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Abstract: In this paper a novel method is presented to design a sliding mode spatial control for
a large Pressurized Heavy Water Reactor (PHWR) using a new formulation of Multirate Output
Feedback (MROF). In the new formulation of MROF, the outputs of the system should be some
of the states of the system or system should be in special form. The non–linear model of PHWR
including xenon and iodine dynamics is characterized by 70 state variables and 14 inputs and
outputs each. Linear nodal model is obtained by linearizing the non–linear dynamic equations
of the reactor about the full power operating point. The 14 outputs of the PHWR are the power
levels in 14 zones, also these are the 14 states of the system. The PHWR model is perfectly
suitable for the application of this new formulation in which the states of the system can be
computed using reduced system matrix inversion. The PHWR is an ill–conditioned system and
the computation of the states of the system using existing MROF require the larger matrix
inversions which sometimes may not possible. The proposed approach avoids this difficulty and
produces the similar result as it is produced by the existing technique. The proposed control
method does not require state information of the system for feedback purposes and hence may
be easier to implement. From simulation of the non–linear model of the reactor in representative
transients, the proposed control scheme is found to be superior to other methods.

Keywords: Nonlinear system control; Output feedback control; Robust control; Tracking.

1. INTRODUCTION

Fission reactions in a nuclear reactor give rise to several
fission fragments and their decay products. Among these
substances, 135Xe is considered to be the most important
product in operation and control of thermal reactors due
to its exceptionally large thermal neutron absorption cross
section, see Duderstadt et al. (1976). This isotope is
formed to a small extent as a direct product of fission,
but a major proportion in a reactor originates from the
radioactive decay of 135I with a half life of 6.7 h. The
radioactive decay rate of 135Xe is less than that of 135I.
An immediate effect of an increase in neutron flux in
the reactor is an increase in the rate of consumption
of 135Xe, which in turn results into an increase in the
neutron flux further. The result is, continued decrease
in the xenon concentration and a steady increase in the
neutron flux until the delayed production of xenon, by
the decay of increasing concentration of iodine brings
about an increase in the amount of xenon. This process
may continue for about 10 h and then the reverse starts
taking place. Because of increased concentration of xenon,

the neutron flux starts decreasing. In this manner, the
neutron flux may undergo a slow variation caused due to
xenon. However, this does not represent a serious concern
in control and operation of a nuclear reactor, as such
oscillations in neutron flux are easily controlled by a
suitable control rod program.

A serious situation may arise in a large nuclear reactor
in which the different regions of the core may undergo
variations in neutron flux in opposite phase. If the oscil-
lations in the power distribution are left uncontrolled, the
power density and the rate of change of power at some
locations in the reactor core may exceed their respective
thermal limits, resulting into increased chances of fuel
failure. So, in large thermal nuclear reactors, it becomes
necessary to employ automatic power distribution control
systems, besides the system for control of global power.
The objective is to maintain the core power distribution
close to a desired shape.

The neutron flux signal and the other states are required
for the feedback purposes for many of the conventional
spatial control systems designed based on state feedback
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principle, refer to Tiwari (1999). In a reactor, in particu-
lar, the measurement of xenon and iodine concentrations
would be required. This represents a major drawback,
as measurement of xenon and iodine concentrations are
rather difficult. An alternative approach to overcome this
problem is to make use of an observer based design. But,
this increases the implementation cost and reduces the
reliability of the control system. Hence, it is desirable to go
for an output feedback design. The static output feedback
is one of the most investigated problems in the control
theory and applications, see Syrmos et al. (1997). However,
a major limitation of this approach is that the stability of
the closed loop system is not guaranteed. The dynamic
output feedback controller involves more dynamics and is
complex to design. Recently, a new approach known as
multirate output feedback, see e.g., Chammas et al. (1979),
Hagiwara et al. (1988), Werner (1998), and Werner et al.
(1995), has drawn much attention of many researchers. In
contrast to the observer based design, where the states
converge asymptotically to the actual states, exact com-
putation of states in just one sampling period is feasible if
multirate output feedback is employed.

In this paper a new formulation of multirate output
feedback, proposed by Bandyopadhyay et al. (2007) is used
to compute the states from the outputs and past inputs.
The new formulation avoids the higher dimension ill–
conditioned system matrix inversions and results identical
to those produced by the existing methods are obtained.
In Bandyopadhyay et al. (2007) computed states by new
approach are used for sliding mode control. In recent
years, sliding mode control has attracted the attention
of many researchers, see Emelyanov (1967), Furuta et al.
(2000), Gao et al. (1993), and Utkin (1977). Research
in discrete time sliding mode control has directly been
conducive with advancement of digital computers, see e.g.,
Bartoszewicz (1996), Furuta (1990), and Gao et al. (1995).
The sliding mode control considered in Bandyopadhyay
et al. (2007) is based on the work of Gao et al. (1995),
which has main drawback of chattering. PHWRs employ
computer control and therefore discrete–time sliding mode
control is particularly suited for implementation. Hence, in
this paper the sliding mode control proposed by Bartolini
et al. (1995) is considered to obtain spatial control for a
large PHWR. The method eliminates chattering unlike the
method used in Bandyopadhyay et al. (2007). Also in the
formulation by Bandyopadhyay et al. (2007) uncertainty is
not considered. This paper presents the new formulation
of MROF with uncertainty and application to a PHWR
control problem.

The rest of the paper is organized in the following se-
quence. Section 2 presents the state space representation of
nodal core model of the PHWR and Section 3 presents the
control approach. The results and discussion are presented
in Section 4, followed by the conclusion and the references.

2. PHWR MODEL AND ITS STATE SPACE
REPRESENTATION

2.1 Model of PHWR

To design a spatial control system, simplified dynamic
equations are obtained usually from neutron diffusion

equations. The simplified model of large PHWR is ob-
tained on the basis of the nodal approach. Fourteen fic-
titiously divided zones are considered as fourteen small
cores, each of which is coupled to its neighbouring zones
through neutron diffusion.

The following set of coupled differential equations repre-
sents nodal core model of the PHWR :

dPi

dt
= −αii

li
Pi +

z∑
j=1

αij

li
Pj

+

(−Ki (Hi − Hi0) − σXiXi

Σai
− β

li

)
Pi + λCi,(1)

dCi

dt
= −λCi +

β

li
Pi, (2)

dIi

dt
= γIΣfiPi − λIIi, (3)

dXi

dt
= γXΣfiPi + λIIi − (λX + σXiPi)Xi, (4)

dHi

dt
= −miqi, (5)

(i = 1, 2, . . . , z),
where Pi indicates the power level, Ci denotes effective one
group delayed neutron precursor concentration, Ii denotes
iodine concentration, Xi denotes xenon concentration and
Hi is the water level of ZCC in the ith zone of the reactor.
The description and the values of the several reactor
parameters and the steady state values of zonal powers
are as given in Tiwari et al. (2000).

2.2 State Space Representation of Nodal Core Model

The set of equations (1)–(5) can be linearized around the
steady state operating point and by defining the state,
control and output vectors respectively as

x =
[

δP1

P10
· · · δPz

Pz0

δC1

C10
· · · δCz

Cz0
(6)

δI1

I10
· · · δIz

Iz0

δX1

X10
· · · δXz

Xz0
δH1 · · · δHz

]T

,

u = [ δq1 . . . δqz ]T , (7)

y =
[

δP1

P10

δP2

P20
· · · δPz

Pz0

]T

, (8)

where δ denotes an incremental change, a linear model for
the reactor is obtained in standard state space representa-
tion as

ẋ = Ax + Bu,

y = Mx. (9)

3. CONTROL APPROACH

Consider the system given by (9). When the effect of
perturbations and external disturbances is considered, it
can be written as

ẋ = Ax + Bu + Dcf,

y = Mx = [Ep : 0]x. (10)
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Note that the output equation is in a special form such
that the first few states are available directly as outputs.
If the system is not in the above form, it is always possible
to transform a given system with full row rank output
matrix into the form of (10). Let the system be sampled
at every τ s and a discrete representation of the system is
given as

x(k + 1) = Φτx(k) + Γτu(k) + Dτf(k), (11)

y(k) = [Ep : 0]x(k) = Mx(k), (12)

where, x ∈ �n, u ∈ �m, y ∈ �p and Φτ , Γτ , M and Dτ

are of suitable dimensions. The disturbance part in (11)
is considered to be bounded and satisfies the matching
condition given in Gao et al. (1995). Let us assume that the
system in (10) is sampled at every Δ = τ

N instant, where
the constant N is chosen to be greater than or equal to
the observability index (ν) of (Φ, M). Then the following
system is obtained

x(k + 1) = Φx(k) + Γu(k) + Df(k), (13)

y(k) = [Ep : 0]x(k) = Mx(k). (14)

The system and input matrices for the τ system, given by
(11) and the Δ system, given by (13) have the relation

Φτ = ΦN , Γτ =

(
N−1∑
i=0

Φi

)
Γ, Dτ =

(
N−1∑
i=0

Φi

)
D.

Now x(k) is computed in the following way, where f(k)
and u(k) are held constant during the interval τ

y(k) = Mx(k),
y(k + Δ) = Mx(k + Δ),

= MΦx(k) + MΓu(k) + MDf(k),
y(k + 2Δ) = Mx(k + 2Δ),

= MΦ2x(k) + MΦΓu(k) + MΓu(k + Δ)
+MΦDf(k) + MDf(k + Δ),

...

y((k + 1) − Δ) = MΦN−1x(k) + M

N−2∑
i=0

ΦiΓu(k)

+M

N−2∑
i=0

ΦiDf(k).

Then a multirate output feedback representation, see
Werner (1998) is given

x(k + 1) = Φτx(k) + Γτu(k) + Dτf(k), (15)

yk+1 = M0x(k) + D0u(k) + Mdf(k), (16)

where,

yk =

⎡
⎢⎢⎢⎢⎣

y(k)
y(k + Δ)
y(k + 2Δ)

...
y((k + 1) − Δ)

⎤
⎥⎥⎥⎥⎦ , (17)

M0 =

⎡
⎢⎢⎢⎢⎣

M
MΦ
MΦ2

...
MΦN−1

⎤
⎥⎥⎥⎥⎦ , D0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
MΓ
MΦΓ + MΓ
...

M

N−2∑
i=0

ΦiΓ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Md =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
MD
MΦD + MD
...

M

N−2∑
i=0

ΦiD

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

From (16), the following can be easily derived.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1(k + Δ)
y2(k + Δ)

...
yp(k + Δ)

...
y1((k + 1) − Δ)
y2((k + 1) − Δ)

...
yp((k + 1) − Δ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

MΦ
MΦ2

...
MΦN−1

⎤
⎥⎥⎥⎦
[

x1(k)
x2(k)

]

+

⎡
⎢⎢⎢⎢⎢⎢⎣

MΓ
MΦΓ + MΓ
...

M

N−2∑
i=0

ΦiΓ

⎤
⎥⎥⎥⎥⎥⎥⎦

u(k) +

⎡
⎢⎢⎢⎢⎢⎢⎣

MD
MΦD + MD
...

M

N−2∑
i=0

ΦiD

⎤
⎥⎥⎥⎥⎥⎥⎦

f(k).

This can be represented in a simplified notation as

yk+1 = M01x1(k) + M02x2(k) + D0u(k) + Mdf(k),(19)

where, M01 ∈ �(N−1)p×p, M02 ∈ �(N−1)p×(n−p). Utilizing
the special form of M , we have from (19)

yk+1 = M01y(k) + M02x2(k) + D0u(k) + Mdf(k),(20)

from which the value of x2(k) can be obtained in terms of
yk+1 and u(k) as

x2(k) = (M
T

02M02)−1M
T

02

(
yk+1 − M01y(k) − D0u(k)

−Mdf(k)
)
. (21)

Now from (11) and as M = [Ep : 0] we have

[
x1(k + 1)
x2(k + 1)

]
= [ Φτ1 Φτ2 ]

[
x1(k)
x2(k)

]
+ Γτu(k) + Dτf(k),

x(k + 1) = Φτ1y(k) + Φτ2x2(k) + Γτu(k) + Dτf(k). (22)

Where, Φτ1 and Φτ2 are the sub-matrices of Φτ of dimen-
sions n × p and n × (n − p) respectively. Substituting the
value of x2(k) from (21), it yields
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x(k + 1) = (Φτ1 − Φτ2(M
T

02M02)−1M
T

02M01)y(k)

+Φτ2(M
T

02M02)−1M
T

02yk+1

+(Γτ − Φτ2(M
T

02M02)−1M
T

02D0)u(k)

+(Dτ − Φτ2(M
T

02M02)−1M
T

02Md)f(k). (23)
This can also be written as

xk+1 = Lyyk+1 + Luu(k) + Ldf(k), (24)
where,

Ly =
[

(Φτ1 − Φτ2(M
T

02M02)−1M
T

02M01) (25)

Φτ2(M
T

02M02)−1M
T

02

]
,

Lu = (Γτ − Φτ2(M
T

02M02)−1M
T

02D0),

Ld = (Dτ − Φτ2(M
T

02M02)−1M
T

02Md). (26)
From (27), the state x(k) can be computed as

xk = Lyyk + Luu(k − 1) + Ldf(k − 1). (27)
Comparing the expressions for Ly, Lu, and Ld with those
given elsewhere, e.g., Janardhanan et al. (2007), it is
clearly evident that, if the system is in a special form, a
lower dimensional matrix inversion is needed to obtain the
state vector from output samples measurement. This state
can be used for obtaining a sliding mode control based on
output samples.

Let s(k) = cT x(k) be a stable sliding surface for the system
(11)-(12). A state feedback sliding mode control can be
obtained from the reaching law proposed by Bartolini et al.
(1995), i.e.,

s(k + 1) = 0. (28)
Since the state equation of the system consists of uncertain
term the above reaching law can’t be directly used to
obtain the control law. The bounds on the disturbance
term can be considered as dl ≤ d̃(k) = cT Dτf(k) ≤ du

also the mean and spread of d̃(k) can be defined as d0 =
dl+du

2 , d1 = du−dl

2 . The control law can be obtained by
ensuring at all instants of time the maximum deviation of
the trajectory from the sliding surface is the spread of the
disturbance d1. Hence, the reaching law can be modified
as s(k + 1) = d̃(k) − d0, using this reaching law controller
can be obtained as

u(k) = − [cT Γτ

]−1 {cT Φτx(k) + d0}. (29)
From (27), the above state feedback control can be con-
verted into output feedback control, but, (27) also consists
of uncertain term which may lead to unknown control.
Based on the additional uncertain term, reaching law can
be further modified to ensure that the trajectory deviation
will be maximum of d1 + e1 from the sliding surface as
s(k + 1) = d̃(k) + ẽ(k − 1) − d0 − e0. Hence, the output
feedback control is given by

u(k) = −(cT Γτ )−1{cT ΦτLyyk + cT ΦτLuu(k − 1)

+d0 + e0}, (30)
where, e0 = el+eu

2 , e1 = eu−el

2 and el, eu are upper and
lower bounds on uncertainty term ẽ(k) = cT ΦτLdf(k).

Initially, if more control effort is needed and if it is
exceeding limits, we can limit the control by assuring the
sliding mode motion as given in Bartolini et al. (1995).

4. NON–LINEAR SIMULATION RESULTS

Now the method presented in the Section 3 is applied
to obtain a discrete-time output feedback sliding mode
control for the large PHWR described in Section 2. For the
discretization of the PHWR model the sampling period
τ is chosen as 1 s, which is not very small for the
implementation of the proposed control scheme. If the
sampling period is less than 1 s, the gains of the controller
will be more and for the value greater than 1 s, the
reduction in the gain values is considerably less. For
the implementation of multirate output feedback based
algorithm presented in the Section 3, the selection of
output sub-intervals is necessary for which it was already
stated in Section 3, the number of output subintervals, N ,
must be greater than or equal to observability index, ν.
The nodal model of PHWR has the observability index ν
= 5, thus, N is chosen as 5. Then, we have, Δ = 0.2 s.
Though more output subintervals can be considered, it is
observed that there was no considerable improvement in
the response of the closed loop system. We also obtained
the model corresponding to reactor operation at 10%
about the full power and the corresponding difference in
the perturbed system and input matrices with the nominal
system and input matrices was used to generate Dc in
(10), f is considered as uncertainty. It is assumed that the
variation of f is ±15% of system states and input signals.

To show the effectiveness of the control law, different
transients are considered. First, consider the power ma-
neuvering transient. Initially, the reactor is under steady
state and it is assumed to be operating at 1800 MW with
the desired zonal power distribution, refer Tiwari et al.
(2000). Iodine, xenon and precursor concentrations are in
equilibrium with the respective zonal power levels. Now,
the demand is reduced uniformly at the rate of 10 MW/s
to 1620 MW, in 18 s and held constant thereafter. During
the transient, the variation of global power, zonal power
levels and zonal xenon concentrations takes place as shown
in Figs. 1, 2 and 3 respectively. Global power and signal
to control valve of zone 1 vary during the first 150 s as
depicted in Fig. 4 before settling to their respective steady
state values of 1620 MW and 0 V respectively. The global
power is 1611 MW ( 0.5498 % less than the demand )
approximately at 76 s, and 1640 MW ( 1.2954 % greater
than the demand ) at 1578 s. Then, it settles within ±1%
of new demand in approximately 3000 s. During the entire
course of the transient, the global power is maintained
close to demand with maximum error of 1.2954 %. The
zonal power levels attains the steady state values within
±1% in about 480 s and xenon concentrations stabilize to
their respective new steady state values in about 15 hrs.
The variation of control input for zone 1 is within ±1V .
The behavior of the system during the power maneuvering
transient is thus, observed to be better than that obtained
with periodic output feedback control by Tiwari et al.
(2000) and comparable to that reported with fast output
sampling by Sharma et al. (2003).

Next, we consider the transient featuring the control of
power tilts. It is assumed that the initial values of zonal
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Fig. 1. Global power variation during power maneuvering
from 1800 MW to 1620 MW.

power levels are as shown in Table 1, which is different
from the desired distribution given in Tiwari et al. (2000).
Although the global power is 1800 MW but the power
distribution given in Table 1 is characterized by the
presence of the axial tilt of about 2 %, side to side tilt of
about 2 % and no top to bottom tilt, whereas the desired
power distribution is characterized by 2 % top to bottom
tilt and no axial and side to side tilts. The initial xenon,
iodine and precursor concentrations are assumed to be
at their respective steady state values corresponding to
the zonal power levels given in Table 3. The deviations of
zone 1, zone 2 and zone 8 power levels in time from their
respective steady state values occurs as shown in Fig. 5.
The axial, side to side and top to bottom tilts are corrected
as shown in Fig. 6. During the transient however, slight
deviation of global power from its desired level of 1800
MW occurs. This is depicted in Fig. 7. The simulation
results obtained are found to be satisfactory. With periodic
output feedback, the maximum deviation of the global
power from its steady state value reported in Tiwari et al.
(2000) is about 1.055 % and that with fast output sampling
technique by Sharma et al. (2003), is about 1 % whereas
with proposed control technique suggested here, it is 0.445
%. Obviously, the proposed technique is found to be more
effective.

Table 1. Zonal power levels assumed for power tilt

Zone No.

Power (as
fraction of total
power)

Zone No.

Power (as
fraction of total
power)

1 0.062644 8 0.0852

2 0.069583 9 0.077033

3 0.06835 10 0.0685

4 0.05475 11 0.05475

5 0.072283 12 0.072283

6 0.0852 13 0.0752

7 0.077033 14 0.077033

5. CONCLUSION

A method for design of discrete-time sliding mode control
in the presence of matched uncertainty has been arrived
at in this paper based on an entirely new approach.
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Fig. 2. Variation of zonal power levels during power
maneuvering from 1800 MW to 1620 MW.
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Fig. 3. Variation of xenon concentrations during power
maneuvering from 1800 MW to 1620 MW.
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Fig. 4. Variation of global power and control input to zone
1 during power maneuvering (initial few seconds) from
1800 MW to 1620 MW.

Computations require lower order matrix manipulations
as the output equation of the system is transformed
into a suitable form before proceeding with the design.
In addition, the sliding mode control is so designed to
overcome the chattering problem.

The method has then been applied to the spatial control
problem of a large PHWR. Its effectiveness has been
demonstrated by simulations. The controller thus obtained

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8652



0 500 1000 1500 2000 2500 3000
−20

−15

−10

−5

0

5

10

15

20

Time (s)

D
ev

iat
io

ns
 (%

)

Zone 1
Zone 2
Zone 8

Fig. 5. Percentage deviations of zone 1, 2 and 8 power
levels from their respective equilibrium values, during
power tilt control.

0 500 1000 1500 2000 2500 3000
−3

−2

−1

0

%
 A

xi
al 

Ti
lt

0 500 1000 1500 2000 2500 3000
−3

−2

−1

0

%
 S

id
e 

to
 S

id
e 

Ti
lt

0 500 1000 1500 2000 2500 3000
−4

−2

0

2

Time (s)

%
 T

op
 to

 B
ot

to
m

 T
ilt
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has been found to be superior to controllers based on fast
output sampling and periodic output feedback techniques.

ACKNOWLEDGEMENTS

Physical data of PHWR is provided by the Reactor Con-
trol Division, Bhabha Atomic Research Centre, Trombay,
Mumbai - 400085, India.

REFERENCES

B. Bandyopdhyay, Y. J. Park, and O. Kang. A new
formulation on discrete-time sliding Mode control using
multirate output feedback. International Conference on
Control, Automation and Systems 2007, Seoul, Korea,
October 2007.

G. Bartolini, A. Ferrara, and V. I. Utkin. Adaptive sliding
mode control in discrete-time systems. Automatica,
volume 31, number 5, pages 769-773, 1995.

A. Bartoszewicz. Remarks on discrete-time variable struc-
ture control systems. IEEE Trans. Ind. Electron., vol-
ume 43, number 1, pages 235-238, February 1996.

A. B. Chammas and C. T. Leondes. Pole assignment by
piecewise constant output feedback. Intl. J. of Contr.,
volume 29, number 1, pages 31-38, 1979.

J. J. Duderstadt and L. J. Hamilton. Nuclear reactor
analysis. John Wiley & Sons, 1976.

A. P. Tiwari. Modeling and Control of a Large Pressurized
Heavy Water Reactor. Ph.D. thesis, IIT Bombay, 1999.

S. V. Emelyanov. Variable structure control. Moscow,
Nauka, 1967.

K. Furuta. Sliding Mode control of a discrete system.
Systems and Control Letters, volume 14, pages 144-152,
1990.

K. Furuta and Y. Pan. Variable structure control with
sliding sector. Automatica, volume 36, pages 211-228,
2000.

W. Gao and J. C. Hung. Variable structure control of
nonlinear systems: a new approach. IEEE Trans. Ind.
Electron., volume 40, number 1, pages 45-55, February
1993.

W. Gao, Y. Wang, and A. Homaifa. Discrete-time variable
structure control systems. IEEE Trans. Ind. Electron.,
volume 42, number 2, pages 117-122, April 1995.

T. Hagiwara and M. Araki. Design of a state feedback
controller based on multirate sampling of plant output.
IEEE Trans. Auto. Contr., volume 33, number 9, pages
812-819, 1988.

S. Janardhanan and B. Bandyopadhyay. Multirate out-
put feedback based robust quasi-sliding mode control
of discrete-time systems. IEEE Trans. Auto. Contr.,
volume 52, number 3, pages 499-503, March 2007.

G. L. Sharma, B. Bandyopadhyay and A. P. Tiwari. Spa-
tial control of a large PHWR by fast output sampling
technique. IEEE Trans. Nuclear Science, volume 50,
number 5, pages 1740-1751, 2003.

V. L. Syrmos, C. T. Abdallah, P. Dorato and K. Grigo-
riadis. Static output feedback-a survey. Automatica,
volume 33, number 2, pages 125-137, 1997.

A. P. Tiwari, B. Bandyopadhyay and H. Werner. Spatial
control of a large PHWR by piecewise constant peri-
odic output feedback. IEEE Trans. Nuclear Science,
volume 47, number 2, pages 389-402, 2000.

V. I. Utkin. Variable structure sytems with sliding modes.
IEEE. Trans. Auto. Contr., volume 22, number 2, pages
212-222, April 1977.

H. Werner. Multimodel robust control by fast output
sampling - an LMI approach. Automatica, volume 34,
number 12, pages 1625-1630, 1998.

H. Werner and K. Furuta. Simultaneous stabilization
based on output measurement. Kybernetika, volume 31,
number 4, pages 395-411, 1995.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8653


