error in 610− trials using the training data) is obtained.  

The performance of the trained IACA was verified during the 
construction of an asphalt pavement on the test strip. The 
output of the accelerometer and the GPS measurements of the 
location of the compactor were collected and the spectrogram 
was plotted against the distance traveled by the compactor for 
each roller pass. After each roller pass, the density was 
measured at specific points on the asphalt mat. The 
spectrogram of the vibrations of the compactor over the first 
two passes is shown in Figure 2, where the effect of increased 
density on the vibration of the compactor can be easily seen. 

The data obtained was used to train the IACA to extract the 
relevant features from the vibration signal and estimate the 
level of compaction. The estimated density and the training 
data are shown in Figure 3. It can be seen that the predicted 
density correlates very well with the densities used in the 
training set. The IACA was used during the compaction of an 
overlay on top of the test strip. Figure 4 shows the final 
compacted density of the entire test strip as predicted by the 
IACA. Comparison with the densities measured from the 
cores extracted from the completed pavement show a very 
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good correlation between the measured and predicted 
densities (Figure 5). 

5. CONCLUSIONS 

In this paper, the design of a neural network based Intelligent 
Asphalt Compaction Analyzer (IACA) was presented. A 
procedure to calibrate the IACA using field compaction data 
was presented and the performance of the IACA was 
validated during construction in controlled field settings. The 
experimental results show that the IACA can be trained to 
classify the observed vibrations as those corresponding to 
density levels in the training set. Thus, variations from site to 
site can be easily accommodated by the generation of 
appropriate training sets for the IACA. The estimated density 
correlates well with the density measured from compacted 
cores and the measurement error is comparable to the errors 
observed using tools that measure the density at discrete 
points. Furthermore, the IACA output is continuously 
available to the operator in real time and can serve as a useful 
guide during the compaction process.  

Planned future work includes the testing of IACA in real life 
conditions and in extending the process for determining the 
modulus of elasticity during compaction of soils. 
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Fig. 1 Experimental setup: (a) Instrumentation of the compactor; (b) Functional schematic of the analyzer 

 
Fig. 2. Spectrogram showing the effect of changes in density between the first pass and the second pass 

 
Fig.3 Comparison of IACA estimated density and the density corresponding to the training set 
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   Fig.4. As-built density of the test pavement estimated by the IACA 

IACA vs Core Density
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Fig. 5 Correlation between estimated density  (IACA) and density of the extracted core 
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