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Abstract: In this paper,we show that the state space spanned by the intensive variables such
as temperature and pressure is isomorphic to that spanned by extensive variables such as the
mass and energy inventories for a single component process system. Then we propose a state
space model for power plants, which uses the mass and energy inventories as state variables,
and has an affine structure in the control variables. In addition, a passivity based inventory
controllers are developed. Numerical simulations suggest the performance and efficiency of the
inventory controllers in power plant systems.
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1. INTRODUCTION

Power plant models have been developed for steady state
analysis, dynamic prediction and training simulator design
during the last decades, Chien et al. [1958], Kwan & An-
derson [1970], Tysso [1981], Astrom & Bell [2000], Flynn
& Malley [1999]. Most of the modeling approaches use
the intensive variables such as temperature and pressure
as their point of departure for writing energy balances.
The complex thermodynamic relationships are inevitably
introduced into the differential equations. The nonlinear
differential equations involve many nonlinear terms, have
high order and are not easy to use for controller design.
Some of the simulation models are so detailed that they
can not be used in real time, Lu [1999].

Passivity theory provides an effective method to con-
trol a wide range of process systems. The main ad-
vantage of passivity is that it allows to develop con-
trollers without detailed process modeling, Jillson &
Ydstie [2007], Farschman, Viswanath & Ydstie [1998],
Ruszkowski, Garcia-Osoria & Ydstie [2005]. In this paper,
we show that the passivity can also be used to guide in
process modeling. We choose the inventories for model-
ing and control. It is shown that a complex power plant
system can be modeled as networks of unit operations,
whose dynamics are described by balances of inventories,
interconnected by material and energy flows. The inven-
tory equations maintain the affine structures of the mass
and energy balance equations, and the synthetic passive
input-output pair can be deployed. They often produce
a set of differential functions with a simple and rather
fixed structure. In addition, according to the inventory
control theory, an asymptotic stability of the closed-loop
system is guaranteed when we use the strictly input passive
feedbacks .

? This research is supported by Emerson Process Management,
Power and Water Solutions, Pittsburgh, PA.

2. SINGLE COMPONENT PROCESS SYSTEMS

We consider the modeling and control of a nonlinear
system

dx

dt
= f(x) + g(x, d, m) (1)

where x is called the microscope state, d the disturbances,
m the control variables. Following Farschman, Viswanath
& Ydstie [1998], we define the inventories Zi(x), i =
1, · · · , n to be any C1 function, so that Zi(x) ≥ 0 for any
x. From continuity, we can write

dZi

dt
=

∂Zi

∂x

dx

dt
= pi(x) + φi(x, d, m) (2)

where pi(x) = ∂Zi

∂x f(x) and φi(m,x, d) = ∂Zi

∂x g(x, d, m).
An inventory is said to be invariant if the drift p(x) = 0.
If p(x) ≥ 0, the inventory satisfies the Clausius-Planck
inequality, and if p(x) ≤ 0, it satisfies the dissipative
property.

The state Z of a single component thermodynamic system
is defined by the vector of extensive variables, i.e. the
internal energy, volume and mass.

Z = [U, V,M ] (3)

The inventories U, V,M are invariant so that pi(x) = 0
in (2) holds for i = 1, 2, 3 . A fundamental result in
thermodynamics states that there exist an inventory S(Z),
which satisfies the Clausius-Planck property. It follows
that ∂S

∂x f(x) ≥ 0 holds for all x, so that we have
pi(x) ≥ 0 (4)

in (2). Inequality (4) is called the second law of thermo-
dynamics. By using the fact that the state is determined
by the vector Z defined in (3), we can define a vector
of dual variables called potentials, so that w = ∂S

∂Z . The
potentials w are functions of the temperature, pressure
and chemical potential, i.e. w = [ 1

T , P
T , µ

T ]. Sometimes the
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Fig. 1. Block diagram of passivity based process model.

potentials are also called observables, since they can be
measured directly, whereas the extensive variables often
has to be inferred indirectly. However, there exists a one-
to-one map between the extensive and intensive variables.
Following Sandler [1999], the Gibbs phase rule states

nI = 2 + nc − np − nr (5)

where np is the number of phases, nc the number of
components, nr the number of reactions at equilibrium and
nI the number of intensive variables that must be fixed to
identify the state. The number of extensive variable that
must be fixed is equal to

nE = 2 + nc − nI = np + nr (6)

Thus, for a single component system with a single phase
(nr = 0, np = 1), we have nE = 1 and nI = 2. Thus we
need to specify at least one extensive variable, e.g. V or M ,
and two intensive variables, e.g. T and P , to specify the
system state Z uniquely. For a two phase system, we have
nE = 2 and nI = 1. Then we need to specify two extensive
variables, e.g. V and M , and one intensive variable, e.g.
T or P to specify the state uniquely. Therefore, we find
that the mappings (U, V,M) 7→ (T, V, P ) for a single phase
system and (U, V,M) 7→ (T, V, M) for a two phase system
are invertible. The mapping (U, V,M) 7→ (T, V, P ) is not
invertible for a two phase system, since we must fix two
extensive variables to specify the state.

A generic macroscopic model of a single component pro-
cess system with the microscopic model defined by (1) can
be written in terms of its invariant as follows:

{
dZ

dt
= φ(Z, d, m)

y = h(Z)

The net transport φ(Z, d, m) can be decomposed into n
flows so that φ =

∑
fi, where fi denote the flows of mass,

energy and volume with i = 1, · · · , n. We note that the
outputs y are intensive variables, e.g. the temperature,
pressure and water level. The function h(Z) defines the
measurement strategy. The measurement have to be cho-
sen so that the state Z is observable from y. In a two phase
system, there needs at least two extensive variables that we
must measure or infer. The developments in the previous
section show that h(Z) is invertible, provided suitable
measurements are chosen, so that state estimation is not
needed. Figure 1 shows a block diagram of the general
process model.

3. POWER PLANT MODEL

Figure 2 presents a simple flowsheet of the most important
units in a coal fired power plant. High pressure feed water
flows through the drum boiler, primary and secondary su-
perheater, where the water receives heat transferred from

the combustion gases and the state changes from water
to the superheated steam. In the inlet of the secondary
superheater, water is sprayed into the steam to control
the temperature before going to the turbine. The throttle
valve controls the steam flow rate to the turbine, which
is directly proportional to the power generated by the
turbine. The feedwater flow ṁfw, coal flow ṁcoal and spray
water flow ṁsw control the process, while the mass flow
rate ṁssh set by the power demand, the heat flow rates in
the boiler, primary and secondary superheater Q1, Q2, Q3

disturb the process.

We denote by ṁ the mass flow rate, and Q the heat
released by combustion in the furnace. Let the subscripts
fw, b, psh, ssh, sw refer to the feedwater, drum boiler,
primary superheater, secondary superheater and spray
water, respectively.

Drum Boiler
In the boiler, water exists in two phases: saturated liquid
and steam. It is assumed that both phases are in thermo-
dynamic equilibrium. The conservation of mass and energy
yield

dMb

dt
= ṁfw − ṁb (7)

dUb

dt
= ṁfwhfw − ṁbhb + Qb (8)

Primary Superheater
The mass and energy equations for the primary super-
heaters are written

dMpsh

dt
= ṁb − ṁpsh (9)

dUpsh

dt
= ṁbhb − ṁpshhpsh + Qpsh (10)

Secondary Superheater
The conservation of mass and energy for the secondary
superheater are written

dMssh

dt
= ṁpsh + ṁsw − ṁssh (11)

dUssh

dt
= ṁpshhsh + ṁswhsw − ṁsshhssh + Qssh (12)

Furnace
The heat released in the furnace is calculated as Q =
ṁcoalhcoal, where hcoal is the heat value of the coal power
burned. The airflow is adjusted so that ṁair = kairṁcoal,
where kair is adjusted to get complete combustion. The
heat values are often obtained from experiments. In the
simple model, we assume that the heat absorbed by the
drum boiler, the primary and secondary superheater can
be represented by Qb = k1Q,Qpsh = k2Q,Qssh = k3Q,
where k1, k2, k3 ∈ R+ and k1 + k2 + k3 = 1.
The objective of the control system is to adjust control
variables to keep the energy in the boiler, the mass in the
boiler and the energy in the secondary superheater at given
references.

Equations (7-12) can be combined into a state space model
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Fig. 2. Schematic representation of the power plant model.



dMb/dt
dUb/dt

dMpsh/dt
dUpsh/dt
dMssh/dt
dUssh/dt




=




1 0 0 −1 0 0
hfw k1 0 −hb 0 0
0 0 0 1 −1 0
0 k2 0 hb −hpsh 0
0 0 1 0 1 −1
0 k3 hsw 0 hpsh −hssh







ṁfw

Q
ṁsw

ṁb

ṁpsh

ṁssh




(13)

We therefore decompose the state space into the controlled
and uncontrolled components. In this case, the controlled
variables are Z1 = [Mb, Ub, Ussh]T and the uncontrolled
ones Z2 = [Mpsh, Upsh,Mssh]T . The control variable are
m = [ṁfw, ṁcoal, ṁsw]T and d = [ṁb, ṁpsh, ṁssh]T . Then
(13) can be rewritten as follows




dZ1

dt
= B1m + F1d

dZ2

dt
= B2m + F2d

(14)

where

B1 =

[ 1 0 0
hfw k1 0
0 k3 hsw

]
F1 =

[ −1 0 0
−hb 0 0
0 hpsh −hssh

]

B2 =

[ 0 0 0
0 k2 0
0 0 1

]
F2 =

[ 1 −1 0
hb −hpsh 0
0 1 −1

]

The mass flow rate ṁb and ṁpsh is modeled using the
state variables. Now we simply set ṁpsh = ṁssh − ṁsw −
Kssh(Mssh − M∗

ssh) and ṁb = ṁpsh − Kpsh(Mpsh −
M∗

psh),where M∗
psh,M∗

ssh is calculated using the steady
states, and Kpsh,Kssh are chosen so that the time con-
stants are both less than 1 second.

Steam from the secondary superheater flows through the
throttle valve. By omitting the energy loss and compress-
ibility, we have ṁvv = ṁssh and hvv = hssh. In the
turbine, the enthalpy drop from the valve outlet hvv to
the condenser hcd. This energy drop causes work to be
done on the turbine

MW = Ktbṁvv(hvv − hcd) (15)

where Ktb ∈ [0.6, 0.9] is the turbine efficiency, and MW
denotes the electrical power generated, which is the output
of this state space model.

Recalling that two extensive variables, e.g. mass and en-
ergy inventories, can specify the state of a single compo-
nent system. The enthalpy hb, hpsh, hat, hssh in the power
plant are functions of the state variables Z1, Z2, i.e. hb =
f(Mb, Ub), hpsh = Upsh/Mpsh and hssh = Ussh/Mssh.
Therefore, we have the following state space model





dZ1

dt
= B1(Z1, Z2)m + F1(Z1, Z2)d

dZ2

dt
= B2(Z1, Z2)m + F2(Z1, Z2)d

y = h(Z1, Z2)m4

(16)

where h(Z1, Z2) = Ktb( Ussh

Mssh
− hcd) and m4 = ṁvv.

The power plant model is an affine structure in the
control variables m. This feature can be used to derive
the inventory controllers.

4. PASSIVITY BASED INVENTORY CONTROL

It is proved in Farschman, Viswanath & Ydstie [1998]
that the synthetic input and output pair (u, ev) of the
controlled part of system (16) is passive

{
u = φ(Z, d, m) +

dZ∗1
dt

eZ = Z − Z∗1
and that a control can be calculated if φ(Z, d, m) is
invertible with respect to m. Note that m does not have
to be unique. Z∗1 is the desired setpoint for Z1. Therefore,
the inventory control law can be written in the form:

u = −C(eZ) = φ(Z, d, m) +
dZ∗1
dt

(17)

This control strategy ensures that the closed-loop system
asymptotically tracks the desired set point. The operator
C, which maps errors into synthetic controls, should be
strictly input passive, e.g. the PID controller, adaptive
feedforward controllers, optimal controllers and many gain
scheduling controllers Ruszkowski, Garcia-Osoria & Ydstie
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[2005].

Combining (16) and (17), we get

dZ1

dt
= B1(Z1, Z2)m + F1(Z1, Z2)d−C(Z1 − Z∗1 ) +

dZ∗1
dt

where Z∗1 ∈ R3 and dZ∗1/dt = 0. Notice that B1(Z1, Z2)
is a lower diagonal matrix with nonzero diagonal elements
i.e. k3, hsw 6= 0. The inequality |B1(Z1, Z2)| 6= 0 holds
for any Z1 and Z2. It immediately follows that B1(Z1, Z2)
is invertible. Therefore, we design the following inventory
controllers

m = B−1
1 (Z1, Z2) [−C(Z1 − Z∗1 )− F1(Z1, Z2)d] (18)

This control structure is the classical combination of
feedback and feed-forward control, i.e.

m = −B−1
1 (Z1, Z2)C(Z1 − Z∗1 )︸ ︷︷ ︸

Feedback

+B−1
1 (Z1, Z2)F1(Z1, Z2)d︸ ︷︷ ︸

Feedforward

Since the feedforward term cancels the nonlinearities,
this method is therefore also referred to as input-output
linearization.

5. STEP RESPONSE

In this example, the power plant model is subjected to a
setpont change in the energy inventory of the secondary su-
perheater equivalent to 105 kJ . The inventory controllers
are used as stated in (18). The thermodynamic properties
are calculated using the Xsteam package, Holmgren [2006].
This package is also used to bridge the inventories with
the measured variables, e.g. the steam temperature and
pressure.

Figure 3 shows the profiles of the inventories of the boiler,
primary and secondary superheater. It is easy to see from
Figure 3 (1)-(3) that all the mass and energy inventories
are controlled around their setpoints. In particular, Ussh

tracks the new setpoint value after a small overshoot. This
overshoot is caused by the PI controllers. The uncon-
trolled inventory Upsh is stable after the convergence of
the controlled inventories. The control variables and the
disturbance are plotted in Figure 4. Here the measured
disturbance is kept constant.

Figure 5 demonstrates the step response of the net power
output and some key state variables in traditional power
plant control schemes. With an increased energy inventory
and constant mass inventory, the steam temperature and
pressure will increase in the secondary superheater. This
leads to the increase of the outlet steam enthalpy hssh.
Recalling that the mass flow rate ṁssh is constant, the
net power output will increase, which requires an increased
coal flow rate (See Figure 4(3)). For the drum boiler, the
water level presents a typical swell and shrink phenomena.
The water level increases initially due to the increased
evaporation in the riser caused by the increasing heat flow
rate. Then the evaporation in the drum dominates the
dynamics of the water level. With the decreasing drum
pressure, more water will be evaporated in the drum. This
corresponds to the decrease of the water level and total
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Fig. 3. Step responses of the mass and energy inventories.
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Fig. 4. The control variables and process disturbance.

water volume Vwt. Finally, less heat to the riser and in-
creasing drum pressure cause the increasing condensation
in both the riser and drum. The water volume presents the
key contribution to the water level. Accordingly, the drum
water level increases and decrease before it is stabilized
at the initial value. Here we can see that the inventory
controllers perform quite well in this example.

6. AREA REGULATION TESTS

In the next example, we simulate the dynamic responses
to the Area Regulation (AR) test. The AR test signals
consist of several ramps, which fluctuate around the base
loading with a maximum deviation of ±10%. The plot of
the test signals are demonstrated in Figure 7 (1).

Figure 6 shows the dynamic responses of the mass and
energy inventories of the boiler, primary and secondary
superheaters. It is not hard to see from Figure 6 (1)-
(3) that all the controlled inventories track their setpoints
accurately with exception of several tiny fluctuations. The
maximum deviation of these inventories is less than ±0.5%
from the setpoints throughout the simulation time. Ac-
cording to Figure 6 (4), the uncontrolled inventory Upsh
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Fig. 5. Step responses of the output power, pressure,
temperature and water level.
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Fig. 6. Dynamic responses of the mass and energy inven-
tories in AR test.
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Fig. 7. The control variables and disturbance in AR test.
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Fig. 8. Dynamic responses of the output power, pressure,
temperature and water level in AR test.

also converge to stable value after an initial transient.
Fig. 7 visualizes the profiles of the control variables and
disturbance. Here the same control law is used as in the last
example, and the AR test signal is treated as the process
disturbances.

Figure 8 presents the dynamic responses of the power
outputs, pressure, temperature, water level and volume.
It is shown in Figure 8 (1) that the simulated power out-
puts are indistinguishable with the reference values. The
maximum deviation is within ±1.5 MW . The temperature
and pressure of the steams from the secondary superheater
returns to their initial values shortly after the convergence
of the inventories. Similar result is also valid for the drum
boiler. Using the theorem developed in Section 2, the drum
pressure and water volume can be indirectly controlled,
provided that we can control the total mass and energy
inventories in the boiler. The pressure and water volume
will further determine the drum water level. In this case,
the maximum deviation of water level is less than ±0.01
m from the normal value. Please refer to Astrom & Bell
[2000] for the detail calculations of the pressure, water level
and volume.

Note that both the inventories and the key states in
traditional power plant models are controlled quite well.
The power output tracks the reference values perfectly
throughout the simulation time. The inventory controllers
have a good perform in the AR test.

7. CONCLUSION

In this paper, we propose a state space model for a
simplified power plant system. This model uses the mass
and energy inventories as the state variables, and has an
affine structure in the control variables. A passivity based
inventory controllers are developed, which ensures the
asymptotic stability of the closed-loop systems. Numerical
simulations shows the performance and efficiency of the
proposed control method. In addition, the affine structure
in this model is derived directly from the mass, energy
and momentum balance laws, the proposed modeling and
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passivity based control scheme are promising in a wide
range of process systems.
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