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Abstract:

This paper considers output estimator based fault detection problem for a class of nonlinear
systems with unknown system parameters. Because observer design for such systems is extremely
difficult if not impossible, output estimator design is used for the purpose of fault detection. In
order to achieve output estimator design using adaptive approaches, a multi-input multi-output
(MIMO) nonlinear system is first decomposed into a group of multi-input single-output (MISO)
nonlinear systems. For each MISO nonlinear system, an output equation is derived through
filtering the output, the inputs, and those nonlinear functions of the outputs, which depends
linearly on all unknown system parameters. Based on the output equation and using adaptive
approaches, an adaptive output estimator is designed for the corresponding output. By defining
residuals using the adaptive output estimation errors resulting from the output estimators, a
fault detection scheme is proposed. The efficacy of the proposed fault detection scheme is tested
on a single-link flexible robot manipulator model thorough computer simulations.

1. INTRODUCTION

A common assumption for non-adaptive fault diagnosis
schemes is that the system (or the nominal system) pa-
rameters are known (Saif and Guan (1993); Xiong and
Saif (2000); Patton and Chen (2000); Saberi et al. (2000);
Edelmayer et al. (2006); Gao et al. (2007)). However,
in many real control systems (especially adaptive control
systems), system parameters are often unknown. For such
systems, adaptive approaches are needed to solve fault
diagnosis problems.

Observer based strategies are commonly explored for fault
diagnosis problems in systems with unknown parameters.
However, a major difficulty in this approach is that adap-
tive observer design for multi-input multi-output (MIMO)
systems is extremely difficult if not impossible. In the
literature, adaptive observer design problem is only well
solved for unknown systems with single output (Bastin
and Gevers (1988); Kreisselmeier (1977); Marino (1990);
Marino and Tomei (1992, 1995); Shafai et al. (2001)).
For MIMO systems with unknown linear system part,
the problem of adaptive observer design remains open
because none of the existing adaptive observers (see for
example, those reported in Farza et al. (2005); Yu et al.
(2003); Rajamani and Hedrick (1995); Zhang and Delyon
(2001); zhang (2002)) are applicable. This observation
is even true for linear systems with all system matrices
unknown. Because of the difficulty in adaptive observer
design, adaptive observer based fault diagnosis has only
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had limited success. Existing fault diagnosis schemes have
to put restrictions on the system structure and/or the
unknown system parameters (Ding and Frank (1993);
Yang and Saif (1997); Jiang et al. (2004); Shafai et al.
(2001)) though they are not even applicable to unknown
MIMO linear systems.

In order to remove the limitation of observer design and to
deal with more challenging fault diagnosis problems, the
idea of output estimator design has been proposed and
used recently in Chen and Saif (2006, 2007a,b,c). In Chen
and Saif (2006, 2007a), robust output estimators were de-
signed to deal with unmatched unknown inputs under the
condition that all the system parameters are known. For
multi-input single-output linear systems with unknown
system parameters, an adaptive output estimator based
fault diagnosis scheme was proposed by Chen and Saif
(2007b), which is able to solve the fault detection problem
and the multiple constant actuator fault isolation problem.
Using the idea of adaptive output estimator design, Chen
and Saif (2007c) was able to solve sensor fault diagnosis
problem for general unknown MIMO linear systems.

The purpose of this paper is to solve the fault detection
problem for a class of MIMO nonlinear systems with un-
known linear system part and with nonlinear functions of
the outputs multiplied by unknown parameters. Because of
the difficulty encountered in the adaptive observer design
for MIMO systems with unknown system parameters, the
idea of using adaptive observer is abandoned here, and
instead, we propose to use the idea of adaptive output
estimator design to accomplish fault detection.
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The remainder of the paper is arranged as follows: In
Section 2, a MIMO nonlinear system model is introduced
and the problem of interest is formulated. In Section
3, the MIMO system is decomposed into a group of
MISO systems and a transfer function description for
each MISO system is presented. In Section 4, in order to
design output estimators, an output equation is derived
for each MISO based on its transfer function. In Section
5, adaptive output estimators are designed based on the
output equations derived, and an adaptive fault detection
scheme is proposed based on the designed adaptive output
estimators. The proposed adaptive fault detection scheme
is tested on a single-link flexible robot manipulator model
in Section 6 and simulation results are provided. Finally,
concluding remarks are made in the last section.

2. SYSTEM OF INTEREST AND PROBLEM
FORMULATION

Consider MIMO nonlinear systems described as below

ẋ(t) = Ax(t) + Bu(t) + Df(y(t))

y(t) = Cx(t) (1)

where x(t), y(t), u(t) are the system state vector, output
vector and input vector respectively, and x(t) ∈ Rn,
y(t) = (y1(t) · · · yp(t))

T , u(t) = (u1(t) · · · um(t))T ,
f(y(t)) = (f1(y(t)) · · · fq(y(t)))T is a vector of nonlinear
functions, and the system matrices A, B, C and D are not
assumed to be known.

• Assumption A1: n, m, and p are known.
• Assumption A2: fj(y(t)), j = 1, · · · , q are known.

For system (1), the following problem is formulated.

Adaptive Fault Detection Problem:
Under the condition that assumptions A1 and A2 are
satisfied, design a fault detection scheme such that it can
detect faults adaptively.

If only assumptions A1 and A2 are assumed, adaptive
observer for (1) is extremely difficult if not impossible
to design since no adaptive observer has been found for
such a system. Moreover, if systems given by (1) are not
detectable, no observers can be designed to estimate all
the states asymptotically. Because of these difficulties in
observer design, the idea of adaptive observer based fault
diagnosis is abandoned in this paper. Instead, the idea
of adaptive output estimator design for fault diagnosis is
applied because output estimator design is possible for
systems given by (1) under assumptions A1 and A2 and
output estimators are sufficient for the purpose of fault
diagnosis. As will be shown later in this paper, it is the idea
of designing output estimators rather than state observers
that leads to an elegant solution to the Adaptive Fault
Detection Problem.

3. SYSTEM DECOMPOSITION AND RELATED
TRANSFER FUNCTION DESCRIPTION

It is found that trying to estimate all the outputs directly
from the MIMO system given by (1) is very difficult.
This observation motivates us to transform the difficult

MIMO output estimator design problem into several sim-
pler MISO output estimator design problems through de-
composing (1) into a group of MISO systems, as will be
shown in the sequel.

Let C = (CT
1 · · · CT

p )T , B = (B1 · · · Bm), and
D = (D1 · · · Dq). It is obvious that a MIMO system given
by (1) can be decomposed into p MISO systems, where for
1 ≤ j ≤ p, the jth MISO system is of the following form

ẋ(t) = Ax(t) + Bu(t) + Df(y(t)),

yj(t) = Cjx(t). (2)

Because (Cj , A) is not necessarily detectable even when
(C, A) is, it is not appropriate to design any observer for
the MISO system defined by (2). Therefore, the outputs
may not be estimated through observer design.

In order to estimate the outputs without designing ob-
servers for the MISO systems defined by (2), the following
input-output relation of u(t) and yj(t) will be used.

yj(t) =
m

∑

l=1

Gjl(s)ul(t) +

q
∑

k=1

Gjk(s)fk(y(t)) (3)

where for 1 ≤ j ≤ p, 1 ≤ l ≤ m, and 1 ≤ k ≤ q

Gjl(s) = Cj(sI − A)−1Bl

=
bjl,n−1s

n−1 + · · · + bjl,1s + bjl,0

sn + an−1sn−1 + · · · + a1s + a0
(4)

and

Gjk(s) = Cj(sI − A)−1Dk

=
djk,n−1s

n−1 + · · · + djk,1s + djk,0

sn + an−1sn−1 + · · · + a1s + a0
(5)

and sn + an−1s
n−1 + · · · + a1s + a0 = det(sI − A).

The expression in (3), though involves both frequency- and
time- domain representations that may appear weird, is
a common practice in adaptive control community. For
convenience, define a(s) = sn + an−1s

n−1 + · · ·+ a1s + a0,
bjl(s) = bjl,n−1s

n−1 + · · · + bjl,1s + bjl,0, and djk(s) =
djk,n−1s

n−1 + · · · + djk,1s + djk,0.

4. OUTPUT EQUATIONS FOR MISO SYSTEMS

In the remaining part of this paper, the dependence
of variables on time t will be dropped for the sake of
simplicity, for example, uj(t) will be simply written as
uj. For each 1 ≤ j ≤ p, based on (3), (4), and (5), and
inspired by Kreisselmeier (1977) and Krstic et al. (1994),
the following state space realization can be given for (3).

ẋj = Āxj − ayj + bj1u1 + · · · + bjmum

+dj1f1(y) + · · · + djqfq(y)

yj = xj,1 (6)

where xj = (xj,1 · · · xj,n)T and
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Ā =















0 1 0 · · · 0

0 0 1
. . . 0

...
...

...
. . .

...
0 0 · · · 0 1
0 0 0 · · · 0















, a =







an−1

...
a0




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,
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





bjl,n−1

...
bjl,0






, 1 ≤ l ≤ m,

djk =







djk,n−1

...
djk,0






, 1 ≤ k ≤ q. (7)

It is important to note that (6) is an observable realization,
which does not include the unobservable modes in the
original system and thus is not the same as (2), which
might not be observable. It is also crucial to know that the
outputs for both (6) and (2) are the same. Therefore, (6)
can always be used to estimate yj regardless of whether (2)
is observable or not. This implies that it is not necessary
to require the original system (1) to be observable for the
purpose of output estimation.

For each 1 ≤ j ≤ p, in order to estimate yj , we need to
derive the state estimate for (6). To do so, ul, 1 ≤ l ≤ m,
yj , and fk(y), 1 ≤ k ≤ q are filtered by the following
n−dimensional filters:

λ̇l = A0λl + enul, 1 ≤ l ≤ m (8)

η̇j = A0ηj + enyj (9)

ν̇k = A0νk + enfk(y), 1 ≤ k ≤ q (10)

where A0 = Ā − K(1 0 · · · 0) and K = (K1 · · ·Kn)T is
chosen such that A0 is Hurwitz, and for any 1 ≤ i ≤ n,
ei = (ei,1, · · · , ei,n)T ∈ Rn is defined by ei,i = 1 and
ei,j = 0 for j 6= i.

After some matrix manipulations, it can be shown that

a(A0)en = a − K

bjl(A0)en = bjl, 1 ≤ l ≤ m

djk(A0)en = djk, 1 ≤ l ≤ q (11)

where a(A0), bjl(A0), 1 ≤ l ≤ m, and djk(A0), 1 ≤ l ≤ q
are matrix polynomials with a(s), bjl(s), 1 ≤ l ≤ m, and
djk(s), 1 ≤ k ≤ q being defined earlier.

Now the estimate for xj is formed as

x̂j =
m

∑

l=1

bjl(A0)λl +

q
∑

k=1

djk(A0)νk − a(A0)ηj (12)

Using (6) and (8)-(12), it can be verified that the esti-
mation error εj = (εj,1, εj,2, · · · , εj,n)T = xj − x̂j sat-
isfies ε̇j = A0εj . Denote ξji = Ai

0ηj , 0 ≤ i ≤ n − 1,
ξjn = −An

0ηj , υli = Ai
0λl, 0 ≤ i ≤ n − 1, 1 ≤ l ≤ m,

and ϕki = Ai
0νk, 0 ≤ i ≤ n − 1, 1 ≤ k ≤ q, then (12) can

be rewritten as

xj = ξjn −
n−1
∑

i=0

aiξji +
m

∑

l=1

n−1
∑

i=0

bjl,iυli

+

q
∑

k=1

n−1
∑

i=0

djk,iϕki + εj (13)

It can be checked that all the ξ, υ, and ϕ signals and their
derivatives are explicitly available:

ξjn =−An
0ηj , ξ̇jn = A0ξjn + kyj,

ξji = Ai
0ηj , ξ̇ji = A0ξji + en−iyj ,

υli = Ai
0λl, υ̇li = A0υli + en−iul,

ϕki = Ai
0νk, ϕ̇ki = A0ϕki + en−ifk(y), (14)

where 0 ≤ i ≤ n − 1, 1 ≤ l ≤ m, 1 ≤ k ≤ q.

It should be pointed out the estimate given by (12) can not
be applied directly since the parameters ai, 0 ≤ i ≤ n− 1,
bli, 0 ≤ i ≤ n − 1, 1 ≤ l ≤ m, and dki, 0 ≤ i ≤ n −
1, 1 ≤ k ≤ q are unknown.

5. ADAPTIVE FAULT DETECTION

For each 1 ≤ j ≤ p, under a no fault scenario, it follows
from (6) and (13) that

ẏj = ξjn,2 − (ξj(2) + eT
1 yj)a +

m
∑

l=1

(υl(2) + eT
1 ul)bjl

+

q
∑

k=1

(ϕk(2) + eT
1 fk(y))djk + εj,2 (15)

where the notations are defined as

ξT
jn = (ξjn,1, ξjn,2, · · · , ξjn,n), ξ(2) = (ξj(n−1),2, · · · , ξj0,2)

and

υl(2) = (υl(n−1),2, · · · , υl0,2), ϕk(2) = (ϕk(n−1),2, · · · , ϕk0,2).

The output equation given by (15) is desirable because an
estimate for each yj is allowed to be designed separately.
However, unlike in Chen and Saif (2007c), yj is no more
independent from other outputs because of the existence
of nonlinear functions fk(y)), 1 ≤ k ≤ q. As a result,
sensor fault isolation can not be achieved using the idea in
Chen and Saif (2007c). This is the reason why only fault
detection is considered in this paper.

In model based fault diagnosis, to detect faults, residuals
are generated and monitored. To this end, for each 1 ≤ j ≤
p, an estimate for the output yj will be constructed based
on (15). By utilizing the adaptive technique, an estimate
of the output yj is given as

˙̂yj =−cyj
(ŷj − yj) + ξjn,2 − (ξj(2) + eT

1 yj)âyj

+

m
∑

l=1

(υl(2) + eT
1 ul)b̂jl +

q
∑

k=1

(ϕk(2) + eT
1 fk(y))d̂jk(16)

where âyj
, b̂jl, 1 ≤ l ≤ m, and d̂jk, 1 ≤ k ≤ q are the

estimates of a, bjl, 1 ≤ l ≤ m, and djk, 1 ≤ k ≤ q, cyj
> 1

is a positive design constant.

The update laws for the unknown parameter vectors are
given below

˙̂ayj
= γayj

(ξj(2) + eT
1 yj)

T (ŷj − yj)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10120



˙̂
bjl =−γbjl

(υl(2) + eT
1 ul)

T (ŷj − yj), 1 ≤ l ≤ m

˙̂
djk =−γdjk

(ϕk(2) + eT
1 fk(y))T (ŷj − yj), 1 ≤ k ≤ q(17)

where γayj
, γbjl

, 1 ≤ l ≤ m, and γdjk
, 1 ≤ k ≤ q are

positive design constants.

By letting j = 1, 2, · · · , p, all the outputs, that is,
y1, y2, · · · , yp can be estimated adaptively based on (16)
and (17). Define rj(t) = ŷj − yj , j = 1, 2, · · · , p, the
following result is obtained.

Theorem 1. Under Assumptions A1 and A2, if there is no
fault in the control system and the controller designed
maintains inputs and outputs that are all bounded, then
limt→∞rj(t) = 0 for all 1 ≤ j ≤ p.

Proof. It follows from (15) and (16) that

ṙj(t) =−cyj
rj(t) − (ξj(2) + eT

1 yj)(âyj
− a)

+

m
∑

l=1

(υl(2) + eT
1 ul)(b̂jl − bjl)

+

q
∑

k=1

(ϕk(2) + eT
1 fk(y))T (d̂jk − djk) − εj,2 (18)

where εj satisfies ε̇j = A0εj and A0 is Hurwitz.

Choose a Lyapunov function as

Vj =
1

2
r2
j +

1

2γayj

(âyj
− a)T (âyj

− a)

+

m
∑

l=1

1

2γbjl

(b̂jl − bjl)
T (b̂jl − bjl)

+

m
∑

k=1

1

2γdjk

(d̂jk − djk)T (d̂jk − djk) + εT
j P0εj (19)

where P0 is the positive definite solution of P0A0+AT
0 P0 =

−I.

Differentiate the above Lyapunov function with respect to
t and use (18), one obtains

V̇j =−cyj
r2
j +

1

γayj

[ ˙̂a
T

yj
− γayj

(ξj(2) + eT
1 yj)rj ](âyj

− a)

+

m
∑

l=1

1

γbjl

[
˙̂
b
T

jl + γbjl
(υl(2) + eT

1 ul)rj ](b̂jl − bjl)

+
m

∑

k=1

1

γdjk

[
˙̂
d

T

jk + γdjk
(ϕk(2) + eT

1 fk(y))rj ](d̂jk − djk)

− rjεj,2 − εT
j εj (20)

By substituting (17) into the above equation, it is easy to
get

V̇j = −cyj
r2
j − rjεj,2 − εT

j εj

= −(cyj
− 1)r2

j − (rj +
1

2
εj,2)

2

−(ε2
j,1 +

3

4
ε2

j,2 + ε2
j,3 + · · · + ε2

j,n)

≤−(cyj
− 1)r2

j

≤ 0 (since cyj
> 1) (21)

Since V̇j ≤ 0, Vj(t) is bounded. Hence rj(t), the estimates

âyj
, b̂jl, 1 ≤ l ≤ m, and d̂jk, 1 ≤ k ≤ q are all bounded.

Because yj(t) and ul(t), 1 ≤ l ≤ m are bounded, it follows
that all ξ, υ, and ϕ signals are bounded. Hence it follows
from (18) that ṙj(t) is bounded. From (21), it can be

shown that
∫

∞

0 r2
j dt is bounded. This together with the

boundness of ṙj(t) proves that limt→∞rj(t) = 0. This
completes the proof. ¶

Remark 1. The approach taken to construct the output es-
timates adaptively is quite different from adaptive observer
based techniques proposed in the literature for nonlinear
systems. The main advantage here is that it is no longer
necessary to require the original systems to be detectable,
and there are no matched conditions on the unknown
system parameters.

Theorem 1 serves as a foundation for adaptive fault
detection. If there is no fault in presence, according to
Theorem 1, r1(t), · · · , rp(t) will all tend to zero. Hence, a
fault is declared if any of them becomes nonzero. To be
specific, an adaptive fault detection scheme is proposed as
follows.

(1) Solve equations (16) and (17) to obtain ŷj for j =
1, 2, · · · , p.

(2) For each j = 1, 2, · · · , p, compute rj(t) = ŷj − yj and
define residuals as |rj(t)|.

(3) Choose a threshold ǫThre,j for each |rj(t)|.
(4) For each 1 ≤ j ≤ p, compare the residual |rj(t)| with

the threshold ǫThre,j . If any residual goes beyond its
corresponding threshold, faults are detected.

Remark 2. It follows from (18) that both sensor faults
and actuator faults may cause all residuals to exceed the
threshold. Hence, any one of the residuals |rj(t)|, j =
1, 2, · · · , p may be sufficient to fulfill the task of fault
detection. Because there are p residuals in total, one has re-
dundant information for fault detection. This redundancy
is desirable because it allows for a more reliable fault
decision. For example, if all residuals exceed the threshold,
one can trigger a fault alarm more confidently and thus be
able to reduce false alarms. In addition, one can also define
new residuals based on |rj(t)|, j = 1, 2, · · · , p. For example,
one can use rall =

∑m

j=1 |rj(t)| to indicate a fault.

Theoretically speaking, the threshold, that is, ǫThre,j could
be chosen arbitrarily small. However, in practical situa-
tions, because other unconsidered uncertainties may exist,
too small ǫThre,j may lead to too many false alarms. On
the other hand, too large ǫThre,j may increase the missed
detections. Trade-off has to be made on the choice of a
suitable threshold.

In the following, some insights will be given on threshold
selection through investigating the relation between the
design constant cyj

and the threshold ǫThre.

Denote Mj(t) = −(ξj(2) + eT
1 yj)(âyj

− a) +
∑m

l=1(υl(2) +

eT
1 ul)(b̂jl−bjl)+

∑q

k=1(ϕk(2) +eT
1 fk(y))T (d̂jk −djk)−εj,2,

then, using (18), one gets
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rj(t) = rj(0)e−cyj
t + e

−cyj
t

t
∫

0

e
cyj

τ
Mj(τ)dτ (22)

Assume that |Mj(t)| ≤ Mj0, it follows from (22) that

|rj(t)| ≤ (rj(0) −
Mj0

cyj

)e−cyj
t +

Mj0

cyj

(23)

In steady state, one will always have |rj(t)| ≤
Mj0

cyj

. Based

on this, it is easy to see that faults can not be detected

if one chooses ǫThre,j >
Mj0

cyj

. With fixed Mj0, the upper

bound of |rj(t)| will decrease as cyj
increases, which implies

the missed detections might increase as cyj
increases.

Therefore, cyj
should be chosen as small as possible to

reduce the missed detection rate.

6. AN EXAMPLE AND SIMULATION RESULTS

In this section, a single-link flexible robot manipulator
model in Kanellakopoulos et al. (1991) is used to test the
proposed adaptive fault detection scheme. Under certain
assumptions, the model takes the following form

J1q̈1 + F1q̇1 + K(q1 −
q2

N
) + mgdcosq1 = 0

J2q̈2 + F2q̇2 −
K

N
(q1 −

q2

N
) = Kti

LDi + Ri + Kbq̇2 = u (24)

According to Kanellakopoulos et al. (1991), after suitable
change of variables, (24) can be made into the following
form

ẋ1 = x2 + θ1x1

ẋ2 = x3 + θ2x1 + θ3cosx1

ẋ3 = x4 + θ4x1 + θ5cosx1

ẋ4 = x5 + θ6x1 + θ7cosx1

ẋ5 = θ8cosx1 + b0u

(25)

Due to lack of space, the physical meanings of all variables
and notations in this section are omitted but can be found
in Kanellakopoulos et al. (1991). Assume that y1 = x1

and y2 = x2, it is easy to see that (25) takes the form (1).
Therefore, the adaptive fault detection scheme developed
can be readily applied to the single-link flexible robot
manipulator model.

Simulations are done based on (25). The design parameters
are chosen as K = (17.5 120 402.5 659 420)T , all the c−
constants and the γ− constants are chosen equal to 2.
Three types of faults are considered.

• Case A– The actuator is stuck at a constant value,
that is, u = 0 after t > 20s.

• Case B– The sensor for x1 has a scaling error, that
is, y1(t) = 0.8x1(t) after t > 5s, where x1(t) is the
real output, and y1(t) is the measurement provided
by the sensor.
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Fig. 1. Adaptive detection of actuator faults
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Fig. 2. Adaptive detection of scaling sensor faults

• Case C– The sensor for x1 has an additive fault, that
is, y1(t) = x1(t) + 0.2sin(t− 10) after t > 10s, where
x1(t) is the real output, and y1(t) is the measurement
provided by the sensor.

The results for the above three cases are presented in
Figure 1, Figure 2, and Figure 3, respectively. After the
presence of an actuator fault at t = 20s, the second
residual in Figure 1 exceeds the threshold at t = 20.57s,
which means the fault is detected correctly within one
second. After the presence of a scaling sensor fault at
t = 5s, the first residual in Figure 2 exceeds the threshold
at t = 5.01s, which means the fault is detected correctly
very quickly, namely, within 0.02s. For the additive sensor
fault occurring at t = 10s, the first residual in Figure 2
exceeds the threshold at t = 10.03s, which means the fault
is detected correctly within 0.04s. Moreover, if one would
like to have a more solid detection decision, one can wait
until both residuals exceed their thresholds. In this way,
the fault is detected within 2s, 1s, and 4s according to
Figure 1, Figure 2, and Figure 3, respectively.

7. CONCLUSIONS

Adaptive fault detection problem was studied and solved
for a class of MIMO nonlinear systems with unknown
parameters. The output estimator design rather than state
observer design was used in developing an adaptive fault
detection scheme, which can be used to both detectable
and undetectable systems. Through decomposing a MIMO
system with p outputs into p MISO systems, the dif-
ficult fault detection problem for a MIMO system was
formulated as a group of simpler fault detection problems
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Fig. 3. Adaptive detection of additive sensor faults

for a group of separate MISO systems. This technique
leads to more solid fault detection decisions. The proposed
adaptive fault detection scheme was tested on a single-link
flexible robot manipulator model, and computer simula-
tion results have shown that its satisfactory performance.

Although the paper addressed and successfully solved fault
detection problem for the considered class of unknown
MIMO systems, fault isolation problem has not been
solved yet. Thus, one future research topic is to solve
the fault isolation problem for unknown MIMO nonlinear
systems.
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