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Abstract: Predictive control algorithms compute the manipulated variable minimizing a cost function 
considering expected future errors. PI control algorithms can be equipped with predictive properties. 
Simple predictive control algorithms are derived using approximation of an aperiodic process by a first-
order model with dead time. Applying a noise model the robustness properties of the algorithm are 
enhanced considering plant-model mismatch. The noise filter is considered as a design parameter. 
Simulation examples demonstrate the behavior of the predictive PI algorithm and the robustifying effect 
of the noise filter.  

1. INTRODUCTION 

The most widely used algorithms in practice are the PI(D) 
control algorithms. The algorithms are simple, and with three 
effects (proportional, integrating and differentiating) 
generally the quality specifications prescribed for the control 
system can be met.  

Nevertheless in case of big dead time in the process the 
performance of the control system will be slow, the PI(D) 
controller can not accelerate the control system significantly. 
There are some discrete control algorithms as Smith predictor 
or dead-beat control, which provide faster performance than 
PI(D) control for dead time systems, but these algorithms did 
not get really a wide industrial acceptance because of their 
sensitivity against plant/model mismatch (Normey-Rico, 
Camacho, 2007). 

Predictive control algorithms where predicted error values are 
used to calculate the actual manipulated variable are also 
widely applied. Predictive algorithms provide good 
performance especially in case of big dead time and if the 
future reference trajectory is known. Applications of 
predictive control algorithms are supported by different 
industrial software packages. Nowadays besides PI(D) 
control predictive control is getting an increased use.  

As operators of industrial process control systems are 
familiar with PI(D) controllers and have expertise in PI(D) 
controller tuning, it would be advantageous to enhance the 
performance of the PI(D) controllers with predictive 
properties, while applying the well accepted PI(D) tuning 
rules. In this way the operator will see a PI(D) controller with 
hidden predictive properties. 

The properties of the two algorithms – predictive and PI(D) - 
can be combined. The idea of predictive PI(D) controllers 
was initiated by Katebi and Moradi (2001) and Johnson and 
Moradi (2005).  

2. PREDICTIVE PI(D) CONTROL STRUCTURE  

A predictive PI(D) controller can consider not only one 
predicted output signal, but a series of predicted output 
values. Katebi and Moradi suggested m number of parallel 
connected PI(D) controllers with inputs of the predicted error 
signal values. For all controller paths the same PID controller 
is applied. The block diagram of the predictive PID controller 
is shown in Fig. 1. Here )|(ˆ kidke ++  denote the 
predicted values of the error signal i step ahead over the dead 
time. )( idkyr ++  is the reference signal and 

)|(ˆ kidky ++ is the predicted output signal.  1en  is the 
first point of the prediction horizon over the dead time, while 

2en is the last point of the prediction horizon, and the number 

of the parallel paths is 112 +−= ee nnm . 

 
Fig.1.   Predictive PID controller with parallel paths 
 

3. THE PROCESS MODEL 

The process model is given by the following equation: 
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This is the so called CARIMA model, where 
)1(

1
1

10
1 ...)( −−

−
−− +++= n

n zbzbbzB  

n
nzazazA −−− +++= ...1)( 1

1
1  

nt
nt ztztzT −−− +++= ...1)( 1

1
1  

The output is affected by the input signal u(k) and the 
disturbance )(kvu . d is the discrete dead time. In most cases 

1)( 1 =−zT  is considered, but if it is a polynomial, it can be 
treated as a filter. It can attenuate the component of 
prediction error caused by the model mismatch, which is 
particularly important at high frequency. The high frequency 
disturbances are mainly due to the presence of high frequency 
components in unmodeled dynamics and unmeasurable load 
disturbances. If there is no unmodeled dynamics, the effect of 
polynomial T is rejection of disturbances, with no influence 
on reference tracking. In this case polynomial T can be used 
to detune the response to unmeasurable high-frequency load 
disturbances, preventing excessive control action. On the 
other hand, T is used as a design parameter that can influence 
robust stability. In this case the predictions will not be 
optimal, but robustness in the face of uncertainties can be 
achieved. Then this polynomial can be considered as prefilter 
or as an observer (Camacho, Bordons, 2004). It can play an 
essential role in the robust realization of predictive PI(D) 
controllers as well.       

4. PREDICTIVE PI CONTROL ALGORITHM 

The form of a non-predictive discrete PI controller is 
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where e denotes the error signal and PK , IK  are the 
coefficients of the proportional and the integral components, 
respectively. Taking the difference on both sides of (2) at step 
k and (k-1) leads to 
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In predictive PI control the manipulated variable is the sum 
of the controller outputs based on the predicted control errors. 
Applying the algorithm on a future error signal d+i step 
ahead of the actual time point the corresponding control 
increment )(kuiΔ  is obtained as 
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The future error signals are predicted on the basis of the 
information available till the actual time point k. 

 Let us introduce the following vector notations: 
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is the vector composed of the future reference signal values 
and 
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is the output vector built from the consecutive points of the 
predicted output signal, which is composed of the forced and 
the free responses. 
With these notations 
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The control increment )(kuΔ  is the sum of the increments 
in the individual controller paths. Taking into consideration 
(9) the control increment can be expressed as  
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It has to be mentioned, that the first point of the prediction 
horizon was chosen for 11 +en  in order to start the 
calculations from the error signal predicted in sampling point 

1endk ++ . 

In expression (10) the predicted error values are calculated as 
the difference between the predicted reference and the 
predicted output signals. The predicted output values contain 
effects of the forced response and the free response. The 
forced response contains the effect of the actual and the 
subsequent input increments. Thus the future control 
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increments appear also on the right side of the expression. A 
closed form to calculate )(kuΔ can be obtained simply only 
if some assumptions are considered for the future control 
increments, e.g.  

0)( =+Δ iku  for 0〉i                (11) 

is supposed. (Another assumption can be that a given number 
of equal subsequent input increments is taken into account.) 

With assumption (11) expression (10) can be given in 
detailed form as 
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where ih  are the points of the step response. The second term 
at the right side of (12) is the effect of the forced response, 
while the third term is the free response, the effect of the past 
inputs on the future output signal, where the input signal is 
frozen at point k-1. 

Let us introduce the following notations: 
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From (12) the control increment can be expressed as 

)ˆ()1()( 1
freesumrsumsumku YYKKh −+=Δ −        (14) 

For different systems the forced response can be calculated in 
the knowledge of the points of the step response, while the 
free response is obtained from the parameters of the model 
and from the past inputs and the actual and past output 
signals. 

 

4.1 Predictive PI control of a first-order process with dead 
time  

Aperiodic processes can be approximated well by a first-
order process with dead time. In the process industries a lot 
of processes can be described by this model. In most cases 
the step response of the system can be measured easily even 
within industrial circumstances. A good, but slow control of 
this process can be achieved by a PI controller. Different 
practical tuning rules are given considering the parameters of 
the approximating first order model of the process. Applying 
predictive PI controller can improve the performance of the 
control system. For this process control algorithm (14) can be 
expressed in analytical form.  

The first-order system is described by the following 
CARIMA model: 
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First let us consider 1)( 1 =−zT . The predictive equations 
are given in (7) and (8). 

Vector Ŷ can be expressed as  
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            (16) 
where ih  are the points of the step response, 

and [ ] [ ]idfidf ++ 21 ,  are the coefficients in row id +  of 
the following  f1 and  f2 vectors (Arousi et al., 2006):  
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Let us write equation (16) in the following form: 
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If only one change is supposed in the control signal, 1=un , 
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The control algorithm can be written according to (14), where 
the free response is obtained by the second and the third 
terms of the right side of (16). 

If ne1 is at least 1, in Ŷ  only predicted components (starting 
from y(k+d), y(k+d+1)) are considered.  

The control increment is obtained as 

)()1(

)ˆ()1()(
2

1

2

1

2

1 11

1

1

1

p
n

ni

p
i

p
n

ni

p
yirsum

n

ni

f
i

freesumrsumsum

e

e

e

e

e

e

ku

uHyFYKHK

YYKKh

Δ−−+=

−+=Δ

∑∑∑
+=+=

−

+=

−

                                                                                            (20) 

If )( 1−zT  is a polynomial, the prediction equations are valid 

for the filtered signals )(/)()( 11 −− = zTkyzyF and 

)(/)()( 11 −− Δ=Δ zTkuzuF , respectively. In (16) the free 
response, the two last terms on the right side are substituted 
by the filtered values. The control algorithm (20) will then 
give the filtered value of the control increment, which has to 
be filtered with the inverse filter to get the actual control 
increment. This filtering procedure has a robustifying effect 
in case of plant-model mismatch. 

 

 

5. TUNING OF PREDICTIVE PI ALGORITHMS 

PI(D) controller tuning rules can be applied for predictive 
PI(D) algorithms. Different tuning rules are available mainly 
for continuous PI(D) controllers which can be considered as 
rules of thumb. These rules can be used for discrete 
controllers as well after discretization.   

For predictive PID control 112 +− ee nn  parallel controller 
paths are considered. If tuning is done considering continuous 
control, the continuous gain has to be divided by the number 
of the paths. 

5.1 Tuning rules for aperiodic processes 

There are different tuning rules for aperiodic processes. An 
aperiodic process can be described by the following transfer 
function: 
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where SK is the static gain, PTTT ,...,, 21  are the time 

constants, and dT is the dead time. SUMT is defined as the 
sum of the time constants and the dead time: 
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Kuhn (1995) suggests the following rules of thumb for the 
coefficients of the continuous PID controller (Table1):  

 Table 1. PI(D) controller tuning rules according to Kuhn 

 PI  PID  

CK  SK/5.0  SK/1  

IT  SUMT5.0  SUMT66.0  

DT  0 
SUMT167.0  

These coefficients have to be then discretised. For a PI 
continuous controller the continuous controller algorithm is 
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The discrete control increment is expressed as 
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Applying the trapezoid rule for approximating the integration 
the coefficients of the discrete PI algorithm are obtained as 
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where TΔ denotes the sampling time. 
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It has to be emphasized that the continuous gain factor is 
divided by the number of the predictive paths. 

Considering (3) the discrete controller parameters are 
calculated as  

101; ppKpK IP +=−=          (26) 

For predictive PI controller tuning ∑
=

=
P

i
iSUM TT

1
, so the 

physical dead time is not taken into account, consideration of 
m number of prediction paths will take the effect of the dead 
time into account.  

6. SIMULATION RESULTS 

Matlab programs have been written to realize the control 
algorithms. The simulation results are demonstrated through 
a simple example. 
 
The linear process has a static gain of KS=1 and three equal 
time constants T1=1/3, and the sampling time is 1.0=ΔT . 
The plant can be approximated by a first-order system with 
dead time. The transfer function of the plant is: 

se
ss
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3 25.11

1
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The first-order approximation is calculated considering the 
initial tangent of the step response. 

The T polynomial is chosen as 3.0/)7.01( 1−− z . 

The tuning parameters for 5,1 21 == ee nn  taking into 
account Table 1 and (25) are 

11.0))5.02/(1.01)(5/5.0(0 =⋅+=p  

09.0))5.02/(1.01)(5/5.0(1 −=⋅−−=p  
Applying (26) the discrete tuning parameters are 

02.0;09.0 == IP KK . 

Including physical dead time the tuning parameters are the 
same. Different dead times (0, 0.5, 1, 2 and 5) are considered 
in the process. 

In the simulation a positive unit step reference signal acts at 
time point 1, and a negative unit step disturbance is applied at 
time point 15. No prediction of the reference signal is taken 
into account. Fig. 2. shows the output and the control signals 
when the system is of first-order, and its model is accurate, 
also of first-order with the same parameters. T polynomial is 
not applied. It is seen, that the quality of the control with a 
stepwise reference signal change is the same for all dead time 
cases, the outputs are shifted appropriately, while the control 
signal is the same. Disturbance rejection depends on the dead 
time. Fig. 3. gives the output and the control signals when the 
system is of third-order with the dead times above, and the 
controller is designed according to the first-order 
approximation. T polynomial is not applied. The performance 
is worse than before, and also with bigger dead time the 
dynamics is also affected. 

 
Fig.2. Output and control signals without mismatch, with 
first-order system and model. 

 
Fig.3. Output and control signals with mismatch, the system 
is of third-order, the controller is designed based on first-
order approximation.  

 
Fig.4. Output and control signals, the system is of third-order, 
the controller is based on first-order model,with T polynomial  
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Fig.5. Output and control signals, the system is of third-order 
with dead time 2, the controller is based on first-order model, 
different prediction ranges (m=0, 5,50), with T polynomial   

 
Fig.6. Output and control signals of third-order with dead 
time 2, the controller is based on first-order model, without 
and with prediction of the reference signal. 

 
Fig.7. Output and control signals, the system is of third-order, 
the controller is based on first-order approximation, with 
different T polynomials (with 01 =t , 5.01 −=t , 

7.01 −=t ).   

Fig. 4. shows the effect of including the T polynomial for the 
former case. This modification improves the performance in 
case of plant-model mismatch (here 7.01 −=t ).  

Fig. 5. demonstrates, that increasing the prediction horizon 
works also against mismatch. 

Fig. 6. shows that with predicted reference signal the control 
signal acts before the change of the reference signal, 
accelerating the output transient. 

Fig. 7. gives the performance with different T polynomials. It 
is expected, that with further tuning of the T polynomial the 
effect of the mismatch could be decreased further.  

7. CONCLUSION 

PI control algorithms with predictive property have been 
derived based on a first-order model with dead time. For the 
disturbance model a T polynomial is taken also into account. 
Practically real processes frequently can be approximated by 
these models. Parallel connected PI controllers are applied 
which calculate the manipulated signal based on the predicted 
values of the error signal. Simple tuning rules are used. 
Predictive property of the algorithms compensates the dead 
time. Simulation results show the effectiveness of the 
predictive PI algorithm with T polynomial, which improves 
the robust performance in case of plant/model mismatch. This 
approach can be effective also if there is a mismatch in the 
dead time as well. 
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