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Abstract: In this paper we consider the identification of PieceWise Affine (PWA) models of
Genetic Regulatory Networks (GRNs) and focus on data classification that is a task of the whole
identification process. By assuming that gene expression profiles have been split into segments
generated by a single affine mode, data classification amounts to group together segments that
have been produced by the same mode. In particular, this operation must be performed in a noisy
setting and without using any knowledge on the number of modes excited in the experiment.
At a mathematical level, classification amounts to find all partitions of the set of segments that
verify a statistical criterion and as such it has a combinatorial nature. In order to minimize
the computational complexity we propose a pruning strategy for reducing the dimension of the
search space. In particular, our approach hinges on a new algorithm for generating in an efficient
way all partitions of a finite set that verify a bound on a monotone cost function.

Keywords: genetic regulatory networks; piecewise affine models; data classification; system
identification; hybrid systems.

1. INTRODUCTION

Research on methods for inferring structure and parame-
ters of Genetic Regulatory Networks (GRNs) from exper-
imental data has gained momentum in recent years due
to the availability of experimental techniques, such as RT-
PCR and gene reporter systems (Ronen et al. [2002]), for
measuring gene expression with a sampling time that is
sufficiently small with respect to the time constants of the
network.

Among the modeling formalisms for GRNs proposed in
the literature, in this paper we consider PieceWise Affine
(PWA) systems (Glass and Kauffman [1973]). The main
reason for this choice is that, differently from linear models
of GRNs, PWA models are capable to describe the strong
nonlinear behavior of the network. Moreover, compared
to smooth nonlinear models, they capture the switching
nature of GRNs using a reduced number of parameters.
While there are methods for the qualitative simulation of
PWA models of GRNs (see e.g. Batt et al. [2005], Casey
et al. [2005] and de Jong et al. [2004]), identification of
these systems has received so far little attention.

In the hybrid systems literature, many different algorithms
have been proposed for the identification of PWA input-
output models (Paoletti et al. [2007]), and in principle they
could be used for the data-based reconstruction of GRNs.
However, PWA systems describing GRNs possess a specific
structure that must be preserved in order to guarantee the
biological interpretability of the identified model and all

⋆ This work was supported by the European Commission under
project HYGEIA (NEST-4995).

existing identification methods have a limited capability
of incorporating such constraints.

In this paper we focus on a subtask of the identification
process: the data classification problem. This problem
consists in the attribution of the data to distinct modes
of operation of the network. Classification represents the
basis for another important identification task, i.e. the
reconstruction of the thresholds characterizing the model
and defining regulatory interactions among genes (see
Drulhe et al. [2006]). Classification is performed assuming
that gene expression profiles have been processed by switch
detection algorithms such as those proposed by Porreca
et al. [2007]. These algorithms produce segments of data
generated by a single affine mode of the network. There-
fore, data classification amounts to find which segments
are generated by the same mode. This operation must
be carried out in a statistical setting, because of noise
affecting the data, and without any knowledge on the
number of modes. From a mathematical viewpoint, the
problem can be formulated in terms of finding all parti-
tions of the set of segments that verify an upper bound on
a monotone function. In order to minimize the computa-
tional complexity stemming from the combinatorial nature
of the problem, we propose a pruning strategy inspired
by the Apriori algorithm (Agrawal and Srikant [1994]).
The resulting procedure aims at generating, in an efficient
way, all aggregations of segments verifying a statistical
criterion.

The paper is structured as follows. In Section 2 we in-
troduce PWA models of GRNs, whose identification is
addressed in Section 3. The data classification problem is
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formally introduced in Section 4. A new algorithm for the
efficient generation of partitions is described in Section 5
and specialized to segment aggregation in Section 6. The
performance of the algorithm is analyzed in Section 7 by
means of multiple experiments on synthetic data.

2. PWA MODELS OF GENETIC REGULATORY
NETWORKS

We consider a GRN composed by n genes, each one coding
for a molecule (e.g. a protein) whose concentration at
time t is denoted with xi(t), for i = 1, . . . , n. Genes
are represented as dynamical systems regulated by the
concentration of molecules involved in the network. PWA
models of GRNs have been introduced by Glass and
Kauffman [1973] by approximating sigmoidal functions,
commonly used for describing regulatory interactions, with
step functions, hence modeling genes as switching units.
Due to lack of space, in this section we summarize the main
features of the resulting class of PWA models, deferring the
reader to Glass and Kauffman [1973] and de Jong et al.
[2004] for further details and examples.

The concentration vector x = [x1, . . . , xn]
′
represents the

continuous state of the network and lies within a bounded
hyperrectangle Ω ⊆ R

n
+ including the origin. To the i-th

concentration variable it is associated a (possibly empty)

set of positive thresholds {θℓi

i }pi

ℓi=1
. All thresholds define

the grid

G =
⋃

i∈{1,...,n},ℓi∈{1,...,pi}
{x ∈ Ω : xi = θℓi

i }

that splits Ω into open hyperrectangular regions ∆j , j =
1, . . . , s, called regulatory domains. The dynamics of the
GRN is then captured by the autonomous PWA system

ẋ = µ
j − ν

j
x , if λ(x) = j , (1)

where µ
j = [µj

1 · · · µj
n]

′
≥ 0, ν

j = diag(νj
1 , . . . , νj

n) > 0
are suitable coefficient matrices and λ(x) = j ⇔ x ∈ ∆j

is the switching function. Note that the r.h.s. of (1) is
the difference of synthesis rates µ

j and degradation rates
ν

j
x. In particular, spontaneous degradation is always

present, and the i-th gene is off when µj
i = 0. Each tuple

(µj ,νj ,∆j) defines a mode of operation of the network.
Note that the dynamics (1) can be defined also on G
by using the notion of Filippov solutions (de Jong et al.
[2004]).

We introduce now molecule domains as the regions where a
single molecule concentration evolves according to a single
affine dynamics. We associate to the i-th molecule the set

Ri =
{

(µj
i , ν

j
i ), j = 1, . . . , s

}
(2)

collecting all the distinct pairs of rate coefficients and
having cardinality si. Molecule domains Mq

i , q = 1, . . . , si,
are defined as

Mq
i =

s⋃

j=1

(
∆j : (µj

i , ν
j
i ) = Riq

)
, (3)

where Riq = (κq
i , γ

q
i ) is the q-th pair in Ri. Apparently,

{Mq
i }

si

q=1 is a partition of Ω \ G. The dynamics of xi is
then given by the PWA system

ẋi = κq
i − γq

i xi , if λi(x) = q , (4)

where λi(x) = q ⇔ x ∈ Mq
i is the molecular switching

function. In (4) the variables xℓ, with ℓ 6= i, play the role of

inputs affecting the selection of the active dynamics. The
tuples (κq

i , γ
q
i , Mq

i ), q = 1, . . . , si, will be called molecular
modes of operation (of the i-th molecule).

Experimental data that can be obtained with gene reporter
systems are measurements of molecular concentrations
collected at sampling instants tk, k ∈ N, sufficiently close
to each other with respect to the time constants of the
network dynamics. We assume that measurements yi(tk)
are generated by the output-error model

yi(tk) = xi(tk) + ξi(k), ξi(·) ∼ WGN(0, σ2
i ) , (5)

where ξi(·) is a white gaussian noise with zero mean and
variance σ2

i .

3. IDENTIFICATION OF PWA MODELS OF
GENETIC REGULATORY NETWORKS

The data-based reconstruction of model (4)–(5) could be
thought of as a classic hybrid identification problem, for
which identification methods are available in the liter-
ature. In particular, several algorithms have been pro-
posed for identifying PieceWise AutoRegressive eXoge-
nous (PWARX) and PWA Output-Error (PWA-OE) mod-
els (see Paoletti et al. [2007] and the references therein).
Techniques for the identification of PWA-OE models as-
sume that the number of modes of operation composing
the system is known in advance, that is seldom the case in
the context of GRNs. Moreover, as pointed out in Drulhe
et al. [2006], all existing procedures for the identification
of hybrid models are general-purpose and hence do not
account for features and constraints specific to GRNs
models. This fact has some important consequences. First,
neglecting the constraints on the model structure can
result in models that have no biological meaning. Second,
existing hybrid identification techniques typically produce
a single model, while the scarcity of expression data often
does not allow one to uniquely reconstruct the switching
mechanisms characterizing the GRN. Therefore it makes
sense to generate multiple results in order to provide
biologists with multiple and plausible hypotheses on the
network functioning.

In view of the previous remarks, we are developing a gray-
box procedure for the identification of PWA models of
GRNs that is conceptually split in the following tasks:

(1) detection of the switches in time series of gene expres-
sion data;

(2) attribution of the data to distinct modes of operation
of the whole GRN (classification problem);

(3) reconstruction of thresholds on concentration vari-
ables and of all combinations of thresholds consistent
with the data;

(4) estimation of the kinetic parameters in each mode of
operation for all models generated in point 3.

In the sequel, we focus on the classification problem (task
2), assuming task 1 has been carried out. Algorithms
for detecting switches in gene expression profiles can be
found in Porreca et al. [2007]. Task 3 can be performed,
under suitable assumptions, using the multicut algorithm
proposed by Drulhe et al. [2006]. As pointed out in Paoletti
et al. [2007], task 4 can be easily carried out relying on the
data classification produced in step 2.
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4. CLASSIFICATION PROBLEM

In this section we discuss the classification problem and
describe our approach for solving it. As mentioned above,
classification is based on the results produced by switch
detection algorithms that split time series of molecular
concentrations into segments of consecutive data gener-
ated by a single affine mode. In particular, we focus on
the concentration profile of a single molecule and propose
an algorithm for detecting and aggregating segments gen-
erated by the same molecular mode of operation. Classi-
fication with respect to modes of operation of the whole
network is then easily obtained by merging the aggregation
results obtained for all molecules, as described in Porreca
and Ferrari-Trecate [2007].

For simplifying the notation, we will not specify the
considered molecule and use the index i with a different
meaning with respect to Section 2. First of all, we assume
that a set of m segments

S =
{
Si = {(ti1, yi1), . . . , (tiNi

, yiNi
)}
}m

i=1
(6)

is available for the molecule. Each segment Si is a collec-
tion of Ni consecutive data points (tij , yij), where yij =
y(tij) is the measurement obtained at the sampling instant
tij . The total number of data is N =

∑m
i=1

Ni. We also
assume that segments are disjoint, i.e. Si ∩ Sj = ∅ for
i 6= j, and that Ni > 3 1 . Since data points belonging to
the segment Si have been attributed to the same dynamics,
they can be described by the exponential model

yij = φ(κi, γi, x0i, tij−ti1)+ξ(j), ξ(·) ∼ WGN(0, σ2), (7)

with φ(κ, γ, x0,∆t) =
κ

γ
−

(
κ

γ
− x0

)
e−γ∆t,

that is obtained by exact integration of the affine dynamics
(4). In (7), κi ≥ 0 and γi > 0 are the true and unknown
rate parameters and x0i is the (true and unknown) concen-
tration at the beginning of the i-th segment. The problem
of aggregating segments generated by the same affine mode
amounts to find equivalence relations ∼ on S such that
Si ∼ Sj implies (κi, γi) = (κj , γj). Note that equivalence
classes form a partition of the set S. Moreover, there
is a bijection between the set of all possible equivalence
relations on S and the set of all possible partitions of
S (Cameron [1994]). This allows to state our problem
in terms of looking for partitions of S corresponding to
equivalence relations ∼ consistent with the data.

Recalling the statistical setting we have assumed by mod-
eling measurements as in (5), the problem of aggregating
segments is characterized by the following features:

• every possible aggregation is a partition of the set of
segments S;

• due to the noise affecting the data, aggregation must
be based on a statistical criterion;

• the solution might be not unique, since several parti-
tions can be statistically consistent with the data.

In principle, the problem could be solved by considering all
possible partitions of S and discarding the ones that do not
fulfill the statistical criterion. The main drawback of this
approach is the combinatorial complexity of exhaustive

1 This assumption is needed in order to estimate three parameters
for each segment.

Rank Partition RGF

1 1 2 3 4 1,1,1,1
2 1 2 3/4 1,1,1,2
3 1 2 4/3 1,1,2,1
4 1 2/3 4 1,1,2,2
5 1 2/3/4 1,1,2,3
6 1 3 4/2 1,2,1,1
7 1 3/2 4 1,2,1,2
8 1 3/2/4 1,2,1,3

Rank Partition RGF

9 1 4/2 3 1,2,2,1
10 1/2 3 4 1,2,2,2
11 1/2 3/4 1,2,2,3
12 1 4/2/3 1,2,3,1
13 1/2 4/3 1,2,3,2
14 1/2/3 4 1,2,3,3
15 1/2/3/4 1,2,3,4

Table 1. Partitions of the set {1, 2, 3, 4} and
corresponding RGFs; ranking is with respect

to lexicographic order of RGFs.

search. Therefore we aim at finding an efficient strategy for
generating all partitions that are statistically consistent
with the data. To this purpose we first introduce, in
the next section, an abstract algorithm for generating
partitions verifying a bound on a monotone function.
Then, in Section 6 we will show how to exploit it for
performing classification.

5. GENERATION OF PARTITIONS VERIFYING A
BOUND ON A MONOTONE FUNCTION

A partition P = {X1, X2, . . . ,Xk} of the finite set X =
{1, 2, . . . ,m} is any set of nonempty and mutually disjoint
subsets of X, called blocks, such that their union is equal
to X. As an example, the 15 partitions of {1, 2, 3, 4}
are reported in Table 1 where, in order to simplify the
notation, a slash character is used to separate blocks. Let
P be the set of all possible partitions of X and Pk ⊆ P
be the set of partitions having k blocks. As an example,
with reference to Table 1, one has P3 = {1 2/3/4, 1 3/2/
4, 1/2 3/4, 1 4/2/3, 1/2 4/3, 1/2/3 4}. Note that {Pk}

m
k=1 is

a partition of P. It is possible to consider a partial order
relation ≤ on P, corresponding to the concept of “being
finer than” (Stanley [1997]).

Definition 1. Given two partitions P,Q ∈ P, P ≤ Q (P is
finer than Q, Q is coarser than P ) if for each block Xi ∈ P
there exists a block Xj ∈ Q such that Xi ⊆ Xj .

Moreover, denote with ≺ and ≻ the usual covering rela-
tions associated with ≤. In particular, Q ≻ P (Q covers
P ) is obtained by replacing exactly two blocks of P by
their union. It is easy to verify that the partially ordered
set 2 (P,≤) is a complete lattice.

Set partitions are often represented using a sequence
known as restricted growth function (RGF) (Knuth
[2005]), i.e. a string p = (p1, p2, . . . , pm), with pi ∈ Z,
satisfying the restricted growth condition

pi ≤ 1 + max{p1, . . . , pi−1},∀i > 1 . (8)

Without loss of generality, we assume p1 = 1. The main
idea of using RGFs is that, for any i, j ∈ {1, . . . ,m},
pi = pj means that i and j belong to the same block of the
partition. This yields a one-to-one correspondence between
partitions of {1, 2, . . . ,m} and RGFs of length m (see
Table 1 for an example). For the sake of clarity, the same
letter will be used to denote a partition (capital letter,
e.g. P ) and the corresponding RGF (bold small letter, e.g.
p). The set of all RGFs (that corresponds to P) will be
denoted with L. Note that the number of blocks, i.e. the

2 In the sequel, partially ordered sets will be termed “posets”.
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1,2,3,4

1,1,2,3 1,2,1,3 1,2,2,3 1,2,3,1 1,2,3,2 1,2,3,3

1,1,1,2 1,1,2,1 1,1,2,2 1,2,1,1 1,2,1,2 1,2,2,1 1,2,2,2

1,2,3,3

1,2,2,2

1,1,1,1

Fig. 1. Graphical representation, using RGFs, of the poset
(P,≤) for m = 4. Partitions in Pk appear (in lexi-
cographic order) on the k-th level from the bottom,
and edges represent covering relations. Thick edges
represent the generation tree used in Algorithm 1.

cardinality |P | of the partition P , is given by maxp. RGFs
can be sorted according to the lexicographic ascending
and descending total orders. RGFs in Table 1 appear
in ascending lexicographic order. Figure 1 represents the
poset (P,≤) for m = 4 using the RGF notation.

Definition 2. For any p ∈ L, C(p) is a full-rank (m−k)×m
constraint matrix such that:

• k = max p;
• the elements of C(p) belong to {−1, 0,+1};
• in each row there are exactly two elements whose

values are +1 and −1; if i and j are the indexes of
such elements, then one has pi = pj .

As an example, for p = (1, 1, 2, 1, 3, 2), a possible con-
straint matrix is

C(p) =

(
1 −1 0 0 0 0
1 0 0 −1 0 0
0 0 1 0 0 −1

)
.

Note that the constraint matrix for a given partition is
not unique. Based on Definition 2, it is possible to provide
an algebraic characterization of the partial order relation.
Indeed, considering RGFs as column vectors one has

P ≤ Q ⇔ C(p) · q = 0 . (9)

Let J : P → R be a monotone function, i.e. ∀P,Q ∈
P, P ≤ Q ⇒ J(P ) ≤ J(Q). We consider the problem of
generating every partition P satisfying the condition

J(P ) < J̄ , (10)

where J̄ ∈ R is a given upper bound. Define as accepted
the partitions satisfying (10), and as rejected those that
are not accepted. Therefore we aim at generating the set
Pa of all the accepted partitions:

Pa =
{
P ∈ P : J(P ) < J̄

}
. (11)

In principle, one could generate all the partitions in P and
test if they are accepted or not. However, it is possible to
exploit the monotonicity property of function J in order to
avoid the complete generation hence reducing the search
space. The next proposition, that is a direct consequence of
the monotonicity of J , will play a key role in our generation
procedure.

Algorithm 1. Apriori-like strategy for generating Pa

1: k = m
2: Pa

m =
{
P ∈ Pm = {1/2/ . . . /m} : J(P ) < J̄

}

3: while (Pa
k 6= ∅) and (k > 1) do

4: k = k − 1
5: Pc

k = candidateGeneration(Pa
k+1)

6: Pa
k =

{
P ∈ Pc

k : J(P ) < J̄
}

7: end while

Proposition 3. P ∈ Pa ⇒ Q ∈ Pa,∀Q ≤ P

The efficient construction of Pa based on Proposition 3
is inspired by Apriori (Agrawal and Srikant [1994]), a
classic data mining algorithm for learning association rules
(Tan et al. [2005]). This algorithm exploits a particular
property, called Apriori principle, for efficiently generating
subsets. Proposition 3 actually corresponds to an Apriori -
like principle for partitions: if a partition is accepted
then all finer partitions must be accepted. As for the
Apriori algorithm, this principle allows one to reduce the
search space by pruning partitions that are coarser than
a rejected partition. Therefore, the Apriori -like algorithm
for constructing Pa is based on a “fine-to-coarse” search
strategy and considers at each step, for testing condition
(10), only partitions in the candidate set

Pc
k =

{
Q ∈ Pk : ∀P ≺ Q,P ∈ Pa

k+1

}
, (12)

constructed starting from Pa
k+1 = Pa∩Pk+1. Proposition 3

ensures that Pa
k ⊆ Pc

k. The resulting iterative procedure is
shown in Algorithm 1.

The core of the algorithm is the function candidateGen-
eration, which needs to be expressly designed for dealing
with partitions. A detailed description of the procedure for
constructing Pc

k from Pa
k+1 is out of the scope of this paper

and can be found in Porreca and Ferrari-Trecate [2007].
The idea is to define a partial order ≤T such that (P,≤T)
is a weak subposet of (P,≤) and has a tree structure, as
the one represented in Fig. 1 by thick edges. Then, the two
main steps for generating candidates are:

(1) generation step: build the superset P̃c
k of Pc

k given by

P̃c
k = {Q ∈ Pk : ∃P ∈ Pa

k+1 verifying P ≤T Q} ;

(2) pruning step (like in Apriori candidate generation):

remove from P̃c
k partitions that cover some P /∈ Pa

k+1.

We highlight that, as detailed in Porreca and Ferrari-

Trecate [2007], an efficient procedure for building P̃c
k is

based on the generation of RGFs in lexicographic order.

6. SEGMENT AGGREGATION

As discussed in Section 4, the problem of aggregating
segments amounts to find partitions of S that are sta-
tistically consistent with the data. In a statistical setting,
each partition can be considered as the hypothesis that
Si ∼ Sj for all Si, Sj belonging to the same block, i.e.
that equality constraints between rate parameters hold.
Recalling the meaning of representing a partition P with
the RGF p, one has

pi = pj ⇔ Si ∼ Sj , Si ∼ Sj ⇒ (κi, γi) = (κj , γj) . (13)

Let Θ = (κ1, γ1, x01, . . . , κm, γm, x0m)
′

be the vector col-
lecting parameters of model (7) that characterize the seg-
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ments S1, . . . , Sm. Then, the constraints on rate parame-
ters associated with a partition P can be expressed as

(C(p) ⊗ I2,3) · Θ = 0 , with I2,3 =

(
1 0 0
0 1 0

)
, (14)

where symbol ⊗ denotes the Kronecker product. For
each partition P , least squares estimation of Θ can be
performed under the hypothesis that constraint (14) holds,

thus obtaining the estimate Θ̂(P ) as

Θ̂(P ) = arg min
Θ

J(Θ) (15)

subject to (C(p) ⊗ I2,3) · Θ = 0

where

J(Θ) =

m∑

i=1

Ni∑

j=1

[
(yij − φ(κi, γi, x0i, tij − ti1)

]2
. (16)

In order to asses if P is consistent with the data one can
use a statistical test for the hypothesis H0 : (C(p) ⊗ I2,3) ·
Θ = 0 against the hypothesis H1 that no constraints hold.
Note that H1 corresponds to the partition P1 = 1/2/ . . . /

m. Let Ĵ(P ) = J(Θ̂(P )) be the Sum of Squared Residuals

(SSR) under H0 and Ĵ1 = J(Θ̂(P1)) the SSR under H1.
According to Rohatgi and Saleh [2000], the Generalized
Likelihood Ratio (GLR) (1−α)-level test 3 is to reject H0,
and the corresponding partition, if

Ĵ(P ) ≥ (1 + ∆α(k))Ĵ1 , (17)

with ∆α(k) =
2(m − k)

N − 3m
Fα(2(m − k), N − 3m) . (18)

In (18), Fα(v1, v2) represents the (1−α)-th quantile of the
F distribution with (v1, v2) degrees of freedom, and k is
the number of blocks of P . Therefore we aim at generating
the set of partitions

P̃a =
{

P ∈ P : Ĵ(P ) < (1 + ∆α(|P |))Ĵ1

}
. (19)

Moreover, among the partitions in P̃a, we are particularly

interested in those that are maximal, i.e. partitions P ∈ P̃a

such that ∀Q > P, Q /∈ P̃a. In fact, maximal partitions are
the most informative ones, since they fulfill the constraints
imposed by any finer partition.

Proposition 4. (Monotonicity of Ĵ).

Q ≥ P ⇒ Ĵ(Q) ≥ Ĵ(P )

Proof. By (9), one has that the constraint C(p) · q = 0

on the RGF q holds for all partitions Q ≥ P . According
to (13), this implies that the constraint on the parameters
(C(p) ⊗ I2,3) · Θ = 0 holds for Q. Under this constraint

J(Θ) is minimized by Θ̂(P ), thus implying Ĵ(Q) ≥ Ĵ(P )
for any Q ≥ P .

Proposition 4 is the basis for applying the algorithm
described in Section 5. However, the rejection condition
(17) is based on a bound that depends on the number of
blocks, since ∆α(k) increases as k decreases. Therefore it is
not true, in general, that if P is rejected by test (17) then
each Q ≥ P will be rejected. This prevents the application

of Algorithm 1 for generating P̃a. The idea to overcome

3 The considered GLR test is designed in Rohatgi and Saleh [2000]
for linear models. When applied to nonlinear models, the level of the
test is (1 − α) under some approximation (Gallant [1986]).
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Fig. 2. Time series used for validation; dots and circle rep-
resent the noiseless and noisy data (σ = 0.01); vertical
lines denote switching times defining segments.

this problem is to use as bound the largest values of the
r.h.s. of (17), which is obtained for k = 1, thus considering
the set

Pa =
{

P ∈ P : Ĵ(P ) < (1 + ∆α(1))Ĵ1

}
. (20)

Partitions in Pa can be actually generated by Algorithm 1.

Apparently, Pa is a superset of P̃a, and typically it is not

much larger than P̃a. Therefore, once Pa has been gener-

ated, P̃a is easily obtained by removing partitions rejected
by the test (17). Note that such a test is not valid for P1,
which however has always to be considered as accepted,
thus implying Pa

m = Pm. The algorithm can produce
multiple maximal partitions, each one corresponding to
an aggregation of segments consistent with the data. This
agrees with the goal in GRN identification of generating
all the models that are consistent with the data.

To get an idea of the search space reduction, consider the
ideal case where test (17) only accepts the “true” partition
P ∗ with RGF p

∗ = (1, 2, 1, 2, . . .) and all its refinements.
Then, the number of partitions explored and tested by
Algorithm 1 is 8 over a total of 15 for m = 4, 15 over 52
for m = 5, 34 over 203 for m = 6.

7. EXPERIMENTAL RESULTS

The effectiveness of the proposed method was tested by
running multiple experiments on synthetic data. We con-
sidered the noiseless time series of normalized concen-
tration values depicted in Fig. 2. In particular, the six
segments visible in Fig. 2 arise from switches between two
molecular modes of operation, with rate parameters (κ, γ)
equal to (0.2, 0.5) and (0.5, 0.5) for the first and second
mode, respectively. Noisy data points in each mode were
generated according to model (7). The time series mimic
behaviors and features of data obtained from PWA models
of real GRNs, such as those used in Drulhe et al. [2006]
and Porreca et al. [2007]. We added to the measurements
noise with standard deviations σ ∈ {0.001, 0.005, 0.01},
i.e. spanning one decade around the expected noise level
of data produced by gene reporter systems (Drulhe et al.
[2006]). Additional simulations for lower values of σ dis-
played performances very similar to the case σ = 0.001,
whereas for σ > 0.01 the noise level was so high that
almost no dynamics was visible in the data. A set of 200
noisy trajectories was generated for each value of σ. For
each trajectory the algorithms described in Sections 5–6
were applied using the correct segmentation, i.e. assuming
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Nmax

σ ps 1 2 3 4 5 Ne

0.001 98.0% 98.5% 0.0% 0.0% 1.0% 0.5% 33.92
0.005 98.5% 99.0% 0.5% 0.0% 0.0% 0.5% 34.01
0.01 99.5% 69.0% 25.0% 5.0% 1.0% 0.0% 36.57

Table 2. Performance indexes for different
noise levels.

the true switching instants to be known. For test (17) the
level of 0.95 (α = 0.05) was used.

The optimal situation is when the “true” partition P ∗ =

1 3 5/2 4 6 is the only maximal partition in P̃a. Moreover, it
is important to evaluate the reduction of the search space.
Therefore we consider the following performance indexes:

• the percentage ps of successful cases in which P ∗

appears among the maximal partitions;
• the distribution of the number Nmax of maximal

partitions generated in each experiment;
• the average number Ne of explored partitions.

Performances obtained for the considered noise levels
are reported in Table 2. First of all, the effectiveness
in reducing the search space is demonstrated by values
of Ne that are less than 20% of the total number of
partitions (203). Results also show an excellent capability
of including P ∗ among the retained partitions, with values
of ps bigger than 98%. Moreover, for σ = 0.001 and
σ = 0.005 at most 3 among 200 experiments produced
multiple maximal partitions. The situation is different for
σ = 0.01. Although the value of ps is even higher than
the ones obtained for lower noise levels, multiple maximal
partitions are generated in the 31% of the experiments,
producing only one spurious partition in the majority of
such cases. As a final remark, the high values of ps with
respect to (1 − α) suggests that the level of test (17) is
underestimated due to the model nonlinearity.

8. CONCLUSION

In this paper we have considered the problem of classifying
gene expression data, that is a crucial step in the process
of identifying PWA models of GRNs. We have assumed
that, for each molecule involved in the network, segments
of data generated by a single affine mode are available.
Then, data classification aims at generating partitions
of the set of segments whose blocks correspond to data
generated by the same mode of operation. Given the
combinatorial nature of the problem, we have proposed
a statistical method for generating partitions consistent
with the data that ultimately relies on an algorithm for
the efficient generation of partitions verifying a bound
on a monotone function. Experimental results, obtained
assuming the knowledge of the true segments, have shown
the effectiveness of our method in producing the correct
partition and in reducing the dimension of the search
space. Future research will consider the effect of coupling
the proposed method with switch detection algorithms
that reconstruct segments in concentration time series.
In particular, it will be important to evaluate the joint
performance of the algorithms, considering how possible
errors in detecting switches propagate to the results of
classification. The final goal of this research is to integrate
these procedures with the algorithm proposed in Drulhe

et al. [2006], in order to have a complete procedure for the
data-based identification of PWA models of GRNs.
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