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Abstract: In this paper, a methodology is proposed to address robustness aspects related to the application 

of distributed model predictive control. Two problems are studied: the decomposition problem and the 

coordination problem in the presence of model errors. Three different MPC strategies are considered: 

centralized, fully decentralized, and Nash equilibrium based MPC. The methodology requires the 

computation of closed-loop system’s variability via the solution of generalized eigenvalue problem which 

is formulated as a finite set of linear matrix inequalities. To select the best model decomposition or control 

strategy based on robust performance, the worst variability for each candidate is minimized by 

manipulating the input weights of the controller. Two case studies are presented to illustrate the application 

of the methodology.     

 

1. INTRODUCTION 

Model predictive control MPC is a widely accepted 

technology for the control of multivariable processes in the 

process industry (Qin and Badgwell, 2003).  A key drawback 

of MPC is related to the high computational effort required 

when dealing with processes with relatively a large number 

of inputs and outputs. These intensive computations are due 

to the need to solve a large optimization problem on-line. An 

additional drawback with the use of fully centralized 

controllers for high dimensional processes is their low 

resilience with respect to partial equipment failure or partial 

plant shutdowns (Li et al., 2005). To deal with these 

drawbacks, engineers have generally resorted to partitioning 

the original process inputs and outputs into smaller 

subsystems and have applied MPC controllers to each one of 

these subsystems. The operations of several MPC controllers 

in such fashion have been referred to in the literature as 

Distributed MPC strategies. However, although distributed 

MPC applications result in less computation, when the 

individual MPC controllers for the different subsystems are 

operated in a completely decentralized fashion, closed loop 

performance may be significantly reduced since interactions 

between variables are ignored. In order to account for these 

interactions researchers have proposed the use of some form 

of coordination between the MPC controllers for the different 

subsystems. Coordination strategies based on Nash 

equilibrium (Li et al., 2005) or cooperative schemes based on 

weighted cost functions have been reported (Venkat, 2006). 

Common to these coordination strategies is that they required 

exact knowledge of the process models to provide the 

designed optimal or near optimal closed loop performance. 

However, in reality, linear models are never accurate due to 

nonlinearity or inaccurate identification. The robustness of 

distributed control strategies to model error has been 

identified as one of the major factors for the successful 

application of distributed MPC strategies (Rawlings and 

Stewart, 2007). 

This paper proposes the application of robust control tools to 

address two different aspects of the application of distributed 

MPC control strategies in the presence of model error or 

uncertainty: (1) The decomposition problem: This part of the 

study consists of searching for the best partitioning of the 

original process model into sub-systems that will result in the 

best closed loop robust performance, i.e. performance in the 

presence of model error. In previous studies this 

decomposition has been done in an ad-hoc fashion. An 

example of a multi-unit process is used as a case study. (2) 

The coordination problem: This part of the study addresses 

the sensitivity of strategies with different degrees of 

coordination to model error. A high purity distillation column 

is used as a case study. Three strategies are used and 

compared to one another: i- centralized control, ii- fully 

decentralized control and iii- a coordinated distributed control 

based on Nash equilibrium. For the current preliminary study, 

constraints have not been considered. This topic is left for 

future work. The different strategies are compared on the 

basis of the computation of a performance index obtained 

from a generalized eigenvalue problem (GEVP) in the 

presence of model error. Each control strategy is optimized 

based on this index with respect to the manipulated variables 

weights of the MPC controllers to permit a comparison based 

on the best possible controllers. 

2. DEFINITIONS AND METHODOLOGY 

2.1 Process Model 
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In this work, it is assumed that the nominal model of the 

process used by the MPC is a discrete linear time-invariant 

(LTI) state-space model of the following form: 

                     x(k + 1) = Ax(k) + Bu(k)          (1) 

                               y(k) = Cx(k)                        (2) 

where x(k) ∈ ℜ
nx

 is an nx-dimensional state vector;  

u(k) ∈ ℜ
nu

 is an nu-dimensional input vector; y(k) ∈ ℜ
ny

 is an 

ny-dimensional output vector; A ∈ ℜnx×nx
 is the state matrix,  

B ∈ ℜ
nx×nu

 is the input matrix, and C ∈ ℜ
ny×nx

 is the 

measurement matrix; k is the time interval. In addition, due to 

model uncertainty, it is assumed that the actual process to be 

controlled is as follows: 

 

                     xp(k + 1) = Apxp(k) + Bpu(k)          (3) 

                               yp(k) = Cpxp(k)                        (4) 

 

The number of states in (3)-(4), nxp, can be different from the 

number of states nx in (1)-(2) but the number of inputs and 

outputs is the same. The models are assumed to be available 

and obtaining such models is out of the scope of this paper. 

2.2  MPC Strategies 

Three MPC strategies are considered herein; viz., centralized 

control and distributed strategies: i-Nash-based distributed 

MPC, and ii- fully decentralized MPC. A brief description of 

their structure follows in order. 

2.2.1 Centralized MPC 

In the present study, the centralized MPC is based on the 

formulation proposed by Maciejowski (2002). The cost 

function is defined as follows: 

 

     ( ) ( ) ( ) ( ) 22

QU
kUkkYkJmin

λ∆
∆Τ +−=            (5) 

 

where Y(k) = [y(k+1k),…,y(k+Hpk)]
T
 is the vector of 

predicted outputs; Hp is the prediction horizon;  

T(k) = [R(k+1),…,R(k+Hp)]
T 

is the vector of set-points; Q is 

the output weights matrix; ∆U(k) = [∆u(kk),… 

, ∆u(k+Hu-1k)]
T
; Hu is the control horizon; ∆u(kk) = 

u(kk)-u(k-1k-1); λ is the input weights matrix. The set-

point signal R(k) is obtained by filtering the original set-point 

signal r(k) = [r1(k),…,rny(k)]
T
 according to the following 

exponential filter: 

 

                         R(k+1) = αR(k) + (1-α)r(k)                       (6) 

 

where α  is the filter parameter that is specified by the user 

based on the desired set-point bandwidth and r is assumed to 

be white noise.  

From the nominal model (1)-(2), the predicted output vector 

is calculated as follows: 

 

     ( ) )k(U)1k(u)k(xkY Θ∆ΓΨ +−+=                (7) 

 

The matrices ΘΓΨ  and , , are defined in (Maciejowski, 

2002) and are not given here for brevity. 

The tracking error vector of the free-response )k(Ε  is 

defined as: 

 

              )k()1k(u)k(x)k()k( ΞΓΨΤΕ −−−−=            (8) 

 

where the term )k(Ξ  accounts for unmeasured disturbances 

and/or model errors due to the difference between the 

nominal model in (1)-(2) and the plant model in (3)-(4) . This 

difference is assumed to remain constant along the horizon of 

Hp time intervals. Thus, )k(Ξ  is defined as follows: 

 

                           ( ) ( )[ ]kkykyLc)k( p −=Ξ                       (9) 

 

In the above expression, [ ]T
Hpny

I,,ILc
×

= nyny � , where I is the 

identity matrix, and )kk(y  is equal to the output of the 

model in (2) . 

The optimal moves at the current step (k), )kk(u*∆ , are 

calculated from the solution of (5) as follows: 

 

                 ( ) )k(Kkku MPC

* Ε∆ =                        (10) 

 

where MPCK  = [Inu,0nu,…,0nu]nu×Hu (Θ
T
QΘ+λ)

-1ΘT
Q . 

At this point, the closed-loop system of the plant model given 

in (3)-(4) and the centralized MPC can be obtained. To 

simplify the notations, it is assumed without loss of 

generality that u(k) = u(kk) and u(k-1) = u(k-1k-1). The 

resulting closed-loop system is: 
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where the closed-loop matrices are defined as follows: 
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2.2.2  Distributed MPC: Nash-based coordinated and Fully 

decentralized MPC 

For distributed MPC, the nominal model given in (1)-(2) is 

decomposed into N subsystems. The model of subsystem 

{ }N,......,1i ∈  can be written as: 

 

                    ∑
≠

++=+
ij

jijiiiiii uB)k(uB)k(xA)1k(x       (13) 

                               )k(xC)k(y iii =                      (14) 

 

where inx
i )k(x ℜ∈  is an nxi-dimensional state vector of the 

subsystem i including the effect of states from other 

subsystems; inu
iu ℜ∈ is an nui-dimensional input vector 

estimated by the i
th

 MPC assigned to subsystem i; 

jnu

ju ℜ∈ is an nuj-dimensional input vector estimated by the 

j
th

 MPC assigned to subsystem j and affects subsystem i; 

iny
iy ℜ∈ is an nyi-dimensional output vector; Ai, Bii, Bij, and 

Ci are matrices of appropriate dimensions.  

For analysis purposes, all equations for the individual 

subsystems are grouped together to formulate an overall 

model as follows: 

 

                       )k(uB)k(xA)1k(x oo +=+         (15) 

                               )k(xC)k(y o=                       (16) 

 

where Ao = block-diag(A1,…,AN); Co = block-diag(C1,…,CN); 

    

 

        Bo =
 

















NN1N

N111

BB

BB

�

���

�

.
 

The state vector x and the input vector u are obtained by 

appending all the state vectors and the input vectors of the i 

subsystems respectively. For the closed-loop system in (12) 

of distributed MPC, the matrices A, B, and C are replaced by 

Ao, Bo, and Co; respectively. 

The formulation of the Nash-based distributed MPC strategy 

is generally based on the work reported in (Li et al., 2005). 

However, since Li’s formulation was based on input/output 

models, in the current work a formulation of the Nash-

equilibrium based MPC based on state-space models had to 

be developed.  In the Nash-based MPC, the ∆Ui manipulated 

variable action is calculated by minimizing the local cost 

function of the i
th

 subsystem as follows: 

 

        ( ) ( ) ( ) ( ) 2

i

2

Qiii
U

kUkkYkJmin
i

λ∆
∆Τ +−=           (17) 

 

The predicted output vector of subsystem i is obtained by 

solving (15)-(16) recursively and given as: 

 

       

( )
)k(U)1k(u                          

)k(U)1k(u)k(xkY

ij
jij

ij
jij

iiiiiiii

∑∑
≠≠

+−+

+−+=

∆ΘΓ

∆ΘΓΨ
   (18) 

 

The matrices Ψi, Γi, Γij, Θi, and Θij can be obtained using the 

same definitions as in (Maciejowski, 2002) from the model 

given in (13)-(14).  

The tracking-error vector Ei(k) and the optimal solution of 

(17) )k(U *

i∆  for subsystem i are given in the following 

equations:    

           

(19)                         )k()k(U)1k(u

)1k(u)k(x)k()k(

i

ij ij

jijjij

iiiiiii

Ξ∆ΘΓ

ΓΨΤΕ

−−−−

−−−=

∑ ∑
≠ ≠

 

 

     ( ) 







−= ∑

≠ij

jijiii

*

i )k(UkK)k(U ∆ΘΩ∆          (20) 

 

with ( ) i
T

i

1

iii
T

iii QQK ΘλΘΘ
−

+=  and )k(iΩ contains all the 

right hand side terms in (19) except the term ∑
≠ij

jij )k(U∆Θ .  

For numerical convenience, equation (20) is generally solved 

for large systems by iterations. In the current work a closed 

form solution derived from (20) is used as follows: 
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In equation (21), the term ( )kΩ  is similar to ( )kΕ  in (8) 

with:  
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The current control moves are given by: 

 

                                ( )kK)k(u MPC Ω∆ =                           (22) 

 

with                      ( ) 1
1

0MPC KK1LK
−

−=                           

 

where L = block-diag(L1,…,LN); [ ] )Hunu(1i i
0,,0,1L ×=  � . 

The aforementioned formulation for Nash-based distributed 

MPC strategy can be also used to analyze the specific case of 

fully decentralized MPC where all the interactions are 

ignored, i.e. all the terms corresponding to the interaction 

between the subsystems are eliminated in (14). Accordingly, 

K0 in (22) is omitted.  Thus, a closed-loop system 

representation can be obtained for either a Nash-based MPC 

or a fully decentralized MPC based on the formulation 

presented in (12). Once the closed-loop system is formulated 

for each MPC strategy, a performance index can be 

calculated as shown in the next section.  

2.3  Methodology 

The closed-loop system given in (12) can be re-written in the 

following compact form: 

 

                    















=







 +

)k(r

)k(

DC

BA

)k(e

)1k(

CLCL

CLCL ηη
                  (23) 

where η(k) = [xp(k),x(k),u(k-1),R(k)]
T
 is the states vector of 

the closed-loop system.  

Gao and Budman (2005) used a robust performance index to 

design gain-scheduled PI controllers for nonlinear processes. 

This index corresponds to the variability of the closed-loop 

system. In the current study the variability of the system is 

given as an upper bound of the effect of set-point input 

signals r(k), defined in (6), on the output error signals  

e(k)= R(k) - y(k), according to the following inequality: 

 

2

2

r

e

�

�
 < γ                                (24) 

 

A bound on γ can be obtained from the solution of a 

Generalized Eigenvalue Problem, GEVP (Boyd et al., 1994): 

 

22
min min γγ

P
=                                       (25) 
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where P is positive definite matrix. 

In the presence of model uncertainty, the plant model given 

in (3)-(4) can be represented by a set of linear plants where 

the state-space matrices are defined as follows: 

 

        ∑ ∑
= =

==
l

1i

l

1i

ipipipiippp 1;CBACBA ββ ][][       (26)  

 

Then, the problem (25) has to be solved with l inequalities 

each corresponding to a model i included in the set of plants 

defined in (26). To find the best controller, the input weights 

(λ) are optimized to produce the MPC controller with the best 

performance as follows: 

 

                                   
2
min

2
min γγ

λ
=opt         (27) 

 

All other tuning parameters, such as the prediction and 

control horizons and the output weights are fixed a priori for 

simplicity. A smaller value of γopt implies a better closed loop 

performance following definition (24).  The problem in (26) 

is formulated in MATLAB® and solved using MATLAB® 

linear matrix inequalities (LMI) toolbox and the problem in 

(27) is solved using the MATLAB® optimization toolbox. In 

the present work, for the MPC strategies discussed in the 

previous section, two different problems can be addressed. 
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Firstly, the decomposition problem in which the objective is 

to find the best partitioning into subsystems that result in the 

best closed-loop robust performance. Secondly, the 

coordination problem in the presence of model error is 

studied by comparing the robust performance in terms of 

minimum variability for the three MPC strategies discussed 

in the previous section.  

3. CASE STUDIES 

3.1  Decomposition Problem 

 Samyudia et al., (1994) studied a multi-unit process 

composed of two CSTRs connected in series with a perfect 

separator. The unreacted substance is recycled and fed-back 

to the first reactor. The following is a continuous-time 

linearized model:   
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where C1 is the concentration in the first reactor, C2 is the 

concentration in the second reactor, T1 is the temperature in 

the first reactor, FR is the recycle flow rate, Ps is the steam 

pressure. The objective is to control C2 and T1 by 

manipulating FR and PS. To give equal importance to errors in 

C2 and T1, the errors in C2 were multiplied by 100. The above 

model was discretized using a sample time of 0.1. By 

examining the model in (28), C2 should be paired with FR and 

T1 should be paired with Ps. Samyudia et al. (1994) proposed 

two plant decompositions for decentralized control; namely, a 

physical decomposition based on material and energy 

balances around each reactor, and a mathematical 

decomposition in which each decomposed subsystem is 

composed from either the material balances or energy 

balances of the two units. The γopt was calculated for each 

decomposition to compare their closed-loop performance. At 

this stage, only the fully decentralized MPC is considered. 

The results obtained from the proposed methodology as well 

as the results obtained from simulations are summarized in 

table 1 for a unit step-change in C2. The following parameters 

were used Hp=300, Hu=100, α = 0.99 and Qi=I2x2. The 

uncertainty consisted in 20% perturbations in the parameter -

0.0368 and 5% in the parameter -0.0214 in (26). Calculations 

were done with (γopt, uncer) and without uncertainty (γopt, nom). 

Since the analysis produces the worst case scenario, a worst 

signal for set-point tracking was sought for the purpose of 

simulation and comparison to analysis. A pulse of 20 

intervals was found to give large values of  γ. For comparison 

purposes, simulations were also conducted for step changes. 

The simulation results both for step and pulse are given in 

table 1. 

Table 1.  Results of analysis and simulation 

 Mathematical  

decomposition 

Physical 

 Decomposition 

γopt, uncer 1.035 1.297 

γopt, nom 1.006 1.276 

γpulse 0.220 0.331 

γstep 0.143 0.147 

 

Although the analysis is conservative, the simulation results 

are consistent with the analysis and they show that the 

mathematical decomposition is better. Samyudia et al. (1994) 

obtained similar conclusion based on open-loop 

considerations. By comparing (γopt, nom) and (γopt, uncer) for the 

two decompositions it is clear that uncertainty has a larger 

effect on the mathematical decomposition due to the fact that 

the uncertain parameter -0.0368 appears only in this 

decomposition. 

3.2  Coordination Problem 

To illustrate the coordination problem the example used is a 

high-purity column studied by Skogestad and Morari (1988). 

The example is challenging due to the high condition number 

of the process and its sensitivity to model error. The 

simplified model of the system is given by the following 

transfer function (Skogestad and Morari, 1988): 
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1

2

1

u

u

sy

y

1.0961.082

0.8640.878

175

1
          (29) 

 

where y1 and y2 are the top and bottom product compositions 

and  u1 and u2 are the reflux flowrate and the boilup.  

A state-space realization with only two states can be easily 

obtained from the model above and is not shown for brevity. 

The γopt was calculated for each one of the 3 MPC strategies: 

centralized, fully decentralized and Nash-based. The 

following parameters were assumed for the 3 controllers as 

follows: Hp = 20, Hu = 5, α = 0.99 and Qi=I2x2. As done for 

the previous example, simulations were carried out for a 

pulse of 40 time intervals and step set-points. To assess the 

effect of uncertainty, two cases were considered:  i. a change 

of 0.2% and 0.5% on the steady-state gains in elements (1,1) 

and (1,2) in (29); respectively, ii. a change of 2.5% and 2% 

on the steady-state gains in elements (1,1) and (1,2) in (29); 

respectively. The analytical and simulation results are 

summarized in table 2 and the dynamic response of the 

system to unit set-point change in y1 for case ii is shown in 

figure 1.  
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Table 2.  Results of analysis and simulation for different 

MPC strategies 

 Centralized Decentralized Nash-Based 

γopt, nom 0.013 0.33 0.015 

γopt, uncer, i 0.153 0.372 0.123 

γpulse, i 0.077 0.200 0.032 

γstep, i 0.014 0.076 0.006 

γopt, uncer, ii 0.546 0.541 0.535 

γpulse, ii 0.082 0.240 0.065 

γstep, ii 0.015 0.108 0.012 
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Fig.1. Dynamic response of the system to unit set-point 

change in y1 for case ii 

Generally, the results of the analysis are consistent with the 

results of the simulation. The results are highly sensitive to 

model uncertainty (γopt, uncer) as seen from the large increase 

between the nominal case (γopt, nom), i.e. the case without 

uncertainty, and the two cases with uncertainty specified 

above. For case ii corresponding to larger uncertainty,  

(γopt, uncer,ii) becomes similar for the three controllers 

indicating that the fully decentralized MPC strategy may give 

similar performance to the other two strategies. Although in 

the simulation for the case with larger model error the fully 

decentralized control has the worst performance, the error is 

of similar magnitude as the others. It should be also 

remembered that the pulse or step set-points changes may not 

be the worst scenarios and there is no systematic way to find 

the worst case. In addition, the Nash-based controller is the 

less sensitive to model errors in both cases. This is due to the 

fact that the Nash-based controller does not require a full 

inverse of the ill-conditioned model of the process as it is the 

case in the centralized controller. For case ii as given in 

figure 1, Nash-based MPC gives similar response to 

centralized MPC for y1 whereas the fully decentralized MPC 

results in a sluggish response and for y2 Nash-based MPC 

gives slightly better performance by maintaining the lowest 

overshoot compared to centralized MPC whereas fully 

decentralized MPC resulted in the largest overshoot.  

4. CONCLUSION 

In this work, a methodology is developed to address 

robustness issues related to distributed MPC strategies. The 

methodology allows for selecting the best model 

decomposition and for comparing the performance of three 

MPC strategies: centralized, fully decentralized, and Nash-

Based, in the presence of model errors. The approach is based 

on the minimization of robust performance index of the 

closed-loop system for different MPC strategies with 

different uncertainty levels. Two case studies were selected to 

illustrate the application of the methodology. The analytical 

results obtained in this study are consistent with simulation. 

However, since the methodology calculates bounds on the 

closed-loop system’s variability the results are somewhat 

conservative. This conservatism increases when the 

uncertainty level is high. 

The applicability of the proposed methodology to systems 

with higher dimension and consideration of process 

constraints is currently being investigated.  
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