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Abstract: Hybrid electric vehicles (HEV) represent a promising technology to improve the fuel economy 
of ground vehicles in the near-term. Among the HEV configurations, the power-split configuration offers 
superior design and control flexibility and achieves highest overall efficiency. In this paper, a methodology 
to generate dynamic equations automatically for the power-split hybrid power-train is proposed. The 
designer only needs to specify the topology of the transmission: how the power sources, vehicle, the 
planetary gears and clutches are connected to each other. The dynamic model can then be generated 
automatically through a set of rules. This automated generation process makes it possible for a designer to 
explore different split hybrid configurations quickly and efficiently.  

 

1. INTRODUCTION 

A hybrid electric vehicle (HEV) adds an electric power path 
to the conventional powertrain, which helps to improve fuel 
economy by engine right-sizing, load levelling, and re-
generative braking. A right-sized engine has higher 
combustion efficiency, lower heat loss, and reduced peak 
power. The reduced power is compensated by an electrical 
machine (or machines) during surged power demand. 
Compared with internal combustion engines, electric 
machines provide torque more quickly, especially at low 
rotational speeds. Therefore, launching performance can be 
improved, even with reduced rated power. Load levelling can 
also be achieved by adding the electrical path. With the 
electric drive assistance, the engine can be controlled to 
operate in an optimal region regardless of the road load. 
Finally, when the vehicle is decelerating, the electric machine 
can capture part of the vehicle’s kinetic energy and recharge 
the battery.  
A power-split HEV, as known as series/parallel hybrids, 
often consists of two electric machines and a power-split 
device, which is referred as an electrical continuously 
variable transmission (ECVT). As shown in Fig. 1, the engine 
power can be split into two different power paths. First, 
similar to a parallel hybrid vehicle, the power-split 
powertrain has separate engine power-flow path and battery-
motor power-flow path (solid lines). Secondly, similar to a 
series hybrid vehicle, there exists an engine-generator-motor 
power path. Such a system can be designed to take advantage 
of both parallel and series hybrids.  
The power-split HEV has become increasingly popular over 
the past ten years. The first production power-split passenger 
vehicle, the Toyota Hybrid System (THS), was discussed in a 
paper by Hermance (1999). This system, often known as a 
single-mode split hybrid, is the heart of Prius and the rest of 
the hybrid fleet from Toyota currently on the market. Another 
major design for power-split HEV on the market is the 
Advanced Hybrid System (Holmes et al., 2003) from General 
Motors, also known as dual-mode AHS. This system was 
applied to several full-sized SUVs (Chevy Tahoe and GMC 
Yukon) and become a major competitor in recent years. 

Series Driving Power
Parallel Driving Power

Engine Charging Power
Regenerative Braking Power

 
Fig. 1. Example HEV Power flows 

In addition to these two popular powertrains, the power-split 
HEVs can be designed with different engine-to-gear, motor-
to-gear, or clutch-to-gear connections. Besides serving the 
purpose of power transferring, these different gear train 
configurations allow various kinematic relations between the 
power components and provide different operating options. 
Several other configurations can be found in the literature. 
Some of these designs consist of two planetary gears (Holmes 
et al., 2003) and others consist of three or more planetary 
gears (Schmidt, 1999). For a single planetary gear, there are 
three gear nodes that can be used to link to power sources. 
More planetary gears provide more flexibility in gear gains 
and shifting options. With this large number of possible 
configurations, there are literally thousands of possible 
options for a power-split vehicle. This provides great freedom 
for the hybrid vehicle design, but the tasks of exploring and 
analyzing various powertrain configurations become 
challenging. It is time consuming for the designer to 
manually develop models for each configuration and evaluate 
its performance by simulations. Modelling techniques that 
enable the designer to bring the configuration design to 
simulation model accurately and efficiently are desired.  
Several studies on the power-split HEV powertrain-system 
modelling can be found in the literature. Rizoulis et al. (2001) 
presented a mathematical model of a vehicle with a power-
split device based on the steady-state performance. Miller 
(2006) summarized the models of current power-split HEV 
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architectures. A comparative analysis of the system 
efficiency among different power-split configurations was 
done by Conlon (2005), who used a mathematical model to 
present the gear split ratios regardless of the powertrain 
designs. Despite these early efforts, to our knowledge a 
power-split HEV dynamic model that is flexible enough to 
cover a wide variety of different designs does not exist in the 
literature. Such simulation model needs to be flexible enough 
to accurately describe the powertrain dynamics, and yet 
simple enough to be used in iterative design process.  
In this paper, an automated modelling technique for power-
split hybrid powertrains is developed. We first derive the 
equations for a selected configuration through force analysis. 
Subsequently, a general form of the dynamic model is 
derived, based on which an automated generation strategy is 
introduced. Example configurations are then modelled to 
demonstrate the process. Applications of such modelling tool 
are introduced at the end. 
 

2. MODELS OF EXAMPLE POWER-SPLIT HYBRIDS  

2.1 Overall Architecture  

The selected powertrain configuration is shown in Fig. 2. 
There are two planetary gear sets (marked as PG1 and PG2). 
These planetary gear sets, which combine the power and 
constrain the motions of all the power sources, are the key 
devices in the split hybrid powertrain. Each planetary gear 
has three nodes: the sun gear, the carrier gear, and the ring 
gear. As shown in Fig. 3, several pinion gears connect the 
three gear nodes to transfer the forces. As a result of the 
direct mechanical connection through gear teeth, the 
rotational speed of the ring gear ωr, sun gear ωs, and carrier 
gear ωc satisfy the following relationship at all times 
 ( )s r cS R R Sω ω ω+ = +  (1) 

Here R, and S are the radii (or number of teeth) of the ring 
gear and sun gear, respectively. The lever diagram 
representation (Benford and Leising, 1981) in Fig. 3 is 
commonly used to present the speed constraint and simplify 
the torque analysis for the planetary gear set. The lever 
diagram presents the rotational speeds of the three gear nodes 
as vectors rooted at the nodes. Equation (1) then requires that 
the three speed vectors must form a straight line. The lever 
diagram is utilized in our study. 
It can be seen in Fig. 2 that there are two clutches (marked as 
CL1 and CL2) in the powertrain system. By locking either 
clutch CL1 or CL2, ring gear of PG2 can be grounded or 
locked with the sun gear of PG1 to achieve two operating 
modes. These two modes are commonly referred to as input 
split mode (CL1 locked and CL2 released), and compound 
split mode (CL2 locked and CL1 released) (Holmes et al., 
2003). The transients of the clutch release/engagement are 
ignored. In other words, the mode shift is assumed to occur 
instantaneously without energy loss. 
Besides the connections with the clutches, the ring gear of 
PG1 connects to the sun gear of PG2. The engine and 
motor/generator 1 (MG1) are connected to the carrier gear 
and sun gear of PG1, respectively. The motor/generator 2 
(MG2) and output torque to the final drive go through the sun 
gear and carrier gear of PG2, respectively. The connections 

above construct the mechanical path of the powertrain. The 
two electrical machines are also wired with an inverter that is 
connected to the battery. These components construct the 
electrical path of the powertrain. Modelling of these two 
propulsion paths are explained in the following sections. 

CL 1

EngineMG 1MG 2

Battery
Inverter

PG 2

Vehicle Mechanical Linkage
Electrical Linkage

PG 1

CL 2

 
Fig. 2: A Dual-Mode ECVT Hybrid System. 
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Fig. 3: Planetary gear set and lever diagram. 

2.2 Mechanical Power Path Modelling 

Fig. 4 shows the free body diagram of the dual-mode 
powertrain system. The planetary gear sets are represented by 
two levers. R1, S1 and R2, S2 represent the ring gear and sun 
gear radii of the PG1 and PG2, respectively. F1 and F2 
represent the internal forces between the pinion gears and the 
sun gears or ring gears. The dynamic models of the two 
modes are derived separately in the following. 

Te
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MG2I
MG2T
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ωT, +

F2R2+F2S2 F1R1+F1S1

F2 S2 F1R1

 
Fig. 4: Free body diagram of the dual-mode powertrain. 

In the input-split mode, the CL1 is engaged and CL2 is 
released. The ring gear of PG2 is thus grounded. The speed 
constraint on PG2 then becomes  
 

2 2 2 2 2( )c rR S Sω ω+ =  (2) 

where ωc2 and ωr2 are the rotational speed of the carrier gear 
and the ring gear of PG2. The PG1 still satisfies the original 
speed constraint 
 

1 1 1 1 1 1 1( )c r sR S R Sω ω ω+ = +  (3) 

where ωc1, ωr1, and ωs1 are the rotational speed of the carrier 
gear, ring gear, and sun gear of PG1. Apply the Euler 
equation to study the dynamic system, on the four nodes of 
the combined lever diagram, we have 
 

221122122 )( SFRFTIII MGsrMGMG ⋅+⋅+=++ω  (4) 
  )()( 1111 SRFTII ecee +⋅−=+ω  (5) 
 

1 1 1 1 1 1( )MG MG s MGI I T F Sω + = + ⋅  (6) 
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Equations (4)-(7) can be put into a matrix form with the last 
two rows presenting the constraints from the two planetary 
gears. The dynamics of the engine ωe, electrical machines 
ωMG1 and ωMG2, and vehicle wheel ωout are then governed by 
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  (8) 

In the compound split mode, the clutch CL1 is released and 
CL2 is locked, forcing the ring gear of PG2 to rotate at the 
same speed as the sun gear of PG1. Follow a similar 
procedure, the dynamic equation can be derived as 
 1
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 (9) 

Since we ignore the gear shifting dynamics, up-shift and 
down-shift are treated as nothing but switching between the 
two modes. Holmes et al. (2003) explained that such dual-
mode design allows a “stepless” shift between the two 
driving modes so that it minimizes the torque lost during the 
shift. Based on this concept, when the controller commands 
to switch clutches, simulation outputs are switched from one 
model to the other. 
2.3 Electrical Power Path Modelling 

The power requirements from the two motor/generators are 
supplied by the power storage device (battery), and can be 
calculated from the equation 
 i

k
MGMGMG

k
MGMGMGbatt TTP ηηωηω )( 222111 +=  , (10) 

where ηMG1 and ηMG2 are the efficiency of the electric 
machines. The exponential k is the sign of the power flow 
direction. k=-1 when the battery is discharged and k=1 when 
it is charged. ηi represents the efficiency of the inverter. 
For simplicity, the internal resistance model (see Fig. 5) is 
used to represent the battery performance. The open circuit 
voltage Voc and resistance Rbatt are both state-dependent 
parameters. They are functions of the battery state of charge 
(SOC) and temperature. The battery temperature is assumed 
to be constant (20 °C) and its effects are ignored. The 
dependency on SOC is represented in lookup tables. 

Rbatt

Voc

Ibatt

Pbatt

 
Fig. 5: Internal resistance battery model. 

SOC reflects the battery energy status and is a key state 
variable. Its rate of change depends on the equivalent battery 
capacity Qmax and the current Ibatt: 
 

max

battI
SOC

Q
= −  (11) 

The battery capacity Qbatt is a function of temperature, and is 
approximated as a constant value in this paper. Battery 
current Ibatt is a function of Voc and Rbatt, which relate to the 
battery power output as  
 battbattbattocbatt RIIVP 2−=  (12) 

Solve the equations (10)-(12), 

 
max

222111
2

2
)(4

QR
RTTVV

COS
batt

batti
k

MGMGMG
k

MGMGMGococ ηηωηω +−−
−=  (13) 

Equation (13) directly links the torque variables of the two 
electric machines to the rate of change of battery state of 
charge. This equation together with (8) and (9), describe the 
dynamics of this dual-mode power-split vehicle. 
 

3. AUTOMATED MODELING OF POWER-SPLIT 
HYBRID SYSTEMS 

3.1 Universal Format of the Dynamic Model 

The model development process, as presented in the previous 
section, is straightforward but tedious. Mistakes could happen 
in the hand derivation of dynamic models, including 
erroneous signs or gear teeth numbers. This section 
introduces a universal format of the dynamic model, which 
enables an automated modelling process for different 
configurations. 
Let’s revisit equation (8). The coefficient matrix is symmetric 
and can be divided into four sub-matrices with J denoting the 
upper-left 4×4 inertia matrix and D representing the up-right 
4×2 matrix that shows the gear train constraints. Because the 
torques on each node remain proportional to the 
corresponding coefficients in D, for each constraint i, it can 
define a Lagrange multiplier λi (Hibbeler and Fan, 1997), 
which indicates how strongly the constraint must push the 
associated inertias to maintain the correct velocities. And it is 
easy to see that the λi is equal to the internal forces Fi. And 
these constraints appear in dual forms of D and DT, where D 
relates the coefficient with internal forces and DT relates the 
node speeds. Equation (8) can then be represented as 

 
1

0 0T

J D T

F D

−
Ω

=
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 , (14) 

where � and T are the speed and torque vectors of the four 
nodes. Note that the battery dynamics in equation (13) is 
independent of the powertrain configuration and thus does 
not change. Only the mechanical part of the model varies 
with the configuration. The significance of (14) is the fact 
that the speeds of the nodes can be simulated directly from 
the node torques. In other words, after the topology of the 
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powertrain system is specified, the model of the system can 
be generated automatically. This process is summarized in 
the following section. 
3.2 Automated Model Development 

The dynamic model built in this process makes the following 
assumptions. Only the vehicle longitudinal dynamics are 
considered; the mechanical efficiency of the gear trains are 
high and the loss is neglected; The clutch engagement 
dynamics (if a clutch exists in the system) are ignored and the 
synchronizing shifting operation between different mode is 
achieved by switching between different models (Holmes et 
al, 2003); The studied powertrain configuration only consists 
of one engine, two MGs, and one vehicle output shaft. 
Step 1: Determine the kinematical constraint matrix D 
Based on the powertrain configuration, one can apply the 
following rules to obtain a kinematical constraint matrix D.  
Rule 1: The number of columns in D is equal to the number 
of planetary gears. 
Rule 2: The number of rows in D is equal to the number of 
columns in D plus two, each representing a node on the lever 
diagram. 
Rule 3: For the power source component(s) at each row, a 
“node coefficient” should be entered. The “node coefficient” 
is equal to: -Si if connected to the sun gear; -Ri if connected 
to the ring gear; and Ri+Si if connected to the carrier gear. 
Here the subscript i represents the ith planetary gear set. 
Rule 4: Fill all other entries in matrix D with zeros. 
Rule 5: For 3 or more PGs system, after the original matrix D 
is obtained. It can be further simplified to a 4×2 matrix (one 
output, one engine, and two MGs will form no more than 4 
nodes). This is done by using the kinematic relations from the 
free-rolling node(s) that is not connected to any power source 
or vehicle. 
Step 2: Determine the inertia matrix J 
Matrix J is a diagonal square matrix. The entry of each 
diagonal term is the inertia of each node. The node inertia is 
equal to the inertia of the power components. The inertias are 
Ie for the engine, IMG for electric machines, and 2

2
tiremR

K
 for 

the vehicle. Because the gear inertias are much smaller 
compared with the power sources and the vehicle, they can be 
ignored. Assume a convention that the first row of both 
matrix J and matrix D represents the engine node, the second 
row represents the output node connected to the vehicle, the 
third row represents the MG1 node, and the fourth row 
represents the MG2 node. The matrix J then has the format  

 2

2

1

2

0 0 0

0 0 0

0 0

0 0 0

e

tire

MG

MG

I

mR
J K

I

I

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 . (15) 

Step 3: Finalize the dynamic model 
After the matrices D and J are specified, the dynamic model 
can be constructed by using (14). In equation (14), Ω consists 
of the speed of engine ωe, output shaft ωout (proportional to 
the vehicle wheel speed ωwh by a factor of final drive ratio 
1/K), and electrical machine(s) ωMG. T consists of the node 

torques applied at nodes corresponding to the respective Ω 
elements. For the output shaft, driving resistance torque from 
the vehicle 2 31 0.5 ( )out

fb r tire d tireT mgf R AC R
K K

ωρ⎡ ⎤− + +⎢ ⎥⎣ ⎦

 needs to be 

included. Finally, in addition to the mechanical path model, 
the electrical path model is generated in (13), with this 
completes the dynamic model of the whole powertrain.  
 

4. AUTOMATED MODELING DEMOSTRATIONS 

4.1 Model of the Toyota Hybrid System 

The Toyota Hybrid System (THS), or sometimes known as 
the Synergy Drive, is the first commercial vehicle with a 
power-split hybrid design. A detailed description of its 
configuration can be found in (Hermance, 1999). As shown 
in Fig. 6, there is a single planetary gear set. The sun gear (S) 
connects to MG1, the carrier gear (C) connects to engine, and 
the ring gear (R) connects to MG2 and the vehicle through a 
gear ratio K. 

MG1S

Vehicle K

Engine

R
MG2

C

 
Fig. 6: The powertrain of a single planetary gear system 
(THS). 

Following the rules outlined in the previous section, the 
matrix D is a 3x1 matrix, with the three nodes defined for the 
carrier gear, ring gear, and sun gear respectively. For a single 
planetary gear system, the matrix has one column and three 
rows. As a convention, we start from the node with engine, 
vehicle, and then electrical machine(s). The engine is 
connected to the carrier gear node so that R1+S1 is entered 
into the element in the first row. The vehicle and the MG2, as 
in the second row, together connect to the ring gear. As a 
result, the coefficient -R1 is entered into the second row. 
Similarly, -S1 is entered into the third row for MG1. This 
completes the matrix D as 

 1 1

1

1

R S

D R

S

+

= −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 . (16) 

Matrix J is then generated with the engine, vehicle and MG2, 
and MG1 as the orders in the rows. And the dynamic model 
can be finished by using the computer to process.  
For the purpose of model validation, this model is put under 
the command of a rule-based control strategy. In the 
simulation, vehicle parameters, engine maps and efficiency 
torque and fuel consumption tables are obtained from 
ADVISOR 2002. Fig. 7 compares the simulation results with 
the experiment results from (Duoba et al., 2001). Since we do 
not know the control gains precisely, and considering all the 
simplifying assumptions we made, the behaviour of this 
model was found to agree with the actual system quite well. 
The rule-based control in this simulation was explained in 
details in our earlier publication (Liu et al., 2005). 
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Fig. 7: THS Engine simulation results compared with 
published experiment results under the same driving cycle. 

4.2 Model of a triple planetary gear powertrain 

In this example, a three planetary gear (PG) powertrain 
(Schmidt, 1999) is selected to study the case with a free-
rolling node. The additional PG brings the powertrain system 
one more free node, therefore, the matrix D is now a 5×3 
matrix with the five rows correspond to the five nodes and 
three columns correspond to the three PGs. Except the one 
node connected to the vehicle final drive, there are apparently 
four nodes left that can be hooked up with engine and MGs. 
If two MGs and one engine are selected for the power 
sources, there is one node left without connecting to 
anything. This node is the free-rolling node. As a convention, 
the first row of matrix D is the node with engine, the second 
is the node with vehicle, the third and fourth are nodes with 
MGs, and the fifth row is the free-rolling node. 
Fig. 8 shows the powertrain of this 3-PG powertrain system. 
In the input-split speed mode, CL1 is locked and CL2 is 
released. The engine is connected to the ring gear of the PG1, 
therefore, a node coefficient –R1 is entered into element (1,1). 
The vehicle final drive is connected to the carrier gear of the 
PG3, therefore, R3+S3 is entered into element (2,3). MG1 is 
connected to both ring gear of the PG2 and sun gear of the 
PG1, therefore, -S1 is entered into element (3,1) and –R2 is 
entered into element (3,2). MG2 is connected to both sun 
gears of the PG2 and PG3, therefore, -S2 is entered into 
element (4,2) and –S3 is entered into element (4,3). 
The fifth row of matrix D corresponds to the node/shaft of 
both carrier gears of the PG1 and PG2 where there is no 
power source connected. The corresponding node 
coefficients, in this case, R1+S1 is entered into element (5,1) 
and R2+S2 is entered into element (5,2). After filling the rest 
of the entries with zeros, the matrix D becomes 

 
1

3 3

1 2

2 3

1 1 2 2

0 0
0 0

0
0

0

mode1

R
R S

D S R
S S

R S R S

−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥= − −
⎢ ⎥− −⎢ ⎥
⎢ ⎥+ +⎣ ⎦

  (17) 

Following rule 5, this originally derived matrix D can be 
further simplified to a 4×2 matrix D to construct the dynamic 
model. In (17), the fifth row corresponds to the free-rolling 
node that is not connected to any power sources. Because the 
gear inertia on this node is ignored, the dynamics are 
 

1 1 1 2 2 2( ) ( ) 0R S F R S F+ + + =   (18) 

From (18), 
 1 1

2 1
2 2

( )
( )
R SF F
R S

+
= −

+
  (19) 

Because in matrix D mode1, the first and second columns 
consist of the node coefficients that multiply with F1 and F2, 
respectively, relationship between these two forces in (19) 
can then be substituted to simplify the matrix D mode1 as 
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3 3

1 1
1 2

2 2

1 1
2 3

2 2

0

0

0
mode1

R

R S

R S
S RD

R S

R S
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− +=
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+
−

+
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⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (20) 

The matrix J represents the power source inertia on each 
node and has the same format as (15). This example 
demonstrates the process of modelling a triple PG powertrain 
system. The extra free-rolling node is used to calculate the 
relationship between the internal forces and the derived 
relationship simplifies the matrix D to a 4×2 matrix. 

MG1
Ground

CL2

R

S

PG2PG3

Vehicle K

CL1

Engine

R

SMG2

C
C

S
PG1

R

C

 
Fig. 8: The powertrain of the triple planetary gear system of 
(Schmidt, 1999). 

5. APPLICATIONS OF THE AUTOMATED MODEL 

The proposed math-based model generation process provides 
a one-to-one correspondence between the powertrain 
configuration and the model matrix. On one hand, given a 
configuration design, the corresponding kinematic matrix D 
can be derived using the rules presented above. On the other 
hand, given a matrix D, the corresponding configuration is 
uniquely defined. For example, for the D matrix given in 
Eq.(21), the corresponding powertrain configuration can be 
derived as follows. The R1+S1 at the (1,1) element indicates 
that the engine connects to the carrier gear of PG1; -R1 and 
R2+S2 at the (2,1) and (2,2) elements indicate that the output 
shaft connects to both the ring gear of PG1 and the carrier 
gear of PG2; - S1 at the (3,1) element indicates the connection 
between MG1 and the sun gear of PG1; and -R2 at the (4,2) 
element indicates the connection between MG2 and the ring 
gear of PG2. The absence of -S2 in the second column 
indicates that the sun gear of PG2 is grounded. As a result, 
the corresponding configuration can be drawn in Fig. 9. 

 
1 1

1 2 2

1

2

0

0

0

R S

R R S
D

S

R

+

− +
=

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  (21) 

The fact that there is a one-to-one relationship between the 
matrix D and the configuration design makes it possible to 
identify all possible configuration designs. For example, to 
construct a 2-PG powertrain system, the process of 
enumerating all possible solutions is as follows. The matrix J 
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of the desired 2-PG powertrain is fixed as shown in (15) for 
all different configurations assuming the gear inertia can be 
ignored. The matrix D of the desired 2-PG powertrain is a 
4×2 matrix with the two columns representing the two PGs. 
In each column, a power-split PG (the three nodes are all 
connected to either power sources or vehicle output) has one 
zero and three node coefficients while a power-ratio PG (one 
of the three PG nodes is locked to the ground by a clutch and 
the other two nodes are connected to either power sources or 
vehicle output) has two zeros and any two of the three node 
coefficients. Apparently for a single column in a matrix D, 
there could be 24 different combinations for a power-split PG 
(4!=24), and there could be 36 different combinations for a 
power-ratio PG (3×(4×3)=36). A valid power-split 
configuration must consist of at least one power-split PG. 
And changing the order of the two columns in the matrix D 
does not change the configuration. Therefore, the total design 
combinations can be calculated as 
 24 24 / 2 24 36 1152× + × =   (22) 
where the first term represents the number of combinations 
with two power-split PGs and the second term is the number 
of combinations with one power-ratio PG and one power-
split PG. There are 1152 different mathematical combinations 
in total for a 2-PG power-split powertrain. This represents all 
mathematically possible designs of a 2-PG system. 

MG1
Ground

S

S

PG1

PG2

Vehicle K

CL

Engine

R

R

MG2

C

C

 
Fig. 9: Constructed configuration based on (21). 

Matrix D can be used to calculate the mechanical points of a 
powertrain system, which are defined as the input/output 
speed ratios where one of the electric machines has zero 
speed. The design of the mechanical point (MP) is very 
critical (Conlon, 2005, Grewe et al., 2007).  In matrix D, the 
first and second rows correspond to the speeds of the input 
and output nodes, respectively; while the third and fourth 
rows correspond to the speeds of the two MGs. Therefore, 
matrix D can be further divided into two sub-matrices 

 
11

21

31

41

...

...

...

...

EV

MG

D

D D
D

D D

D

= =

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

  (23) 

where DEV is the first two rows of matrix D and DMG is the 
third and fourth rows. Substitute this new format of D into 
the original dynamic equation (14), 
 1

2

0e MGT T T

EV MG

out MG

D D D
ω ω

ω ω
Ω = + =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  (24) 

which can be further derived to 
 1

2

MG eT T
MG EV

MG out

D D
ω ω

ω ω
−= −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  (25) 

In (25), let either ωMG1 or ωMG2 equal to zero, the input/output 
speed ratio between ωe and ωout, which is the corresponding 
mechanical point, can be calculated. 

 
6. CONCLUSION 

An automated modelling methodology is presented for split- 
hybrid vehicles. Firstly, one particular powertrain is selected 
to be modelled through force analysis. Subsequently, a 
general dynamic model is proposed and a model generation 
strategy is introduced. Three examples are discussed to 
demonstrate this modelling process. Finally, possible 
applications of this modelling process are suggested.  
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