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Abstract: The objective of this contribution is to characterize the so-called finite fixed poles of
the Almost Disturbance Decoupling Problem by state feedback (ADDP)

′
. The most important

step towards this result relies on the extension to almost invariant subspaces of the key notion of
self-boundedness, as initially introduced by Basile and Marro for perfect controlled-invariants,
namely, we introduce the Almost Self-Bounded Controlled-Invariant subspaces. We recall the
pole placement flexibilities and constraints that both exist when using a particular almost
invariant subspace as a support for the construction of specific (including high gain) feedbacks,
and we show, when (ADDP)

′
is solvable, what is the “best” almost invariant subspace to

choose, in order to achieve (ADDP)
′

and simultaneously place the “largest possible” set of
finite poles for the closed loop solution. We finally characterize the set of fixed finite poles for
(ADDP)

′
, in terms of some finite zero structures.

Keywords: Linear control systems; geometric approach; system structure; almost disturbance
decoupling; pole assignment

1. INTRODUCTION

The exact version by state feedback of the Disturbance De-
coupling Problem (DDP) has been widely considered for
decades. For a recent survey about the structural aspects
that are around, the reader can refer to M.Malabre (2006).
A particular subspace plays a central role in the solution of
(DDP) when, say, maximal pole placement is looked for.
It is the supremal (A, Im[B|D]) controllability subspace
included in the kernel of the output map, R∗

c , where B and
D are, respectively, the control input and the disturbance
input matrix. When (DDP) is solvable, R∗

c is (A,B)
controlled-invariant and using feedback matrices which are
so-called friends of R∗

c is indeed the way to place the
maximal set of dynamics for the closed loop system, while
rejecting the disturbance (see for instance M.Malabre et
al. (1997)). This is a rather direct consequence of the fact
that R∗

c is the smallest self-bounded (A,B) controlled-
invariant containing ImD (possibly modulo ImB), see
G.Basile and G.Marro (1992).

We shall here prove that in the solution of the Almost
Disturbance Decoupling Problem (ADDP)

′
, we have a

similar conclusion, that is R∗
ca, the supremal almost

(A, Im[B|D]) controllability subspace included in the ker-
nel of the output map, plays a central role, because it is an
almost self-bounded (A,B) controlled-invariant subspace
that contains ImD.
? Author Runmin Zou is studying in France, supported by the China
Scholarship Council, he is also a teacher of Central South University,
ChangSha, Hunan, 410083, P.R.China.

2. NOTATION AND BACKGROUND

2.1 Notation

We shall consider linear time-invariant strictly proper
systems described by:

Σ :
{

ẋ(t) = Ax(t) + Bu(t) + Dq(t)
z(t) = Ex(t)

where x, u, q, and z are respectively the state, control
input, disturbance input, and output to be controlled.
These signals belong to the vector spaces X , U , Q, and
Z , respectively.

In this paper, vectors will be denoted by lower case
letters, matrices/maps by capitals and subspaces by script
capitals. If A is a square matrix, then σ(A) will denote its
spectrum. If A : X 7−→ Y and V ⊆ X , the restriction
of the map A to V is denoted by A|V . If V1 and V2 are
A-invariant subspaces and V2 ⊆ V1, the map induced by
A in the quotient space V1/V2 is denoted by A|V1/V2. To
simplify, we sometimes use B in place of ImB, the image
of B; K in place of KerE, the kernel of E.

Let us denote Σ(A,B)x := {x(t) : [0,∞) → X ; x(t)
is a.c.(absolutely continuous), and ẋ(t) − Ax(t) ∈ ImB
a.e.(almost everywhere)}, and Σ(A,[B|D])x := {x(t) :
[0,∞) → X ; x(t) is a.c., and ẋ(t)−Ax(t) ∈ ImB + ImD
a.e.}.
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If X is a normed vector space, with norm ‖.‖, and L a
subspace of X , then for any x ∈ X , its distance to L is
denoted as: d(x, L ) := infy∈L ‖x− y‖.
For any measurable function, say W : [0,∞) → X , we say
that W ∈ Lp[0,∞) if ‖W‖Lp

< +∞, where:

‖W‖Lp
:=


(∫ ∞

0

‖W‖p
dt

)1/p

for 1 ≤ p < ∞

sup
t≥0

‖W‖ for p = ∞

The reachable space of Σ (by the control u) will be denoted
by 〈A|B〉 := B + AB + A2B + · · ·+ An−1B, where n is
the dimension of X .

A subspace V ⊂ X is called (A,B)(or controlled)-
invariant if there exists F : X → U such that (A +
BF )V ⊂ V . F is called a friend of V and we denote
F (V ) the set of all such F .

A subspace R ⊂ X is called an (A,B) controllability
subspace if there exist F : X → U , and G : Y → U ,
with Y ⊂ U , such that: R := 〈A + BF |Im(BG)〉.
A subspace Va ⊂ X is called an almost (A,B)(or
controlled)-invariant subspace if for any x0 ∈ Va and for
any ε > 0 there exists a state trajectory xε ∈ Σ(A,B)x with
the properties that xε(0) = x0 and d(xε(t),Va) ≤ ε, for
any t ≥ 0.

A subspace Ra ⊂ X is called an almost (A,B) control-
lability subspace if for any x0 ∈ Ra, and any x1 ∈ Ra

there exists T > 0 such that, for any ε > 0 there exists a
state trajectory of xε ∈ Σ(A,B)x with the properties that
xε(0) = x0, xε(T ) = x1 and d(xε(t),Ra) ≤ ε,∀t ≥ 0.

The supremal (A,B)(or controlled)-invariant subspace
contained in KerE is denoted by V ∗. It is the limit of
the following non increasing algorithm, see G.Basile and
G.Marro (1992) and W.M.Wonham (1985):{

V 0 = X

V i+1 = KerE ∩A−1
(
ImB + V i

)
Similarly, R∗, the supremal (A,B) controllability sub-
space contained in KerE, is the limit of the following non
decreasing algorithm, see W.M.Wonham (1985):{

R0 = 0
Ri+1 = V ∗ ∩

(
ARi + ImB

)
R∗

a , the supremal almost (A,B) controllability subspace
contained in KerE, is the limit of the following non
decreasing algorithm, see J.C.Willems (1981):{

R0
a = 0

Ri+1
a = kerE ∩

(
ARi

a + ImB
)

Let us denote by S ∗ the limit of the following algorithm:{
S 0 = 0

S i+1 = ImB + A
(
KerE ∩S i

)
S ∗ is usually introduced in the context of (K , A) invari-
ance (dual to (A,B) invariance). In our present context,
we prefer to handle it through its almost controllabil-

ity properties, as established by J.C.Willems (1981), and
namely: S ∗ = AR∗

a + ImB.

Note that all these notions of exact/almost controlled
invariance or controllability properties, can easily be de-
fined, similarly, for the “composite” system, say Σc :=
(A, [B|D], E), i.e. with U ⊕ Q in place of U . They will
be noted, respectively, V ∗

c ,R∗
c ,R∗

ca,S ∗
c . They are, respec-

tively, the limits of the following algorithms:

V ∗
c :

{
V 0

c = X

V i+1
c = KerE ∩A−1

(
Im[B|D] + V i

c

)
R∗

c :

{
R0

c = 0
Ri+1

c = V ∗
c ∩

(
ARi

c + Im[B|D]
)

R∗
ca :

{
R0

ca = 0
Ri+1

ca = KerE ∩
(
ARi

ca + Im[B|D]
)

S ∗
c :

{
S 0

c = 0
S i+1

c = Im[B|D] + A
(
KerE ∩S i

c

)
Some particular structures of Σ play a key role in the so-
lution of control problems. These are mainly the invariant
zeros. The finite invariant zeros of (A,B,E), i.e. from u to
z, are equal to the dynamics 1 of the system in the part of
V ∗ which is “outside” R∗ (more rigorously in the quotient
space V ∗/R∗):

Zeros(A,B,E) := σ(A + BF |(V ∗/R∗)),
for any F ∈ F (V ∗).

For more information about those structures, includ-
ing also zeros at infinity, the reader can easily refer to
M.Malabre (2006) and the main references that are cited
therein (e.g. F.R.Gantmacher (1959), H.H.Rosenbrock
(1970), T.Kailath (1980),H.Aling and J.M.Schumacher
(1984), C.Commault and J.M.Dion (1982) and
J.F.Lafay, C.Commault and M.Malabre (1991)).

We just recall here an important result concerning pole
placement when using feedbacks of a controlled-invariant
subspace V . This result comes from J.M.Schumacher
(1980), which itself is a particular case of a more general
result given in A.S.Morse (1973).
Proposition 1. Let V be a controlled-invariant subspace,
and let R∗(V ) be the supremal controllability subspace
included in V . For any given spectra of ad-hoc lengths,
say Λ1 and Λ2, there always exist in F (V ) a feedback,
say F0, such that:
- the spectrum of (A + BF0) in R∗(V ) equals Λ1(free)
- the spectrum of (A + BF0) in V + 〈A|B〉/V equals Λ2

(free)
- the spectra of (A + BF0) in V /R∗(V ) and in X /(V +
〈A|B〉) are fixed (same values for any F0 ∈ F (V )).

2.2 Self-Bounded Controlled-Invariant subspaces

In G.Basile and G.Marro (1992), another important re-
finement has been introduced which is the concept of self-
boundedness. The following definition is an obvious variant
of that initially proposed by Basile and Marro.
1 Which indeed are fixed, after having applied any state feedback,
say F , i.e. replacing A by A + BF . They are also invariant after any
change of basis in X , U and Z
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Definition 2. A controlled-invariant subspace included in
KerE, say V , is called self-bounded if and only if R∗,
the supremal (A,B) controllability subspace contained in
KerE, is included in V . We denote the set of all the self-
bounded controlled-invariant subspaces included in KerE
by SBCI(A,B, K ).

Self-bounded controlled-invariant subspaces in KerE are
thus output nulling controlled-invariant subspaces with
“maximal” internal (i.e. inside R∗(V )) pole placement
abilities.

2.3 Exact and Almost Disturbance Decoupling

Definition 3. The exact version of the Disturbance De-
coupling Problem (DDP), see W.M.Wonham (1985), is
concerned with constructing a state feedback matrix F,
such that, in the closed-loop system, the impulse response
matrix, say W(t), from the disturbance q to the output z
is zero.

Among the first geometric contributions to the solution
of this problem let us cite S.Bhattacharyya (1974), which
considers state feedback laws of the type u(t) = Fx(t) +
Gd(t).
Theorem 4. (DDP) is solvable with state feedback and
disturbance feed-forward (i.e. ∃F and ∃G such that E[sI−
(A + BF )]−1(BG + D) = 0 ) if and only if:

ImD ⊂ V ∗ + ImB

This condition is obviously equivalent to the existence of at
least one (A,B) controlled-invariant subspace V in KerE
such that ImD ⊂ V + ImB, such a V is called a solution
of (DDP).

When (DDP) is solvable, it has been shown in G.Basile
and G.Marro (1992), that R∗

c is a self-bounded controlled-
invariant subspace solution of (DDP), i.e. satisfies ImD ⊂
R∗

c + ImB and obviously contains R∗. Moreover, R∗
c

is the smallest self-bounded controlled-invariant subspace
solution of (DDP). This means that it is the best solution
of (DDP) in terms of pole placement since its controllable
part is as large as possible (R∗), and because it is the
smallest of that kind, the poles can be placed maximally
outside of it (see Proposition 1).

When (DDP) is not solvable, i.e. when no such “classical”
solution exists (typically insuring both properness and
good pole location), one must look for solutions of a
generalised type. One way is to consider the (ADDP).

Definition 5. (ADDP)
′
is solvable if the following holds:

∀ε > 0, there exists a sequence of state feedback ma-
trices {Fε; ε > 0}, such that, in the closed loop system
‖z(t)‖Lq

≤ ε ‖q(t)‖Lp
, for all Lp measurable disturbance

input q(t) and for all 1 ≤ p ≤ q ≤ ∞. If we let p = q and
1 ≤ p = q < ∞, this problem is called (ADDP)p.

It is well known J.C.Willems (1981) that (ADDP)
′

is
solvable if and only if:

ImD ⊂ V ∗
a (1)

and (ADDP)p is solvable if and only if:
ImD ⊂ V ∗ + S ∗ (2)

Note that (2) is very similar to the condition of Theorem
4, with B̂ in place of B, where B̂ denotes some extended
control input matrix such that ImB̂ := S ∗.

3. GEOMETRIC SOLUTION AND POLE
PLACEMENT OF ALMOST INVARIANT SUBSPACES

It is well known, since the seminal paper from J.C.Willems
(1981), that any almost controlled-invariant subspace, say
Va, can be written as the direct sum of a controllability
subspace, say R, plus a coasting subspace 2 , say C , plus a
sliding subspace 3 , say S , which can be seen as the limit,
say when ε tends to zero, of a family of controlled-invariant
subspaces Sε, on which the dynamics are infinitely fast as
ε tends to zero.
Definition 6. If Va is an almost invariant subspace, the
class of all these static feedbacks Fε : X → U such that,
for any x0 ∈ Va and for any t ≥ 0, d(e(A+BFε)tx0,Va) ≤
ε, 1 ≤ p ≤ ∞, is denoted by Fε(Va). We call Fε ∈ Fε(Va)
an ε-distance friend of the almost invariant subspace Va.

As an altenative to (1), we can write:

Proposition 7. (ADDP)
′

is solvable if and only if there
exist an almost controlled-invariant subspace Va included
in KerE such that: ImD ⊂ Va. Such a Va is called a
particular geometric solution for (ADDP)

′
.

In order to consider the spectral assignability properties
associated to a given almost controlled invariant subspace
Va, we need the following:
Lemma 8. Suppose Va is an almost invariant subspace,
V is an (A,B)-invariant subspace and Ra is an almost
controlllability subspace such that Va = V + Ra, then
〈A|Va + B〉 = Va + 〈A|B〉 = V + 〈A|B〉.

Proof.

〈A|Va + B〉 = 〈A|V + Ra + B〉
= V + Ra + B+

AV + A(Ra) + AB+
A2V + A2(Ra) + A2B+

· · ·
= V + 〈A|B〉+ Ra + A(Ra)+

A2(Ra) + · · ·
= Va + 〈A|B〉
= V + 〈A|B〉

Here we have used the fact that any almost controllability
subspace is contained in 〈A|B〉, see J.C.Willems (1981).�

Now, we can see that Va + 〈A|B〉 is A-invariant, and thus,
of course it is also an (A,B)-invariant subspace, and is
even an (A + BF )-invariant subspace for any F .
Lemma 9. Let Ra be an almost controllability subspace,
and suppose Λ is a symmetric set of dim(〈A|B〉)−dim(Ra)

2 a controlled-invariant subspace C will be called a coasting subspace
if and only if R∗(C ) = {0}, i.e. the supremal controllability subspace
in C is 0
3 an almost controlled-invariant subspace S will be called a sliding
subspace if and only if V ∗(S ) = {0}, i.e. the supremal controlled-
invariant subspace in S is 0
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complex numbers. There then exists an (A,B)-invariant
subspace V and a map F ∈ F (V ) such that

V ⊕Ra = 〈A|B〉
and

σ(A + BF |V ) = Λ

Proof. The proof of this lemma can be found in Theorem
2.39 of H.L.Trentelman (1985). �

Theorem 10. Let Va be an almost invariant subspace, V
is the maximal (A,B)-invariant subspace contained in Va,
and suppose Λ is a symmetric set of dim(〈A|Va + B〉) −
dim(Va) complex numbers. There then exist a subspace
W and, for each map F0 ∈ F (V ), a map F1 : X → U
such that:

F1|V = F0|V
Va ⊕W = Va + 〈A|B〉

(A + BF1)(V ⊕W ) ⊂ V ⊕W

and
σ(A + BF1|(V ⊕W )/V ) = Λ

Proof. From Lemma 8, Va + 〈A|B〉 is an A-invariant
subspace, and here V is the maximal (A,B)-invariant
subspace contained in Va, so we can let P : (Va +
〈A|B〉) → (Va+〈A|B〉)/V denote the canonical projection
and let F0 ∈ F (V ). Let B := PB and let A denote the
quotient map induced by A + BF0 in (Va + 〈A|B〉)/V .
Also from Lemma 8, we have P (Va + 〈A|B〉) = P (V +
〈A|B〉) = P 〈A|B〉 = P 〈A + BF0|B〉 = 〈A|B〉.
Let Ra be an almost controllability subspace such that
V ⊕ Ra = Va, then PVa = PRa. It is well known
that, see J.C.Willems (1981), because of the independence
between V and Ra, we can always let Ra = B1 + (A +
BF0)B2 + (A + BF0)2B3 + · · · , where F0 is defined as
above, and with {Bi} a chain in B, i.e. B ⊃ B1 ⊃
B2 · · · ⊃ Bi ⊃ Bi+1 · · · . Now, if we define Bi := PBi,
we get immediately that PRa = PB1 +P (A+BF0)B2 +
P (A + BF0)2B3 + · · · = B1 + AB2 + A

2
B3 + · · · , with

{Bi} a chain in B, also from J.C.Willems (1981), we can
conclude that PRa is an almost controllability subspace
in the quotient system (A,B).

Let Λ be defined as above, obviously, Λ contains
dim(〈A|B〉) − dim(PRa) complex numbers and thus we
can apply Lemma 9 and find an (A,B)-invariant subspace
W ⊂ (Va + 〈A|B〉)/V and a map F such that PRa ⊕
W = 〈A|B〉, (A + BF )W ⊂ W and σ(A + BF |W ) = Λ.
Now, let W ⊂ (Va + 〈A|B〉) be any subspace such that
PW = W and W ∩V = 0. Define a map F1 : X → U such
that F1|(Va+〈A|B〉) := F0|(Va+〈A|B〉)+FP , it can easily
be verified that we obtain the results. �

As a summary of this part, we now give our first main
result, described as the following Proposition:
Proposition 11. Let Va be an almost controlled-invariant
subspace, and let V ∗(Va) and R∗(Va) denote, respec-
tively, the supremal controlled-invariant (resp. controlla-
bility subspace) included in Va. For any given spectra of
ad-hoc lengths, say Λ1 and Λ2, for any ε there always exist
a feedback, say Fε, such that:
- the spectrum of (A + BFε) in R∗(Va) equals Λ1 (free)
- the spectrum of (A+BFε) in Va + 〈A|B〉/V ∗(Va) equals

Λ2 (free)
- the spectra of (A + BFε) in V ∗(Va)/R∗(Va) and in
X /(Va + 〈A|B〉) are fixed and finite (the same for any
Fε)
- the spectrum of (A+BFε) in Va/V ∗(Va) is ”infinite” but
stable, in the sense that Va/V ∗(Va) can be identified with
a sliding subspace for which on any approximation Sε , all
the dynamics tend to “minus infinity” as ε tends to zero.

The (three) fixed parts of this spectrum splitting form the
so-called “fixed poles of the almost invariant subspace Va”.
This is summarized in Figure 1.

X

Va + 〈A|B〉
fixed finite

Va

free finite

V ∗(Va)
infinite (but stable)

R∗(Va)
fixed finite

0
free finite

Figure 1: Pole placement freedom related to Va.

4. NEW GEOMETRIC RESULTS ABOUT (ADDP)

Let us now generalize the notion of self-boundedness.
Definition 12. An almost controlled-invariant subspace
included in KerE, say Va, is called almost self-bounded if
and only if R∗

a , the supremal almost (A,B) controllability
subspace contained in KerE, is included in Va. We denote
the set of all the almost self-bounded controlled-invariant
subspaces included in KerE by ASBCI(A,B,K ).

It is obvious, that, the set of all the ASBCI subspaces
included in KerE is closed with respect to the intersection
and to the sum, it is a lattice(non distributive) with respect
to ⊆, +,∩. The supremum of ASBCI(A,B,K ) is V ∗

a , and
the infimum is R∗

a .
Proposition 13. Any subspace L ∈ KerE is an ASBCI
subspace included in KerE if and only if L = V ∗(L ) +
R∗

a , i.e.

L ∈ ASBCI(A,B,K ) ⇔
{

L ⊂ K

L = V ∗(L ) + R∗
a

Proof. i. ⇒. Let L ⊂ KerE be any almost controlled-
invariant subspace, it is well known that L = R∗

a(L ) +
V ∗(L ), see J.C.Willems (1981), where R∗

a(L ) is the
supremal almost controllability subspace in L and V ∗(L )
is the supremal controlled-invariant subspace in L , now
because of self-boundedness, we also have R∗

a ⊂ L , and
because R∗

a is the supremal almost controllability subspace
in KerE, of course R∗

a(L ) ⊂ R∗
a , since L ⊂ KerE, so

we get R∗
a(L ) = R∗

a , i.e.L = R∗
a + V ∗(L ). ii. ⇐ is

obvious from the definition of an ASBCI subspace. �
Proposition 14. When (ADDP)p is solvable, the set of
all the almost self-bounded (A,B) controlled-invariant
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subspaces included in KerE is exactly identical to the
set of all the “exact” self-bounded controlled-invariant
subspaces included in KerE with B̂ in place of B, where
ImB̂ := S ∗.

Proof. Under the assumption that (ADDP)p is solvable,
we have proved that R̂∗ = R∗

a = K ∩S ∗, see M.Malabre
and R.M.Zou (2007).
i: ∀L ∈ ASBCI(A,B,K ) ⇒ L ∈ SBCI(A, B̂,K )
Since L ∈ ASBCI(A,B,K ), we have AL = A(V ∗(L )+
R∗

a) = AV ∗(L ) + A(K ∩ S ∗) ⊂ V ∗(L ) + S ∗ =
V ∗(L ) + K ∩ S ∗ + S ∗ = L + B̂, so L is an (A, B̂)
controlled-invariant subspace in KerE. On the other hand,
(ADDP)p solvable means R̂∗ = K ∩ S ∗, and since
K ∩ S ∗ ⊂ L , we have R̂∗ ⊂ L . This means that
L ∈ SBCI(A, B̂,K ).
ii: ∀L ∈ SBCI(A, B̂,K ) ⇒ L ∈ ASBCI(A,B,K )
For the proof, we first show by induction that V̂ i(L ) =
K ∩S ∗ + V i(L ),∀i = 0, 1, · · · , with: V̂ 0(L ) = X

V̂ i+1(L ) = L ∩A−1
(
ImB̂ + V̂ i(L )

)
{

V 0(L ) = X

V i+1(L ) = L ∩A−1
(
ImB + V i(L )

)
Equality is clearly true for i = 0 and i = 1, since
V̂ 1(L ) = L = V 1(L ) and K ∩ S ∗ + L = L . Now
suppose it is true for i ≥ 0, then

V̂ i+1(L ) = L ∩A−1
(
ImB̂ + V̂ i(L )

)
= L ∩A−1

(
S ∗ + K ∩S ∗ + V i(L )

)
= L ∩A−1

[
(ImB + V i(L )) + A(K ∩S ∗)

]
= L ∩

[
A−1(ImB + V i(L )) + K ∩S ∗]

= K ∩S ∗ + V i+1(L )
Here, we used the fact that A(K ∩S ∗) ⊂ ImA and the
fact that if (U +W )∩ ImA = U ∩ ImA+W ∩ ImA then
A−1(U + W ) = A−1U + A−1W , and also used the fact
that K ∩S ∗ ⊂ L .
Since V̂ i(L ) = K ∩ S ∗ + V i(L ),∀i = 0, 1, · · · , of
course we have V̂ ∗(L ) = K ∩ S ∗ + V ∗(L ), and due
to L ∈ SBCI(A, B̂,K ) we have V̂ ∗(L ) = L , so we get
L = K ∩S ∗+V ∗(L ) = R∗

a +V ∗(L ), from Proposition
13 we get the desired result L ∈ ASBCI(A,B,K ). �

Proposition 15. When (ADDP)
′

is solvable, the follow-
ing properties always hold:

i. V ∗
ca = V ∗

a

ii. R∗
ca = R∗

a + S ∗
c ∩ V ∗

iii. ∀L ∈ ASBCI(A,Bc,K ), ImD ⊂ L

iv. ImD ⊂ R∗
ca

where, ImD is the image of disturbance input matrix,
Bc := [B|D].

Proof. Under the assumption that (ADDP)p is solvable,
we have V ∗

c +S ∗
c = V ∗+S ∗, see M.Malabre and R.M.Zou

(2007). This obviously holds when (ADDP)
′
is solvable.

i: From this, we have K ∩ (V ∗
c + S ∗

c ) = K ∩ (V ∗ +
S ∗), and thus V ∗

ca = V ∗
a .

ii: R∗
ca = K ∩S ∗

c = K ∩S ∗
c ∩ (V ∗

c + S ∗
c ) = K ∩

S ∗
c ∩(V ∗+S ∗) = K ∩(S ∗+S ∗

c ∩V ∗) = R∗
a +S ∗

c ∩V ∗.
iii: Since (ADDP)

′
is solvable, we have ImD ⊂

V ∗
a ⊂ V ∗

ca, then L ∈ ASBCI(A,Bc,K ) ⇒ L ⊃ R∗
ca ⊃

Im[B|D] ∩ R∗
ca = Im[B|D] ∩ (S ∗

c ∩ V ∗
ca) = V ∗

ca ∩ (B +
ImD) = V ∗

ca ∩B + ImD ⊃ ImD.
iv: It follows directly from the fact that R∗

ca is
the supremal almost (A,Bc) controllability subspace con-
tained in KerE, it is also the infimum of ASBCI(A,Bc,K )
and the result of (iii). �

We can now formulate our second main (geometric) result.

Theorem 16. If (ADDP)
′
is solvable, then:

i. R∗
ca is a particular geometric solution for (ADDP)

′
,

namely: R∗
ca is almost (A,B) controlled-invariant included

in KerE, and contains ImD .
ii. R∗

ca is an almost self-bounded (A,B) controlled-
invariant subspace solution of (ADDP)

′

iii. R∗
ca is the smallest almost self-bounded (A,B)

controlled-invariant subspace solution of (ADDP)
′

Proof. (sketch) i) and ii) follow directly from the obvious
fact that (ADDP)

′
solvable leads to (ADDP)p solvable,

and our results in M.Malabre and R.M.Zou (2007) that
S ∗

c ∩ V ∗ is a controlled-invariant subspaces included in
KerE, and Definition 12, Proposition 13, 15 and 7.

iii: To show this, le us consider the fictitious system
Σ̂(A, B̂c, E), where B̂c := [B̂|D] and ImB̂ := S ∗. We
will first show that Ŝ ∗

c = S ∗
c and R̂∗

c = R∗
ca, then

use these two equations to prove ImD ⊂ R∗
ca. Here,

R̂∗
c stands for the supremal controllability subspace of

the pair (A, ImB̂c) included in K , Ŝ ∗
c is the infimal

(E , A)-invariant subspace containning ImB̂c, and V̂ ∗
c the

supremal (A, Im[B̂|D])(or controlled)-invariant subspace
contained in KerE.

Ŝ ∗
c = S ∗

c : Ŝ ∗
c is the infimal (E , A)-invariant subspace

containning S ∗ + ImD, it obviously contains S ∗
c , the in-

fimal (E , A)-invariant subspace containning ImB + ImD,
i.e. S ∗

c ⊂ Ŝ ∗
c ; for the reverse inclusion, just note that be-

cause S ∗
c ⊃ S ∗ and S ∗

c ⊃ ImD, S ∗
c is a (E , A)-invariant

subspace containning S ∗ + ImD, and thus contains the
infimal one, Ŝ ∗

c , i.e. S ∗
c ⊃ Ŝ ∗

c , so we get Ŝ ∗
c = S ∗

c .

R̂∗
c = R∗

ca: Also under the assumption that (ADDP)p

is solvable, we have V̂ ∗
c = V ∗

c + R∗
ca, see M.Malabre and

R.M.Zou (2007). Then, R̂∗
c := V̂ ∗

c ∩ Ŝ ∗
c = (V ∗

c + R∗
ca) ∩

S ∗
c = V ∗

c ∩S ∗
c + R∗

ca = R∗
c + R∗

ca = R∗
ca.

We have proved, see M.Malabre and R.M.Zou (2007), that
when (ADDP)p is solvable, V̂ ∗ = V ∗

a . This also holds
when (ADDP)

′
is solvable, thus ImD ⊂ V̂ ∗, where V̂ ∗

stands for the supremal (A, B̂)(or controlled)-invariant
subspace contained in KerE. Thanks to the result of
M.Malabre et al. (1997), we can conclude, that R̂∗

c is the
infimal (A, B̂) self-bounded controlled-invariant subspace
containing ImD and contained in K , also because R̂∗

c =
R∗

ca and Proposition 14, R∗
ca is the smallest almost self-

bounded (A,B) controlled-invariant subspace containing
ImD and contained in K .�
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In order to characterize the set of fixed poles of (ADDP)
′
,

we now extend a previous result from G.Basile and
G.Marro (1992) to almost self-bounded controlled-
invariants. This very important result expresses a key
property of almost self-boundedness: among the set of all
possible geometric solutions for (ADDP)

′
, the solutions

which are almost self-bounded are always more efficient
(at least as efficient) in terms of finite pole placement.
The proof is skipped because of space limitation.
Proposition 17. Assume that (ADDP)

′
is solvable and

let Va included in KerE be any given geometric solution
(in the sense of Proposition 7). Let us denote Va := Va+R∗

a

. Then, Va is another geometric solution, Va is almost self-
bounded controlled-invariant and its finite fixed spectra,
as described in Proposition 11, always contain the finite
fixed spectra of Va.

We are now in a position to write down the third most im-
portant result of our contribution, without detailed proof
due to space limitation. The proof uses the previous results
on pole placement facilities in addition with the fact that,
when (ADDP)

′
is solvable, R∗

ca is the smallest almost
self-bounded solution (see Theorem 16). To simplify the
exposition, we assume here that (A,B) is controllable.

Theorem 18. Assume that (ADDP)
′

is solvable, and
(A,B) is controllable.

- Any feedback solution of (ADDP)
′

contains a set of
finite fixed poles, and an infinite but always stable part
(in the sense of Proposition 11).
- It is possible to find particular feedback solutions for
which all the other finite poles, other than the fixed and
infinite poles of (ADDP)

′
, can be placed freely.

- The Fixed Poles of (ADDP)
′

are characterized as
σfinite

fixed = σ(A + BΦ|(S ∗
c ∩ V ∗)/R∗) where Φ is any map

which makes S ∗
c ∩ V ∗ (A + BΦ) invariant.

- When using ε-distance friend of R∗
ca, infinite but stable

poles occur as σ∞stable = limε→0(σ(A + BFε|Sε)) , where
Fε is any map which makes (A + BFε) invariant Sε, and
where Sε is the controlled-invariant approximation of the
sliding part R∗

ca/(S ∗
c ∩ V ∗).

The following result expresses the Fixed Poles of (ADDP)
′

in terms of zero structures of the systems. Let us denote re-
spectively by Zeros(A,B,E) and Zeros(A, [B|D], E), the
corresponding set of finite invariant zeros of the considered
systems. We have the following theorem (the simple proof
is also skipped).

Theorem 19. Assume that (ADDP)
′

is solvable, and
(A,B) is controllable. The Fixed Poles of (ADDP)

′
, say

σfinite
fixed , are characterized as follows:

Zeros(A,B, E) = σfinite
fixed ] Zeros(A, [B|D], E)

where ] denotes union of sets with common elements
repeated.

5. CONCLUSION

We have extended the key notion of self-boundedness, as
initially introduced by Basile and Marro, to the case of

Almost Self-Bounded Controlled-Invariant subspaces. We
have shown that, when (ADDP)

′
is solvable, the “best”

almost controlled-invariant subspace to choose in order to
achieve (ADDP)

′
and simultaneously place the “largest

set” of finite poles for the closed loop solution, is R∗
ca, the

supremal output nulling almost controllability subspace
obtained when the disturbance is (artificially) considered
as an extra control input. We have characterized the finite
fixed poles of (ADDP)

′
and expressed them in terms of

some zeros.
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