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Abstract: This contribution is devoted to the accessibility analysis of distributed parameter
systems. A formal system theoretical approach is proposed by means of differential geometry,
which allows an intrinsic representation for the class of infinite dimensional systems. Beginning
with the introduction of a convenient representation form, in particular, the accessibility along a
trajectory is discussed generally. In addition, the derivation of (local) (non-)accessibility criteria
via utilizing transformation groups is shown. In order to illustrate the developed theory the
proposed method is applied to an example.
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1. INTRODUCTION

In this contribution systems are considered whose evo-
lution (in time) is allowed to be governed by (nonlin-
ear) ordinary differential equation (ODEs) and/or partial
differential equations (PDEs). From the control point of
view the analysis of infinite dimensional systems is not
straightforward, see, e.g., Barbu [1993]. A corresponding
approximative system stated by ODEs could be calculated.
Hence, some essential system properties might be lost by
utilizing only the approximative system, see, e.g., Curtain
and Zwart [1995]. Therefore, we propose a different ap-
proach, where the equations themselves are analyzed with-
out any approximation by ODEs. A basis for our analysis
is provided by a geometric description of a dynamic system
such that it is independent of the chosen representation.
Especially, it is the objective of this paper to emphasize
that differential geometric methods are appropriate for the
study of distributed parameter systems. In particular, for
the system theoretical analysis we focus our attention on
the investigation of the accessibility property. The crucial
observation is that the formal Lie group approach for the
analysis of lumped parameter systems, as used in Schlacher
et al. [2002], is applicable in the distributed parameter case
as well. It is shown how accessibility conditions based on
the infinitesimal invariance principle can be provided.

The paper is organized as follows: In Section 2 some
mathematical preliminaries are summarized, which are
used in the sequel. Further, we introduce a convenient
representation for distributed parameter systems with
respect to the subsequent theoretical system analysis.
Then, in Section 3 the property accessibility of dynamic
systems is discussed, in general, and we outline how (local)
conditions on (non)accessibility can be derived by means of
transformation groups. In addition, the developed formal
approach is applied to an example in order to show
its practicability. The contribution finishes with some
conclusions.

2. MATHEMATICAL PRELIMINARIES

This contribution applies the concept of smooth manifolds
and bundles, see, e.g., Boothby [1986] and Saunders [1989]
for an introduction and much more details. A bundle
resp. a fibred manfold is a triple (E , π,M) with the total
manifold E , the base manifold M and the projection
π : E → M, where π−1(p) for any p ∈ M denotes the fiber
over p. The manifold E possesses the coordinates (X i, xα)
with the independent coordinates X i, i = 1 . . . nX and
the dependent coordinates xα, α = 1 . . . nx. A section γ
of the bundle E → M is a map γ : M → E such that
π ◦ γ = idM with the identity map idM on M. The
tangent and cotangent bundle of a smooth n-dimensional
manifold N are denoted by T (N ) → N and T ∗(N ) → N ,

which are equipped with the coordinates (X i, Ẋ i) and

(X i, Ẋi) with respect to the holonomic bases {∂i} and
{
dXi

}
. For brevity, the Einstein summation convention is

used throughout the paper. The exterior algebra over an n-
dimensional manifold N is denoted by ∧(T ∗(N )) with the
exterior derivative d : ∧k(T ∗(N )) → ∧k+1(T ∗(N )), the
interior product ⌋ : ∧k+1(T ∗(N )) → ∧k(T ∗(N )) written
as v⌋ω, v : N → T (N ) and ω : N → ∧k+1(T

∗(N )),
and the exterior product ∧. Further, ∧k(T ∗(N )) → N is
the exterior k-form bundle on N . The canonical product
equals the map 〈·, ·〉 : T ∗(N ) × T (N ) → C∞ (N ) and the
Lie derivative of ω : N → ∧(T ∗(N )) along a vector field
f : N → T (N ) is identified by f(ω).

For a section γ : M → E the kth-order partial derivatives
are given by

γα
J = ∂Jγ

α =
∂k

∂
j1
1 . . . ∂

jnX
nX

γα, ∂i =
∂

∂X i

with the ordered multi-index J = j1, . . . , jnX
, and k =

#J =
∑nX

i=1 ji. For brevity ji = δij , j ∈ {1, . . . , nX}
will be denoted as 1j and ji + δij as J + 1j with the
Kronecker symbol δ. Further, we will use [1,0] and [0,1]
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for [1, 0, . . . , 0] and [0, 1, . . . , 1]. The section γ can be
extended to a map jnγ = (X i, γα(X), ∂Jγ

α(X))with
1 6 #J 6 n, the nth jet of γ. The set of nth jets (or nth-
order prolongations) of sections M → E is the manifold
Jn(E) with the coordinates (X i, xα

J ), 0 6 #J 6 n where
xα = xα

J for #J = 0. By means of Jn(E) the bundles
πn : Jn(E) → M; (X i, xα

J ) 7→
(
X i

)
and πn

0 : Jn(E) →

E ; (X i, xα
J ) 7→

(
X i, xα

)
among others can be constructed.

The vertical bundle V(E) → E as a subbundle of T (E) → E
is generated by all v : E → T (E) fulfilling π∗(v) = 0, where
v is said to be π-vertical. If ∃w : M → T (M) π∗(v) = w◦π
for a v : E → T (E), the vector field v is referred as π-
projectable. A π-projectable vector field generates locally
a 1-parameter group with the parameter ε. This also
induces the bundle automorphism (exp(επ∗(v), exp(εv))),
see, e.g., Saunders [1989]. In particular, for a v : E → V(E)
the fiber preserving automorphism (idM, exp(εv))) is ob-
tained. Instead of prolonging the group-induced bundle
automorphism to Jn(E), its infinitesimal generator can be
prolonged,

jnv = dJ(vα)∂J
α , 1 6 #J 6 n,

v = vα∂α, dJ = (d1)
j1 ◦ · · · ◦ (dnX

)jnX

(1)

where di : J∞(E) → T (J∞(E)) and dJ (vα) = vα for
#J = 0. The operator di fulfills (dif) ◦ jn+1γ = ∂if(jnγ)
for ∀f ∈ C∞(Jn(E)) and ∀γ : M → E , and is called the
total derivative with respect to the independent variables
X i. In coordinates (X i, xα

J ) it is defined by di = ∂i +

xα
J+1i

∂J
α , ∂

J
α = ∂

∂xα
J

. By means of the total derivatives

di we can introduce the horizontal derivative dh, given
as

(
jn+1γ

)∗
(dh (ω)) = d

(
(jnγ)∗ (ω)

)
, ω : Jn(E) →

∧(T ∗ (Jn(E))) or in local coordinates dh = dX i ∧ di, see,
e.g., Giachetta et al. [1997]. In addition, we will use Stokes’
Theorem, see, e.g., Boothby [1986],

∫

C

jn+1γ∗ (dhω) =

∫

C

d (jnγ∗ (ω)) =

∫

∂C

ι∗C (jnγ∗ (ω))

(2)
for ω : Jn(E) → πn,∗ (∧nX−1T ∗ (M)), an orientable,
bounded and compact manifold C ⊂ M with global volume
form, a coherently oriented boundary manifold ∂C and the
corresponding inclusion map ιC : ∂C → C.

In this paper the coordinate X1 represents the time t and
X

j
D = X1+j, j = 1 . . . nX − 1 the spatial coordinates.

A dynamic system is described by a set of ODEs and
PDEs, which may refer to different spatial domains D (α)
with D =

⋃

α D (α) ⊆ M, α = 1, . . . , nx. Let the areas
D (α) be nD(α)-dimensional, compact manifolds (∀α ∈
[1, . . . , nx] nD(α) ∈ N

+) with global volume form and
the coherently orientable boundaries ∂D (α), respectively.
Further, the boundary domains are denoted by B (η),
η = 1, . . . , nb with B (η) ⊆

⋃

α ∂D (α). For brevity and
legibility the range of the indices will not always be stated
explicitly, if it is clear from the context.

Throughout the contribution we consider dynamic systems
of the form

xα
[1,0] = Fα

D(α)

(
X,x[0,J], u[0,K]

)
, α = 1, . . . , nx

0 = F
η

B(η)

(
X,x[0,J∂ ], u[0,K∂ ]

)
, µ = 1, . . . , nb

(3)

with 0 ≤ #J ≤ n, 0 ≤ #K ≤ n, 0 ≤ #J∂ ≤ m
and 0 ≤ #K∂ ≤ m. The subscripts refer to the validity

area of the equations, respectively. We call (3) an kth-
order differential equation with k = max {nx, n}. For the
geometric interpretation of such a dynamic system, the
bundles EX → Ω and EU → Ω are introduced with the
adapted coordinates (X i, xα) and (X i, uς) on EX and EU
at least locally, where the independent coordinates are
X i, i = 1 . . . nX and the dependent coordinates are xα,
α = 1 . . . nx and uς , ς = 1 . . . nu. The so-called time-space
cylinder Ω, where the system (3) evolutes in, is assumed
to be a compact nX -dimensional submanifold of M with
Ω ⊂ M. Further, the product bundle E = EX ×EU → Ω is
introduced. From the geometric point of view the system
domain equations (3) represent a fibred submanifold of
Jn (E), see, e.g., Giachetta et al. [1997]. According to the
bundle construction a solution of the system (3) follows as
a section γ : Ω → EX that satisfies for an input function
u = µ(X), µ : Ω → EU , the equations

xα
[1,0] ◦ j

1γ =
(

Fα
D(α)

(
X,x[0,J], u[0,K]

)
◦ jnµ

)

◦ jnγ

0 =
(

F
η

B(η)

(
X,x[0,J∂ ], u[0,K∂ ]

)
◦ jmµ

)

◦ jmγ.

A solution γ : Ω → EX of the system (3) is always related
with some input µ : Ω → EU and an initial condition
γ (X)|X1=t0

= γt0 . Hence, it is still denoted by γ, where,
concurrently, the latter information is disregarded in order
to simplify matters. In addition, we will use γ (τ) and γτ

to denote γ (X)|X1=τ as well as γ to denote a mapping
(γ, µ) : Ω → E , if it is clear from the context. In this
geometrical framework an admissible change of coordi-
nates of the explicit dynamic system (3) is a bijective map
ψ =

(
ψi

X , ψ
α
x , ψ

ς
u

)
,

X̄ 1̄ = ψ1̄
X

(
X1

)
,

X̄
1+j̄
D = ψ

1+j̄
X (XD) , j̄ = 1, . . . , nX − 1

x̄ᾱ = ψᾱ
x (XD, x) , ᾱ = 1, . . . , nx

ūς̄ = ψς̄
u (XD, u) , ς̄ = 1, . . . , nu.

(4)

Then, the system in new coordinates follows to

x̄ᾱ
[1̄,0] = ∂1̄(ψ

1̄
X)−1d[1,0]

(
ψᾱ

x (XD, x)
)
◦ (jnψ)−1

= F̄ ᾱ
D(ᾱ)

(
X̄, x̄[0,J̄], ū[0,K̄]

)

0 = F
η̄

B(η̄)

(
X,x[0,J∂ ], u[0,K∂ ]

)
◦ (jmψ)

−1

= F̄
η̄

B(η̄)

(
X̄, x̄[0,J̄∂ ], ū[0,K̄∂]

)
.

3. ACCESSIBILITY ANALYSIS VIA
TRANSFORMATION GROUPS

Motivated by the geometric framework for distributed pa-
rameter systems it is the intention to investigate this class
of systems from the control point of view. In this paper a
system theoretical analysis based on a Lie group approach
is considered, as it is utilized in, e.g., Schlacher et al. [2002]
for the study of lumped parameter systems. Conditions for
(local) (non-)accessiblity of dynamic systems are derived
by means of an infinitesimal invariance criterion for dis-
tributed parameter systems. The idea behind the analysis
is to relate the property accessiblity of dynamic systems
to the non-existence of an invariant with respect to a set
of transformation groups.

The requirements for the analysis by transformation
groups are a mathematical model represented by (3) and
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suitable normed function spaces HU = HU (t0, t0 + T ) and
Ht([t0, t0 + T ] ,HD) = Ht for its inputs and solutions, i.e.,
ensuring the existence and uniqueness of the solution with
respect to the initial condition, boundary conditions and
the input. Here, HD denotes a function space based on
the spatial domain D and Ht the function space for the
evolution. For a specific coordinate system all considered
function spaces are assumed to be Banach spaces, i.e.,
normed and complete vector spaces. Let γµ : Ω → EX be
the solutions of (3) on the time interval T̄ = [t0, t0 + T ],
T > 0, for some input u = µ(X), µ : Ω → EU . With respect
to accessibility, in particular, we consider the mapping
fxt0+T

: HU → HD; u 7−→ γt0+T , which represents a
mapping between Banach spaces.

For lumped parameter systems it is well known that, in
general, the accessibility property depends on the system
trajectory, see, e.g., Schlacher et al. [2002] for similar
definitions in the lumped parameter case, and so we define
accessibility along a trajectory for distributed parameter
systems. For an investigation of the accessibility property
it is assumed that there exists an input function µ such
that the system can be steered from an initial point γt0 to
some γ̄t0+T in some time T > 0.

Definition 1. Let γ denote a solution of the dynamic
system (3) on the time interval T̄ = [t0, t0 + T ] for some
T > 0 that meets the time boundary conditions γ (t0) =
γt0 and γ (t0 + T ) = γt0+T for the input u = µ(X), µ :
Ω → EU . The system (3) will be called accessible along the
trajectory γ, if locally there exists an input function µ̄ :
Ω → EU such that any point γ̄t0+T in an arbitrary small
neighborhood Vγt0+T

⊂ HD of γt0+T is reachable. The
system (3) will be called approximately accessible along
the trajectory γ, if locally there exists an input function µ̄ :
Ω → EU to steer to any point γ̄t0+T in an arbitrary small
neighborhood Vγt0+T

⊂ HD of γt0+T within a distance ε for
any ε > 0, i.e. the corresponding endpoint γ̃t0+T satisfies
‖γ̃t0+T − γ̄t0+T ‖HD

≤ ε 1 .

A weaker notion of exact accessibility is essential for
distributed parameter systems since the image of the
mapping fxt0+T

might be not closed with respect to the
topology of HD due to the infinite dimensional nature
of HD. In the finite dimensional case the closure of a
(connected) subset is the subset itself. Thus, exact and
approximative accessibility are equivalent concepts for
lumped parameter systems. According to Definition 1 the
system property accessibility is defined locally and serves
as the basis for our subsequent investigations.

In order to illustrate the idea of applying the approach
by transformation groups for this problem we consider the
following situation.

Remark 1. Let γ be a solution of the dynamic system (3)
on the finite time interval T̄ = [t0, t0 + T ], T > 0 for
the input u = µ(X), µ : Ω → EU and consider vertical
variations of the form

γ̃ (X) = Φ (X, γ (X) , µ (X))

for the given trajectory γ, where by arbitrarily varying the
input and by fixing γt0 the distorted solution γ̄ is another
solution of the system (3). If at least one functional of
the form I (γ) =

∫

D
(I ◦ γ) dXD with I ∈ C∞ (E) can

1 ‖·‖
HD

denotes the norm on HD .

be found, which is left invariant despite all admissible
distortions of γ, the system (3) will be called non-accessible
along the trajectory γ.

With respect to Remark 1 such distortions of the solution
γ is identified here by a symmetry group, i.e., which
generates a flow on E and, thus, can be used to derive
solutions from given ones. This is the reason why the
theory of symmetry groups (Lie groups) is applied in this
approach. In order to formulate the above considerations
and to derive criterions for (non-)accessibility along a
trajectory of a system (3) let us consider a set of one-
parameter (Lie) groups Φ : G × E → E of the form

Φ : G × E → E ; (ε, X, x, u) 7→ (X, x̄, ū) (5)

and
(
X i, x̄ᾱ, ūς̄

)

=
(
X i, Φᾱ

ε (X, x, u) , Φς̄
ε (X, x, u)

)

where ε is the group parameter and Φε = Φ (ε, ·) that
operates on the state variables xα and the input variables
uς , respectively. In order to state accessibility conditions
appropriately later on, the infinitesimal generator of (5)
can be calculated, which is given by

vC =
d

dε
Φε(X, x, u)

∣
∣
∣
∣
ε=0

= vα
X (X, x, u)∂α + vς

U (X, x, u)∂ς

(6)

with suitable functions vα
X , v

ς
U ∈ C∞(E). Henceforth, we

consider the infinitesimal generator vC of the transforma-
tion group Φε (5) and its corresponding nth prolongation
jn(vC) : Jn (E) → V(Jn (E)) ⊂ T (Jn (E)), given by

jnvC = dJ (vα
X ) ∂J

α + dJ (vς
U ) ∂J

ς , (7)

see (1), instead of Φε itself, to investigate variations from
a nominal solution γ.

Here, a valid variational vector field vC is subject to
restrictions. It has to be ensured that the considered
transformation group is also a symmetry group of (3) since
a distorted solution has to be a solution of the system
(3) again. Thus, the prolonged vertical vector field (7) is
applied to the system equations (3) and by the vanishing
of

jnvC

(

xα
[1,0] − Fα

D(α)

(
X,x[0,J], u[0,K]

))

◦ jnγ

= d[1,0] (v
α
X )−

d[0,L]

(

v
β
X

)

∂
[0,L]
β Fα

D(α)−d[0,L] (v
ς
U ) ∂[0,L]

ς Fα
D(α)

= 0
(8)

on the domains D (α) and

jmvC

(

F
η

B(η)

(
X,x[0,J∂ ], u[0,K∂ ]

))

◦ jmγ

= d[0,L∂ ] (v
α
X ) ∂[0,L∂ ]

α F
η

B(η)+d[0,L∂ ] (v
ς
U ) ∂[0,L∂ ]

ς F
η

B(η)

= 0.

(9)

on the boundaries B (η), respectively, with 0 ≤ #L ≤ n
and 0 ≤ #L∂ ≤ m, it is ensured that vC is a symmetry
group of the system, see, e.g., Olver [1993]. Obviously, the
coefficients of the vertical vector field vα

X and vς
U obey the

equations (8) and (9) on the domain and boundary with
respect to their validity area.
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So far we have guaranteed that a valid vertical variation
of a section implicate a new solution of the system (3). For
the further analysis we are interested in the existence of
local invariants of the form

I (γ) =

∫

D

(I (X, x, u) ◦ γ) dXD (10)

where dXD = dX2 ∧ · · · ∧ dXn+1, I ∈ C∞ (E) and
γ, γ̃ : Ω → E satisfying

I(Φ ◦ γ)
︸ ︷︷ ︸

γ̃

=

∫

D

(I (X, x, u) ◦ (Φ ◦ γ)) dXD = I (γ) .

Note that for systems, whose subsystems may be valid
on different spatial domains, the functional is normally
of the form I (γ) =

∫

D(α)

(
ID(α) (X, xα, u) ◦ γ

)
dXD(α),

where dXD(α) is the volume on D (α) and equations,
or equivalently xα, which refer to the same domain,
are arranged, respectively. Henceforth, for brevity and
legibility we consider one spatial domain to develop our
theory, which can be extended to multi spatial domain
problems (coupled systems) in a straight forward manner,
like it is shown in the presented example.

Based on the geometric picture, the system (3) is acces-
sible along a trajectory if there exists a subset of the
considered transformation groups Φε such that the ini-
tial condition is unchanged and locally the correspond-
ing infinitesimal generators span the tangent space of EX
at(X, γ (X))|X1=t0+T ∀XD ∈ D. Equivalently, if there

exists a non-trivial invariant function I ∈ C∞ (E) on the
considered subset of the transformation groups Φε, then
the system (3) is not accessible since any neighborhood
Vγt0+T

of γt0+T , which contains all points reached by an
input function µ̄ : Ω → EU , is not open.

Since the transformation group acts only on the dependent
variables, (6) qualifies for a vertical vector field vC : E →
V(E) ⊂ T (E) on the manifold E , as shown before. It follows
that by admitting only fiber preserving variations that

d

dε
I (exp(εvC) (γ))

∣
∣
∣
∣
ε=0

=

∫

D

vC (γ)
∗
(IdXD)

=

∫

D

γ∗ (vC (IdXD))

= 0

(11)

if vC is an admissible vector field. By using the relation
vC (IdXD) = d (vC⌋ (IdXD)) + vC⌋d (IdXD) and Stokes’
Theorem (2) one can write the functional (11) in the form

∫

D

γ∗ (vC⌋dI ∧ dXD)

︸ ︷︷ ︸

=I1(γ)=0

+

∫

∂D

(γ ◦ ιD)
∗
(vC⌋ (IdXD))

︸ ︷︷ ︸

=I2(γ)=0

= 0

(12)
with the inclusion ιD : ∂D → D. The functional I2 (γ)
vanishes since vC⌋ (IdXD) = 0 due to the use of a vertical
vector field vC . The system analysis is based on proofing
the (non-)existence of an invariant functional I for the
considered transformation groups, i.e., since I1 (γ) = 0

∫

D

γ∗ (vC (I) ∧ dXD) =

∫

D

γ∗ (〈dI, vC〉 ∧ dXD) = 0 (13)

with

dI = ∂iIdX
i + ∂αIdx

α

︸ ︷︷ ︸

=ωX

+ ∂ςIdu
ς

︸ ︷︷ ︸

=ωU

where dI : E → T ∗ (E) is the differential of I. Hence, due
to the special structure of (6) the equations (13) become

∫

D

γ∗ ((〈ωX , vX 〉 + 〈ωU , vU 〉) ∧ dXD)

=

∫

D

γ∗((vα
X ∂αI

︸︷︷︸

=ωX
α

+ vς
U ∂ςI
︸︷︷︸

ωU
ς

) ∧ dXD)

= 0.

(14)

In order to incorporate the restrictions of the vertical
vector field vC we prolongate the functional (14) with
respect to time, i.e. we obtain the terms

∫

D

j1γ∗
(
d[1,0]

(
vα
Xω

X
α + vς

Uω
U
ς

)
dXD

)

=

∫

D

j1γ∗
(
d[1,0] (v

α
X )ωX

α + vα
Xd[1,0]

(
ωX

α

)
dXD

)

+

∫

D

j1γ∗
(
d[1,0] (v

ς
U )ωU

ς + vς
Ud[1,0]

(
ωU

ς

)
dXD

)

= 0

on the domain. Due to the explicit structure of the domain
restrictions we can directly plug in the equations (8)
yielding the relation

∫

D

j1γ∗
(
d[1,0] (v

α
X )ωX

α dXD

)

=

∫

D

jnγ∗
((

d[0,L]

(

v
β
X

)

∂
[0,L]
β Fα

D(α)

)

ωX
α dXD

)

+

∫

D

jnγ∗
((

d[0,L] (v
ς
U ) ∂[0,L]

ς Fα
D(α)

)

ωX
α dXD

)

.

Hence, it may happen that the latter functional is not
appropriate in this form for this task since the prolongated
functional I1 (γ) can depend on the derivatives of compo-
nents of the vector field vC , and, thus, can contribute to the
so far vanishing integral I2 (γ) over the boundary. This is a
well known problem in the calculus variation, which could
be solved alternatively by using Lepagian forms, see, e.g.,
Giachetta et al. [1997]. Considering d[0,J] = di ◦dj ◦ · · ·◦dl

i, j, . . . , l ∈ {2, . . . , nX} 6= 1 the identity
∫

D

jnγ∗
((
di ◦ dj ◦ · · · ◦ dl

(
vl

))
ωldXD

)
=

= −

∫

D

jnγ∗
((
dj ◦ · · · ◦ dl

(
vl

))
di (ωl) dXD

)

+

∫

D

jnγ∗(di

((
dj ◦ · · · ◦ dl

(
vl

))
ωldXD

)

︸ ︷︷ ︸

d̃h((dj◦···◦dl(v))⌋ω∧∂i⌋dXD)

)

= −

∫

D

jnγ∗ ((dj ◦ · · · ◦ dl (vα)) di (ωα) dXD)

+

∫

D

d̃
(
jn−1γ∗ (dj ◦ · · · ◦ dl (v))⌋ω ∧ ∂i⌋dXD

)

︸ ︷︷ ︸

,

=
∫

D
ι∗
D

(jn−1γ∗(dj◦···◦dl(v))⌋ω∧∂i⌋dXD)

(15)
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for v = vl∂l : E → T (E) and ωldx
l : E → T ∗(E),

can be derived, where Stokes’ Theorem (2) is applied

and d̃h = dX i ∧ di for i ∈ {2, . . . , nX} is induced by

the original horizontal derivative dh as well as d̃ from
d, correspondingly. In order to obtain a domain form
depending only on the components of the vector field vC ,
but not on their derivatives, we are successively using (15).
This delivers the following terms on the domain

∫

D

jnγ∗d[1,0]

(
ωX

α

)
vα
XdXD

+

∫

D

jnγ∗
(

(−1)
#L

d[0,L]

(

ωX
α ∂

[0,L]
β Fα

D(α)

))

v
β
XdXD

+

∫

D

jnγ∗
(

(−1)
#L

d[0,L]

(

ωX
α ∂

[0,L]
ς Fα

D(α)

)

vς
UdXD

)

+

∫

D

j1γ∗
(
d[1,0] (v

ς
U )ωU

ς dXD

)
= 0

(16)
for ∀L 0 6 #L 6 n and on the boundary

∫

∂D

ι∗D

(

jn−1γ∗
(

(−1)
#L

d[0,L]

(

∂
[0,L]
β Fα

D(α)ω
X
α

)

·

d[0,L−M−1]

(

v
β
X

)

dXD

))

+

∫

∂D

ι∗D

(

jn−1γ∗
(

(−1)
#L

d[0,L]

(

∂[0,L]
ς Fα

D(α)ω
X
α

)

·

d[0,L−M−1] (v
ς
U ) dXD

))
= 0

(17)
for ∀L 1 6 #L 6 n and 0 6 #M 6 n − 1. The
equations on the domain (16) must now hold along a given
trajectory γ and independently from a special choice of the
input u, i.e., independent from the choice of vX , vU and
d[1,0] (vU ), since there are no further restrictions on the
domain. Thus, for equations (16) to hold we require that
the corresponding braced terms vanish along a trajectory
γ and so the following geometric domain conditions can
be extracted as

d[1,0]

(
ωX

α

)
+ (−1)

#L
d[0,L]

(

ωX
β ∂

[0,L]
α F

β

D(β)

)

= 0

d[1,0]

(
ωU

ς

)
+ (−1)#L

d[0,L]

(

ωX
β ∂

[0,L]
ς F

β

D(β)

)

= 0

ωU
ς = 0.

(18)

The latter equations (18) show that the function part I of
the invariant functionals I (10) of interest has in fact the
form I = I (X,x) and does not depend on the input u.
Next, we can substitute the solution ωU

ς = 0 and gather a

new system of equations for the unknowns ωX
α

d[1,0]

(
ωX

α

)
+ (−1)

#L
d[0,J̄]

(

ωX
β ∂

[0,L]
α F

β

D(β)

)

= 0

(−1)
#L

d[0,J̄]

(

ωX
β ∂

[0,L]
ς F

β

D(β)

)

= 0.
(19)

In order to obtain the boundary conditions for the invari-
ant, we pay attention to the vector field restrictions (9) on
the boundary. According to (9) we consider all non-trivial
terms

d[0,L∂ ] (v
α
X ) ∂[0,L∂ ]

α F
η

B(η) = −d[0,L∂ ] (v
ς
U ) ∂[0,L∂ ]

ς F
η

B(η), (20)

with which we have to successively substitute all these
terms in (17) to incorporate all present boundary condi-
tions of the variational vector field vC .

Then, from the geometrical point of view it follows that
the system (3) is obviously (locally) not accessible along a
trajectory γ, if at least one non trivial invariant for the set
of all admissible symmetry groups Φε, having

(
x[1,0] − FD

)

and FB as invariants, exists.

Theorem 1. On a time intervall T̄ = [t0, t0 + T ], T > 0 let
γ : Ω → EX be a solution of the dynamic system (3) for
some input µ̄ : Ω → EU . A dynamic system (3), which is
(locally) accessible along the trajectory γ, must fulfill in
an arbitrarily small neighborhood of γ that the equations
(19) as well as the extracted conditions from (17), which
already incorporate (20), imply the trivial invariant as
the only admissible solution, i.e., a functional of the form
I (γ) =

∫

D (I (X) ◦ γ) dXD, which is independent of the

system state x and the input u or, equivalently, ωX
α = 0

and ωU
ς = 0.

Proof. Assuming a non-trivial invariant functional I (γ)
depending on x, then, we are able to choose a point γ̃t0+T

in the arbitrarily small open neighborhood Vγt0+T
of γt0+T ,

which fulfills I (γ̃t0+T ) 6= I (γt0+T ). Hence, the mapping
fxt0+T

is obviously not surjective locally since we cannot
find an input µ : Ω → EU according to (5) steering the
system to the point γ̃t0+T . I.e., if there exists such a I (γ),
any neighborhood Vγt0+T

of γt0+T will not be open and so
the system is not accessible.

Remark 2. It is worth mentioning that the accessibility
conditions represent linear differential equations with ho-
mogeneous boundary conditions and for linear systems the
domain and boundary conditions from Theorem 1 do not
depend on the fixed trajectory.

As can easily be seen, by the accomplishment of the pull
back in (16) resp. (17) along a given solution γ, the
problem can be stated by (19) and (17), incorporating
(20), in the unknowns ωX

α , which depend only on X , and
on the normally unkown solution γ. In addition, all total
derivatives dJ degenerate to partial derivatives ∂J .

4. EXAMPLE

In order to get a better understanding for the developed
theory let us consider an illustrative example, namely the
gantry crane with two heavy chains, see Figure 1.

x5
0

x1
00

x7
0

X2

carriage (mass mc)

chains (mass density ρ)

weights(mass mw,i)

0 u1 = F

x3
00

x9
0

Fig. 1. Schematic diagram of the gantry crane
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Similar to Thull et al. [2005] the system is given by

x1
10 = F 1

D(1) = x2
00

x2
10 = F 2

D(2) = ρ−1d01

(
P1

(
X2

)
x1

01

)

x3
10 = F 3

D(3) = x4
00

x4
10 = F 4

D(4) = ρ−1d01

(
P2

(
X2

)
x3

01

)

x5
1 = F 5

D(5) = x6
0

x6
1 = F 6

D(6) = 2m−1
c

(
P1 (0)x1

01 + P2 (0)x3
01

)
+ u1

x7
1 = F 7

D(7) = x8
0

x8
1 = F 8

D(8) = −2m−1
w,1P1 (L)x1

01

x9
1 = F 9

D(9) = x10
0

x10
1 = F 10

D(10) = −2m−1
w,2P2 (L)x3

01

(21)

and

0 = F 1
B(1) = x1

00 − x5
0 0 = F 5

B(5) = x1
00 − x7

0

0 = F 2
B(2) = x2

00 − x6
0 0 = F 6

B(6) = x2
00 − x8

0

0 = F 3
B(3) = x3

00 − x5
0 0 = F 7

B(7) = x3
00 − x9

0

0 = F 4
B(4) = x4

00 − x6
0 0 = F 8

B(8) = x4
00 − x10

0

with D (1, . . . , 4) = [0, L], D (5, 6) = B (1, . . . , 4) =
[0], D (7, . . . , 10) = B (5, . . . , 8) = [L], Pi(X

2) =
g

[
ρ(L−X2) +

mw,i

2

]
for 0 ≤ X2 ≤ L and i = 1, 2,

and mc,mw,1,mw,2, g, ρ, L ∈ R
+. The system represents

an interacting system, whose evolution is governed by
ODEs and PDEs, respectively. The Hilbert space HD =
{z = (x1

0, . . . , x
7
0) ∈ L2(0, L) × H1(0, L) × L2(0, L) ×

H1(0, L) × R × · · · × R} equipped with a suitable inner
product 〈·, ·〉HD

can be introduced as a function space for
the system state. For the corresponding evolution equation
ż = Az + Bu it can be shown that the linear operator
A : D(A) ⊂ HD → HD is the infinitesimal generator of a
C0-operator-semigroup (u = 0), see Thull et al. [2005] for
similar results.

Proposition 1. The dynamic system (21) is not accessible
along any trajectory for mw,1 = mw,2.

Proof. Considering a solution γ : Ω → EX of the system
(21) we are interested in the (non-)existence of an invariant
functional I of the form

I (γ) =

∫

D(1)

(
I

(
X,x1, x2, x3, x4

)
◦ γ

)
dX2

+
[
I

(
X,x5, x6

)
◦ γ

]

D(5)
+

[
I

(
X,x7, . . . , x10

)
◦ γ

]

D(7)
,

which consists of three parts since the system (21) repre-
sents a coupled system. According to Theorem 1 the (local)
accessibility conditions follow as

v1
X : d10

(
ωX

1

)
+ ρ−1d01

(
P1

(
X2

)
d01

(
ωX

2

))
= 0

v2
X : d10

(
ωX

2

)
+ ωX

1 = 0
v3
X : d10

(
ωX

3

)
+ ρ−1d01

(
P2

(
X2

)
d01

(
ωX

4

))
= 0

v4
X : d10

(
ωX

4

)
+ ωX

3 = 0

(22)

on the domain D (1, . . . , 4),

v5
X : d10

(
ωX

5

)
− ρ−1P1 (0) d01

(
ωX

2

)

− ρ−1P2 (0) d01

(
ωX

4

)
= 0

v6
X : d10

(
ωX

6

)
+ ωX

5 = 0
d01

(
v1
X

)
: ρ−1P1 (0)ωX

2 + 2m−1
c P1 (0)ωX

6 = 0
d01

(
v3
X

)
: ρ−1P2 (0)ωX

4 + 2m−1
c P2 (0)ωX

6 = 0
v1
U : ωX

6 = 0

(23)

on D (5, 6) and

v7
X : d10

(
ωX

7

)
− ρ−1P1 (L) d01

(
ωX

2

)
= 0

v8
X : d10

(
ωX

8

)
+ ωX

7 = 0
d01

(
v1
X

)
: ρ−1P1 (L)ωX

2 − 2m−1
w,1P1 (L)ωX

8 = 0

v9
X : d10

(
ωX

9

)
− ρ−1P2 (L) d01

(
ωX

4

)
= 0

v10
X : d10

(
ωX

10

)
+ ωX

9 = 0
d01

(
v3
X

)
: ρ−1P2 (L)ωX

4 − 2m−1
w,2P2 (L)ωX

10 = 0

(24)

onD (7, . . . , 10). Since P1

(
X2

)
= P2

(
X2

)
for mw,1 =

mw,2 one obtains by means of the following coordinate
transformation

ω̄X = (ωX
1 − ωX

3 , ω
X
2 − ωX

4 , ω
X
1 + ωX

3 ,

ωX
2 + ωX

4 , ω
X
5 , ω

X
6 , ω

X
7 − ωX

9 ,

ωX
8 − ωX

10, ω
X
7 + ωX

9 , ω
X
8 + ωX

10)

and some basic modifications also the decoupled equation
system

F̄ 1
D(1) = d10

(
ω̄X

1

)

+ ρ−1d01

(
P1

(
X2

)
d01

(
ω̄X

2

))
= 0

F̄ 2
D(1) = d10

(
ω̄X

2

)
+ ω̄X

1 = 0

F̄ 3
B(1) = ω̄X

2 = 0

F̄ 4
B(7) = d10

(
ω̄X

7

)
− ρ−1P1 (L) d01

(
ω̄X

2

)
= 0

F̄ 5
B(7) = d10

(
ω̄X

8

)
+ ω̄X

7 = 0

F̄ 6
B(7) = ρ−1P1 (L) ω̄X

2 − 2m−1
w,1P1 (L) ω̄X

8 = 0.

(25)

The equations (25) are equal to the equations of a gantry
crane with a single heavy chain and fixed carriage and
admit non-trivial solutions implying non-trival invariants.

5. CONCLUSIONS

In this contribution the class of distributed parameter
systems was investigated from the differential geometrical
point of view which allows a covariant system represen-
tation. Based on this geometric picture a system analysis
concerning the accessiblity of distributed parameter sys-
tems was motivated by a transformation group approach
(Lie groups). By means of this framework conditions on
the (local) (non-)accessibility can be provided.
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