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Abstract The problem of state reconstruction is discussed for linear neutral systems with a
finite number of commensurable point delays. Using as models systems with coefficients in a
ring and following a geometric point of view, feasible and constructing procedures are proposed
for the construction of observers of increasing complexity. Conditions are given to characterize
neutral systems with delays for which linear observers exist not depending on the derivatives of
the state. Some examples illustrating the results are worked out in details.
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1. INTRODUCTION

Neutral systems with time delays are used to describe dy-
namic processes where the evolution of the state depends
on the past values of both the state and its derivatives.
Processes of this type are those including steam or water
pipes, heat exchanges, fluctuation of voltage and current
in transmission lines and in chemical engineering. The
literature on this kind of systems is very reach and mainly
devoted to the important issue of stability (see for instance
Kolmanovskii and Myshkis [1999], Fridman [2001] and the
references therein).
Here we consider the state reconstruction problem for
neutral systems with delays, since several fundamental
design procedure are based on the knowledge of the state of
the system but in most practical cases, either the states of
the delay system is not physically available for direct mea-
surement or the cost of the measurement is prohibitively
hight.
The problem of state reconstruction for delay systems,
under various assumption, has been investigated by several
authors that considered observers of neutral type (see, for
instance, Wang et al. [2002], Fan et al. [2003] and Darouach
[2005]).
In this work we present a geometric approach to the design
of observers for neutral type systems with delays, based on
the use of systems over rings, that provides a deep insight
on the structural aspects and easy computable solutions
(see Perdon et al. [2006]). In particular, conditions are
given for the existence of observers whose state evolution
does not depend on the past state derivatives for a class of
neutral systems with delays. Several examples are worked
out in detail.

2. NEUTRAL TIME DELAY SYSTEMS AND
NEUTRAL SYSTEMS OVER RINGS

A linear, time invariant neutral system Σd with a finite
number of commensurable point delays, is described by
the equations

Σd =















































ẋ(t) =

a
∑

i=0

Aix(t− ih) +

b
∑

i=0

Biu(t− ih)+

−

e
∑

i=1

Eiẋ(t− ih)

y(t) =

c
∑

i=0

Cix(t− ih)

x(t) = ϕ(t), t ∈ [−α h, 0] α > 0

(1)

where, denoting by R the field of real numbers, x(t) ∈ Rn,
u(t) ∈ R

m, y(t) ∈ R
p, h ∈ R

+ is the delay, Ei, Ai, Bi,
and Ci are matrices of suitable dimensions with entries
in R and α = max(e, a, b, c), ϕ(t) is a consistent initial
condition.
By introducing the delay operator δ defined, for any time
function f(t), by δf(t) := f(t− h), Σd can be written as






















ẋ(t) =

a
∑

i=0

Aiδ
ix(t) +

b
∑

i=0

Biδ
iu(t) −

e
∑

i=1

Eiδ
i ẋ(t)

y(t) =

c
∑

i=0

Ciδ
ix(t).

By formally replacing the delay operator δ with the
algebraic indeterminate ∆, define

Ẽ =

e
∑

i=1

Ei∆
i, A =

a
∑

i=0

Ai∆
i,

B =

b
∑

i=0

Bi∆
i, C =

c
∑

i=0

Ci∆
i,

(2)

Then, we can associate to (1) an abstract discrete time
system defined by the equations

Σ =

{

x(t+ 1) = Ax(t) +Bu(t) − Ẽx(t+ 1)
y(t) = Cx(t).

(3)

Definition 1. A neutral linear system over the ring in
R = R[∆] is a system Σ defined by equation (3) where, by
abuse of notation, we denote by x(·), u(·) and y(·) elements
of the finitely generated free R-modules X = Rn, U = Rm
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and Y = Rp respectively and Ẽ, A, B and C are R-linear
maps.

Remark that, writing E = In + Ẽ, the system (3 ) is a
particular case of system in descriptor form

{

Ex(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t).

(4)

over the ring R as described in Perdon and Anderlucci
[2006].

Many control problems concerning systems with commen-
surable delays as (1) can be studied by means of an
abstract object of the form (3). In fact, even if they are
very different objects from a dynamical point of view, they
share the structural properties that depend only on the
defining matrices (E, A, B, C). Therefore, problems con-
cerning the input/output behavior of Σd can be naturally
formulated in terms of the input/output behavior of Σ and
solved in the framework of systems over rings. Substituting
back the delay operator δ to the algebraic indeterminate
∆, the solutions can be interpreted in the original delay-
differential framework (see, for instance Conte and Perdon
[1995, 1998, 2005]).

Proposition 2. Assume that E = In + Ẽ, where Ẽ
is a nonzero polynomial matrix multiple of ∆, then
kerE = {0}.

Proof. Suppose kerE 6= {0} and write Ẽ = ∆Ē,
with Ē =

∑e

i=1
Ei∆

i−1. Then there exists an el-
ement 0 6= v ∈ X such that Ev = 0. This means
(In + ∆Ē)v = v + ∆Ēv = 0 and v = −∆Ēv. Thus, v is
divisible by ∆, i.e. there exists v̄ 6= 0 such that v = ∆v̄.
Then 0 = Ev = E∆v̄ = ∆Ev̄ and Ev̄ = 0. Computing
(In + ∆Ē)v̄ = 0, we have again v̄ = −∆Ẽv̄ and v̄ is divis-
ible by ∆, so that v is divisible by ∆2. Going on with this
reasoning, we have that every element of kerE is divisible
by ∆k for all k, which is an absurd.

Remark 3. Equivalence of generalized pencils is defined by
U(sE −A)V for unimodular U and V . Therefore different
transformations are used in the domain and codomain
of the maps E and A. Therefore domain and codomain
modules cannot be considered as the same module.
Following Kuijper and Schumacher [1993], X will be de-
noted Xd when considered as domain of the maps E,A,C
(descriptor space), and Xc when considered as codomain
of the maps E,A,B (equation space).

2.1 Formal stability

When dealing with systems over rings, stability must be
defined in a formal way, since a ring cannot, in general,
be endowed with a natural metric structure. We are using
systems over rings as models for delay systems, therefore
we will adopt the following formal definition of stability,
Hautus and Sontag [1980].

Definition 4. The Hurwitz polynomials are polynomials in
s with coefficients in R that belong to the set:
H =

{

p(s,∆) monic, p(s̄, e−s̄h) 6= 0 ∀ s̄ ∈ C, Re(s̄) ≥ 0
}

.

Definition 5. A system (3) over the ring R is (formally)

stable if det
(

s(In + Ẽ) −A
)

∈ H, i.e. is an Hurwitz

polynomial.

2.2 Impulse eliminability

Proposition 6. The neutral system defined by equations
(3) can be transformed into a regular system by a suitable
change of basis if and only if

Im E = Rn (5)

Proof. Over an Hermite ring a pair (E,A) is algebraically
solvable if and only if there exist unimodular matrices P
and Q such that the pencil sE−A can be put in standard
canonical form

P (sE −A)Q = s

[

I 0
0 J

]

−

[

As 0
0 I

]

.

A necessary condition for algebraic solvability is that any
one of the following conditions holds (see Cobb [2006]).
i) Im E +A ker E = Rn

ii) Im E ∩A ker E 6= {0}
iii) ker E ∩ kerA 6= {0}
For a neutral system we have E = In + ∆Ē and, in virtue
of Proposition 2 we have that ii) and iii) never hold, while
i) can be replaced by Im E = Rn.
Then, i) holds if and only if E is unimodular. In this case

E has a polynomial inverse E−1. Denoting by Â = E−1A
we have that E−1(sE − A) = sIn − Â and i) is also a
sufficient condition for algebraic solvability.

Corollary 7. Let Σ be the neutral system defined by
equations (3). Assume that the matrix E = In + ∆Ē is
unimodular, then Σ may be rewritten as a regular delay
system.

Proof. Denoting by Â = E−1A and B̂ = E−1B we have
that Σ can be defined by equations

{

x(t+ 1) = Âx(t) + B̂u(t)
y(t) = Cx(t). (6)

Most of existing works on observers for descriptor delay
systems with unknown inputs, such as Koenig et al.
[2004], assume that the systems is impulse-free or impulse-
eliminable, namely that (5) holds. On the contrary, we will
consider the case really interesting when det E is a nonzero
polynomial. In this case, even if ker E = {0}, Im E is
strictly contained in Xc = Rn and i) is not verified.
In Picard [1996] the observability and state reconstruction
properties of neutral systems of the form (3) when det E is
a nonzero polynomial were investigated by considering the
associated regular system of the form (6) with Â = E−1A

and B̂ = E−1B matrices with elements in the ring of
realizable fractions

Ru(∆) = {r(∆) = p(∆)/q(∆)|p, q ∈ R and q(0) 6= 0}

Here, we consider a neutral system as a particular descrip-
tor systems over the ring R = R[∆] and we investigate the
observer problem from a geometric point of view.

Definition 8. Let Σ be the neutral system defined by
equation (3) over the ring R = R[∆]. The r-dimensional
regular system

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1262



ΣO :

{

z(t+ 1) = Ãz(t) + B̃u(t) + G̃y(t)
ŵ(t) = Lz(t) +Ky(t)

(7)

is an observer for Σ if the output ŵ(t) asymptotically
converges to Hx(t), where H ∈ Rs×n is a given matrix.
ΣO is called a full-order (reduced-order) observer if r = n
(r < n).

3. CONSTRUCTION OF THE OBSERVER

We will design observers of increasing complexity depend-
ing on the system’s properties.

3.1 Full order observer

Proposition 9. Let Σ be a system over the ring R = R[∆]
defined by the equations (3). Assume that there exist a
polynomial matrix G such that the equation

A+GC = ÃE (8)

has a polynomial stable solution Ã. Then the output of
the n-dimensional system

ΣO′ :

{

z(t+ 1) = Ãz(t) +Bu(t) −Gy(t)
w(t) = z(t)

(9)

asymptotically converges to Ex(t), i.e. ΣO′ is a (full order)
observer for Σ not of neutral type.

Proof. Equation A+GC = ÃE, i.e.

[Ã −G]

[

E
C

]

= A (10)

has a (possibly rational) solution [Ã −G] if the following
condition is satisfied:

ker

[

E
C

]

⊆ ker A (11)

We have ker [Et Ct]
t

= ker E
⋂

ker C = {0} ⊆ ker A,
then equation (10) is solvable. Assume that there exists a

polynomial G and a polynomial stable solution Ã so that
the following diagram commute:

Xd

E

²²

A+GC // Xc

Xc

Ã

>>
|

|

|

|

The tracking error e(t) = w(t) − Ex(t) = z(t) − Ex(t)
satisfies the following equation: z(t+ 1) − Ex(t+ 1) =

= Ãz(t) +Bu(t) −Gy(t) −Ax(t) −Bu(t)

= Ãz(t) − (A+GC)x(t) = Ãz(t) − ÃEx(t) =

= Ã (z(t) − Ex(t))

Being Ã stable, the tracking error asymptotically goes to
zero and w(t) asymptotically approaches Ex(t).

Remark 10. The conditions on G and Ã reduce to the
well known necessary condition of detectability for a linear
systems over a field, i.e. when dealing with systems without
delays.

A polynomial solution to equation (10) exists if and only
if the module generated by the columns of A> is contained
in the module generated by the columns of [E>, C>]
or, assuming G polynomial, if the module generated by

the columns of (A + GC)> is contained in the module
generated by the columns of E>. When this does not
happen, denote by ϕ is the G.C.D. of the entries of the
matrix G and Ã, so that Ā = ϕÃ and ϕG are polynomial
solution of equation

ϕA = ĀE − ϕGC

Remark that, since Ã = (A + GC)E−1, ϕ is necessarily
a divisor of det E, therefore a polynomial with non zero
constant term.

Proposition 11. With the above hypotheses and notations,
assume that sϕIn − Ā is stable. Then, the output of the
neutral system

ΣO” :

{

ϕInz(t+ 1) = Āz(t) + ϕBu(t) − ϕGy(t)
w(t) = z(t)

(12)

asymptotically converges to Ex(t), i.e. ΣO” is a (full order)
neutral observer for Σ.

Proof. The tracking error e(t) = w(t) − Ex(t) satisfies
the dynamic equations ϕIne(t + 1) = Āz(t) − ϕGCx(t) −
ϕAx(t) = Āz(t)−ĀEx(t) = Āe(t). The result follows from
stability of sϕIn − Ā

A fundamental tool in the geometric construction of re-
duced order observers is the notion of conditioned in-
variant submodule and the classical definitions have been
extended in Perdon and Anderlucci [2006] to a class of
singular systems over a ring that contains neutral systems
of the form (3). Let us now briefly recall a few definitions
and results that we’ll use in the following.

Definition 12. (Perdon and Anderlucci [2006]) Given the
system defined by equations (3), a submodule S of Xc is
called
i) (E, A, C)-invariant or conditioned invariant if

A(E−1S ∩ kerC) ⊆ S (13)

ii) injection invariant if there exists a linear map G, called
a friend, such that

(A+GC)E−1S ⊆ S (14)

When a G satisfying (14) has rational elements but GC is
polynomial, then G is called a generalized friend.

Proposition 13. (Perdon and Anderlucci [2006]) Any
closed 1 conditioned invariant submodule S has a friend,
possibly generalized, such that (14) is satisfied.

Proposition 14. (Perdon and Anderlucci [2007]) Given a
system defined by equations (3), if S ⊆ Xc is a conditioned
invariant submodule, then its closure S̄ is conditioned
invariant too.

Since the output measures linear combinations of part of
the states, it seems natural that only a subset of the states
need to be estimated through the observer. To eliminate
this redundancy, a reduced-order observer can be build.

Proposition 15. Let Σ be a system defined by equations
(3), let W be a closed submodule of Xd such that

Xd = W ⊕ ker C

and denote S = EW. Then, S is a conditioned invariant
submodule of Xc and E−1(S) = W . If S is not closed, we
can consider its closure S̄ and we still have E−1(S̄) = W.

1 The closure of a submodule S is the submodule S̄ = {x ∈ Xc for
which there exists a non zero a ∈ R, such that ax ∈ S}. S is closed
if and only if S = S̄. S̄ is the smallest closed submodule containing
S.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1263



Proof. We have E−1S = W + ker E = W , then
A(E−1S

⋂

ker C) = {0} ⊆ S. Furthermore, E−1S̄ = {x ∈
Xd such that Ex ∈ S̄, namely aEx ∈ S for 0 6= a ∈ R}.
Then, Eax ∈ S and x belongs to the closure of E−1S = W .

Assuming that C has rank p we have that kerC has di-
mension n−p and the direct summand W has dimension p.
As proved in Proposition 2, E has full row rank, therefore
the submodule S = EW has again dimension p.

In the following we will assume that S is a closed condi-
tioned invariant submodule, then, by Proposition 14, S is
injection invariant, i.e. there exists a possibly generalized
friend G such that (A+GC)E−1(S) ⊆ S.
We can write S = ker T for a suitable matrix T that can
be chosen of full row rank (e.g. the canonical projection
Xc → Xc/S) and we have E−1S = ker TE (see Perdon and
Anderlucci [2006]). Then, the following diagram commutes

Xd

TE

²²

A+GC // Xc

T

²²
Xd/E

−1S Ã //___ Xc/S

(15)

Proposition 16. With the above notations, assume that
there exist polynomial matrices G and Ã such that the
diagram (15) commutes, i.e.

T (A+GC) = ÃTE (16)

and that Ã is stable. Then, the system

ΣO′ :

{

z(t+ 1) = Ãz(t) + TBu(t) − TGy(t)
w(t) = z(t)

(17)

is a not neutral reduced order observer for Σ , i.e. its output
asymptotically converges to TEx(t).

Proof. Assume that the Lyapunov equation (16) has a

stable polynomial solution Ã and denote by e(t) = w(t) −
TEx(t) the tracking error. Then, we have
e(t+ 1) = z(t+ 1) − TEx(t+ 1) =

= Ãz(t) + TBu(t) − TGy(t) − T (Ax(t) −Bu(t)) =

= Ãz(t) − T (A+GC)x(t) = Ã (z(t) − TEx(t)).

The stability of Ã implies that the tracking error goes
asymptotically to zero and that w(t) converges to TEx(t).

Equation (16) has a polynomial solution Ã if and only if
the module generated by the columns of (A + GC)>T>

is contained in the module generated by the columns of
E>T>.

When the condition a polynomial solution does not exists,
as we did above, we can still construct a reduced order
observer of neutral type for Σ as follows.

Proposition 17. Assume that the matrix Ã that solves
equation (16 has rational elements, denote by ϕ the G.C.D.

of entries in Ã and denote Ā = ϕÃ. Assume that sϕIr− Ā
is stable. Then, the following system

ΣO” :

{

ϕIrz(t+ 1) = Āz(t) + ϕTBu(t) − ϕTGy(t)
w(t) = z(t)

(18)
is a reduced order observer for Σ, i.e. w(t) asymptotically
converges to TEx(t).

Proof. Ā is a polynomial matrix satisfying the relation
Then, the following relation holds

ϕT (A+GC) = ĀTE (19)

Then, the tracking error e(t) = z(t)− TEx(t) satisfies the
equation ϕIre(t+ 1) = ϕz(t+ 1)−ϕTEx(t+ 1) = Āz(t)−
ϕTGCx(t) − ϕTAx(t) = Ā(z(t) − TEx(t)) = Āe(t)
The stability of sϕIr − Ā assures that the tracking error
asymptotically goes to zero.

Remark 18. As showed in diagram (15), z(t) belongs to a
quotient module of dimension n − p, so that n − p ≤ r
depending on the number of rows of matrix T ∈ Rr×n.

3.2 State reconstruction

Proposition 19. Let Σ be a system over the ring R de-
scribed by the equations (3) and assume we want to re-
construct Hx(t), for a given polynomial matrix H. Assume
that an observer for Σ exists of the form (16, in particular

equation (16) has a polynomial stable solution Ã. Then,

there exist a couple of matrices L̃ and K̃ such that the
output of the system

ΣO :

{

z(t+ 1) = Ãz(t) +Bu(t) −Gy(t)

ŵ(t) = L̃z(t) + K̃y(t)
(20)

asymptotically converges to Hx(t).

Proof. With the notations of Proposition 15, since
ker TE

⋂

ker C = W
⋂

ker C = {0}, we have that

ker

[

TE
C

]

⊆ ker H for every H. Then, equation

LTE +KC = H (21)

is solvable for every H. If [L K] has polynomial entries,

L̃ = L and K̃ = K. Let us introduce the new variable
ζ(t) := z(t)−TEx(t). By Proposition 17 or by Proposition
18, z(t) asymptotically converges to TEx(t), then ζ(t)
asymptotically converges to zero. Then, we have equation:
ŵ(t)−Hx(t) = Lz(t) +Ky(t)−Hx(t) = Lζ(t) + (LTE +
KC)x(t) − Hx(t) = Lζ(t). Then, ŵ(t) asymptotically
converges to Hx(t). We can chose H = In, so that the
whole state can be reconstructed.

Proposition 20. With the above notations and hypotheses,
assume that the solution [L K] of equation (21), with
H = In, has rational entries, and that ψ is the G.C.D.
of its elements. Then,

{

z(t+ 1) = Ãz(t) +Bu(t) −Gy(t)
ŵ(t) = ψLz(t) + ψKy(t)

(22)

asymptotically converges to ψInx(t).

Proof. We have that ψLTE + ψKC = ψIn, then

ŵ(t) − ψx(t) = ψLz(t) + ψKy(t) − ψx(t) =

= ψLζ(t) + ψ(LTE +KC)x(t) − ψx(t) =

= ψLζ(t).

Then, since ζ(t) asymptotically converges to zero, ŵ(t)
asymptotically converges to ψx(t).

We can state propositions analogous to Proposition 19 and
20 where the observer dynamics is neutral, i.e.
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Example 21. Let be given a linear time-invariant descrip-
tor delay-differential system Σd with unknown distur-
bances described by the following equations:










ẋ1(t) = 1.5x1(t) + 2x1(t− h) + 0.5x2(t) + x2(t− h)+
+x2(t− 2h) − ẋ1(t− h) − ẋ2(t− 2h)

ẋ2(t) = −2x1(t− h) − 2x2(t) + 2x2(t− h) − ẋ2(t− h)
y1(t) = x1(t)

where h represents a delay.

By introducing the delay operator δ defined, for any time
function f(t), by δf(t) := f(t − h), and then by formally
replacing it with the algebraic indeterminate ∆, we can
associate to Σd the system Σ = (E, A, C) over the ring
R = R[∆] of real polynomials in one indeterminate:

Σ :

{

Ex(t+ 1) = Ax(t)
y(t) = Cx(t)

where

E = I2 − ∆ ·

(

1 ∆
0 1

)

,

A =

(

3/2 + 2∆ −1/2 + ∆ + ∆2

−2∆ −2 + 2∆

)

,

C = (1 0)

In this case, det(E) = ∆2 − 2∆ + 1 which is not a real
constant, so that E does not have a polynomial inverse.
The Lyapunov equation

[

Ã −G
]

·

[

E
C

]

= A

admits solutions [Ã −G] with elements in R if the module
generated by the columns of A> is contained in the module
generated by the columns of [E>, C>].

In this case, < A> >= 〈

(

∆
1 − ∆

)

,

(

1.5
−2.5 + 3∆ + ∆2

)

〉 is

certainly contained in

< [E> C>] >= 〈

(

1
0

)

,

(

0
1

)

〉 = R2.

Remark that the module generated by the columns of A>

is not contained in the module generated by the columns
of only E>. Following the proposed construction, solving
the equation

A = ÃE − CG

with respect to Ã, G, we obtain the ordinary time-delay
observer over rings ΣO′ :
{

z(t+ 1) =

(

−1.5 −0.5 + 0.5∆
0 −2

)

z(t)−

(

−3− 0.5∆
2∆

)

y(t)

ŵ(t) = z(t)

which asymptotically observes Ex(t).
Going back to the original framework, the system



















ż1(t) = −1.5z1(t) − 0.5z2(t) + 0.5z2(t− h)+
−3y(t) − 0.5y(t− h)

ż2(t) = −2z2(t) + 2y(t− h)
w1(t) = z1(t)
w2(t) = z2(t)

is such that its output asymptotically observes
(

x1(t) − x1(t− h) − x2(t− 2h)
x2(t) − x2(t− h)

)

.

Now, applying the step described in Subsection 3.2, we
can reconstruct not only Ex(t) but every Hx(t) where

H is a polynomial matrix such that the columns of its
transposed generate a submodule of the module generated
by the columns of [E>, C>] that is, in this case, the whole
R2. Then we can reconstruct the whole state. Solving
LE +KC = I2 with respect to (L,K), we find

L =

(

0 0
−1 1 + ∆

)

, K =

(

1
1 − ∆

)

.

Now the ordinary time-delay observer over rings ΣO:






z(t+ 1) =

(

−1.5 −0.5 + 0.5∆
0 −2

)

z(t)−

(

−3− 0.5∆
2∆

)

y(t)

ŵ(t) =

(

0 0
−1 1 + ∆

)

z(t) +

(

1
1−∆

)

y(t)

asymptotically observes x(t).

Going back to the original framework, the system


















ż1(t) = −1.5z1(t) − 0.5z2(t) + 0.5z2(t− h)+
−3y(t) − 0.5y(t− h)

ż2(t) = −2z2(t) + 2y(t− h)
w1(t) = y(t)
w2(t) = −z1(t) + z2(t) + z2(t− h) + y(t) − y(t− h)

is such that its output asymptotically observes

(

x1(t)
x2(t)

)

.

Example 22. This example was introduced in Wang et al.
[2002] and then solved in other way by Darouach [2005].
Consider the linear neutral delay system defined by equa-
tions (3) with

E = I2 − 0.1I2 =

(

1 − 0.1∆ 0
0 1 − 0.1∆

)

A =

(

2.5 + 0.1∆ −0.5 − 0.05∆
0.03∆ −3 + 0.1∆

)

C = (1 0)

In this case the module generated by the columns of A>:

< A> >= 〈

(

−150
23∆ − 570

)

,

(

23∆ + 500
−400

)

〉

has dimension 2 but it is not contained in the module
generated by the columns of [E>, C>]:

< [E>, C>] >= 〈

(

1
0

)

,

(

0
−10 + ∆

)

〉.

Thus an ordinary system cannot be used to observe this
neutral system. We have that ker C is a closed submodule
in Xd = Rn and therefore a direct summand (see Conte
and Perdon [1982]).We have then ker C ⊕W = Xd, where

kerC =

〈(

0
1

)〉

W =

〈(

1
0

)〉

EW = 〈[(1 − 0.1∆) 0]>〉 is trivially a conditioned
invariant because E−1(EW) = W + kerE = W therefore
condition A

(

kerC ∩ E−1(EW)
)

⊆ EW can be written as
A (kerC ∩W) ⊆ EW , i.e. {0} ⊆ EW . By Proposition 13

its closure S = EW =

〈(

1
0

)〉

is also a conditioned

invariant, therefore , by Proposition 14 it is injection
invariant, i.e. there exists a linear map G with elements
in R(∆), such that (A+GC)E−1(S) ⊆ S.
In this case all friends are polynomials of the form G =
(

g1

−0.03∆

)

with arbitrary g1 ∈ R[∆]. S is closed, then it

can be seen as the kernel of the a linear map T . In this case
we can take T = (0 1) ∈ R1×2 and W = E−1S = ker TE.
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In this case, a polynomial solution Ã, with Ã stable, of the
reduced-order equation T (A+GC) = ÃTE does not exist;
the solution has rational elements:

(

0.1∆ − 3

1 − 0.1∆

)

Define ϕ(∆) := 1 − 0.1∆ so that Ā = (0.1∆ − 3) is a
polynomial solution of ϕ(∆)T (A+GC) = ĀTE. Thus the
dynamics of the neutral system that observes TEx will be:

ϕ(∆)z(t+ 1) = Āz(t) + ϕ(∆)TBu(t) − ϕ(∆)TGy(t)

The matrix pair

(ϕ(∆)I, Ā) = ((−0.1∆ + 1) , (0.1∆ − 3))

is stable because det(sϕ(∆)I − Ā) = 3 + s− 0.1∆− 0.1s∆
has root

s = −
3 − 0.1∆

1 − 0.1∆
= −

∆ − 30

∆ − 10
.

If we want to estimate Hx(t) = (1 1)x(t) (as in Darouach
[2005]), we have to solve the polynomial matrix equation

LTE +KC = H,

with respect to L and K. In this case equation

L(0 1 − 0.1∆) + K(1 0) = (1 1)

has rational solutions:

L =

(

1

1 − 0.1∆

)

, K = (1)

Define ψ(∆) := 1 − 0.1∆, then L̄ = (1), K̄ = (1 − 0.1∆)
are polynomial solution of th eequation

L̄TE + K̄C = ψ(∆)H

This means that the neutral system
{

ϕ(∆)z(t+ 1) = Āz(t) + ϕ(∆)TBu(t) − ϕ(∆)TGy(t)
ŵ = z(t) + (1 − 0.1∆)y(t)

will observe ψ(∆)Hx(t) = (1 − 0.1∆)(1 1)x(t), i.e. Hx(t)
with some delays.

If we want observe all the state, the best we can do is to

observe Hx(t) =

(

1 0
0 1 − 0.1∆

)

x(t), obtaining







ϕ(∆)z(t+ 1) = Āz(t) + ϕ(∆)TBu(t) − ϕ(∆)TGy(t)

ŵ(t) =

(

0
1

)

z(t) +

(

1
0

)

y(t)

4. CONCLUSION

The state observation the problem for neutral systems with
delays was considered. Using as models neutral systems
over a ring of polynomials and adopting a geometric
approach, observers with delays not necessarily of neutral
type were constructed. Computational aspects were also
considered.
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