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Abstract: The feedback control of glucose concentration in type 1 diabetic patients using
subcutaneous insulin delivery and subcutaneous continuous glucose monitoring is considered. A
recently developed in-silico model of glucose metabolism is employed to generate virtual patients
on which control algorithms can be validated against interindividual variability. An in silico
trial consisting of 100 patients is used to assess the performances of a linear output feedback
model predictive controller, designed on the basis of the in-silico model. More than satisfactory
results are obtained in the great majority of virtual patients. The experiments highlight the
crucial role of the anticipative feedforward action driven by the meal announcement information.
Preliminary results indicate that further improvements may be achieved by means of a nonlinear
model predictive control scheme.

1. INTRODUCTION

The automated control of normoglycemia in subjects with
type 1 diabetes, also called artificial pancreas, has been
subject of extensive research since the 1970s Bequette
(1998), Hovorka (2005). However, the first devices, e.g. the
BiostatorTM, which used intravenous (i.v.) BG sampling
and i.v. insulin and glucose delivery, were cumbersome and
unsuited for outpatient use. A minimally-invasive closed-
loop system using subcutaneous (s.c.) continuous glucose
monitoring and s.c. insulin pump delivery was needed. To
date, several s.c.− s.c. systems, have been tested Hovorka
(2005), Klonoff (2007). From a control viewpoint, the main
challenges are time delays, constraints, meal disturbances,
and nonlinear dynamics. Most of the control schemes pro-
posed in literature are based on either PID (Proportional
Integral Derivative) or MPC (Model Predictive Control)
control laws, see e.g. Panteleon et al. (2006), Hovorka
(2005), Dua et al. (2006). Due to the presence of significant
delays in the glucose metabolism model, a well designed
feedforward action able to consider in advance a meal
announcement signal is essential in order to guarantee
satisfactory performances. Within MPC, feedforward and
feedback control actions are jointly designed and con-
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straints are taken into account in a very natural way. The
recent advancements in nonlinear MPC, see e.g. Mayne
et al. (2000), and the development of a new generation of
models of glucose metabolism make this control technique
even more promising.

The need of guaranteeing parameter identificability from
easily measurable experimental data motivated the devel-
opment of parsimonious models of glucose metabolism see
e.g. the classical minimal model Bergmann et al. (1979).
By contrast, in silico large-scale simulation models aim to
describe the glucose-insulin system in as much detail as
possible. The major limitation of most in silico models
is that they were validated on few subjects and only by
means of plasma concentration measurements. Recently, a
new-generation in silico model has been developed taking
advantage of the availability of a unique-meal data set of
204 nondiabetic individuals Dalla Man et al. (2007). The
subjects underwent a triple tracer meal protocol, making it
possible to obtain in a virtually model-independent fashion
the time course of all the relevant glucose and insulin fluxes
during a meal. Thus, by using a “concentration and flux”
portrait, it was possible to model the glucose-insulin sys-
tem by resorting to a sub-system forcing function strategy
which minimizes structural uncertainties in modeling the
various unit processes.

In this paper, the above model is used to randomly
generate virtual diabetic patients. Suitable modifications
are introduced to reflect the absence of endogenous insulin
secretion, while the parameter variability in the original
dataset is used to model interindividual variability of the
diabetic population. Validating algorithms on a whole set
of different patients (in silico trial) is the only realistic
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way of addressing robustness of the artificial pancreas in
the face of interindividual variability so as to maximize
success chances in the subsequent clinical trials conducted
on real patients.

In the present work, the in silico model is used to design a
linear output feedback MPC scheme which is then tested
on an in silico trial consisting of 100 synthetic type I
diabetic subjects “followed” for 4 days, receiving breakfast,
lunch, and dinner each day. The overall results, as mea-
sured by several established performance indices, are more
than satisfactory for the great majority of virtual patients.
It is highlighted the role of the feedforward action that
takes advantage of the meal announcement information.
Moreover, the controller performances are shown to be
robust with respect to errors in the meal announcement
signal. Finally, in order to improve the glucose concentra-
tion regulation of the (few) not well regulated patients,
a preliminary test is carried out by using a nonlinear
state-feedback MPC scheme. A definite improvement of
performances is observed, indicating that nonlinear MPC
has the potential for achieving very effective glucose con-
centration control.

2. VIRTUAL PATIENTS

In order to synthesize and test the controller, we used the
meal glucose-insulin model Dalla Man et al. (2007). Some
modifications have been introduced in order to simulate
the metabolic specifics of T1DM (see Magni et al. (2007)).

Glucose intestinal absorption Glucose intestinal ab-
sorption is modeled by a recently developed three-
compartment model

Qsto(t) = Qsto1
(t) + Qsto2

(t)

Q̇sto1
(t) = −kgriQsto1

(t) + d(t)
Q̇sto2

(t) = −kgut(t, Qsto)Qsto2(t) + kgriQsto1
(t)

Q̇gut(t) = −kabsQgut(t) + kgut(t,Qsto)Qsto2(t)

Ra(t) =
fkabsQgut(t)

BW

where Qsto(mg) is amount of glucose in the stomach
(solid, Qsto1

, and liquid phase, Qsto2
), Qgut(mg) glucose

mass in the intestine, kgri rate of grinding, kabs rate
constant of intestinal absorption, f fraction of intestinal
absorption which actually appears in plasma, d(mg/min)
amount of ingested glucose, BW (Kg) body weight and Ra
(mg/kg/min) glucose rate of appearance in plasma, kgut

rate constant of gastric emptying which is a time-varying
nonlinear function of Qsto

kgut(t,Qsto) = kmin + kmax−kmin

2

{

tanh
[

α
(

Qsto − bD̄(t)
)]

− tanh
[

β
(

Qsto − dD̄(t)
)]

+ 2
}

α = 5
2D̄(t)(1−b)

, β = 5
2D̄(t)d

, D̄(t) = Qsto(t̄) +
∫ t̄f

t̄
d(τ̄)dτ

where t̄ and t̄f are the initial and final times of the last
ingestion, while b, d, kmax and kmin are model parameters.

Glucose subsystem A two-compartment model is used
to describe glucose kinetics

Ġp(t) = EGP (t) + Ra(t) − Uii − E(t)
−k1Gp(t) + k2Gt(t)

Ġt(t) = −Uid(t) + k1Gp(t) − k2Gt(t)

where Gp (mg/kg) and Gt (mg/kg) are glucose in
plasma and rapidly-equilibrating tissues, and in slowly-

equilibrating tissues, respectively, EGP endogenous glu-
cose production (mg/kg/min), E (mg/kg/min) renal ex-
cretion, Uii and Uid insulin-independent and -dependent
glucose utilizations, respectively (mg/kg/min), and k1

and k2 rate parameters. The insulin-independent glucose
utilizations Uii is assumed constant.

Glucose Renal Excretion Renal excretion, which occurs
if plasma glucose exceeds a certain threshold, can be
modeled as follows

E(t) =

{

ke1
[Gp(t) − ke2

] if Gp(t) > ke2

0 if Gp(t) ≤ ke2

where ke1
is glomerular filtration rate and ke2

renal thresh-
old of glucose.

Endogenous Glucose Production EGP comprises a
direct glucose signal and a delayed insulin signal

EGP (t) = max {0, kp1 − kp2Gp(t) − kp3Id(t)}

where the delayed insulin signal Id (pmol/l) is given by

İ1(t) = −ki [I1(t) − I(t)]

İd(t) = −ki [Id(t) − I1(t)]

with I(pmol/l) the plasma insulin concentration, kp1 the
extrapolated EGP at zero glucose and insulin, kp2 liver
glucose effectiveness, kp3 parameter governing amplitude
of insulin action on the liver, and ki rate parameter
accounting for delay between insulin signal and insulin
action.

Glucose Utilization Glucose utilization is made up of
two components: the insulin independent one Uii, which
represents the glucose uptake by the brain and erythro-
cytes, and the insulin dependent component Uid, which
depends nonlinearly on glucose in the tissues

Uid(t) = Vm(t)Gt(t)
Km+Gt(t)

, Vm(t) = Vm0 + VmxX(t)

Ẋ(t) = −p2UX(t) + p2U [I(t) − Ib]

where Km, Vm0, Vmx are model parameters, X (pmol/l) is
the remote insulin signal, Ib (pmol/l) is the basal insulin
level and p2U is rate constant of insulin action on the
peripheral glucose utilization.

Subcutaneous insulin kinetics The present paper
adopts a variation of a model described in Verdonk et al.
(1981)

Ṡ1(t) = −(ka1 + kd)S1(t) + u(t)
Ṡ2(t) = kdS1(t) − ka2S2(t)

where u(t) (pmol/kg/min) represents administration (bo-
lus and infusion) of insulin. The first compartment rep-
resents the amount of the nonmonomeric insulin in
the subcutaneous space, which is partly transformed in
monomeric insulin (second compartment) and partly en-
ters the circulation with rate constants of insulin absorp-
tion kd and ka1 respectively; the monomeric insulin is
finally absorbed with rate constant ka2.

Insulin subsystem The model equations are

İl(t) = − (m1 + m3) Il(t) + m2Ip(t)

İp(t) = − (m2 + m4) Ip(t) + m1Il(t) + ka1S1(t)
+ka2S2(t)

where Ip(t) = VII(t) (pmol/kg) and Il (pmol/kg) are
insulin masses in plasma and in liver, respectively, VI

(l/kg) being the body weight normalized insulin volume
and mi, i = 1, ..., 4 are model parameters.
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Subcutaneous glucose kinetics Subcutaneous glucose
concentration GM (mg/dl) is obtained as

ĠM (t) = −kscGM (t) + ksc

Gp(t)

VG

where VG (dl/kg) is the body weight normalized glucose
volume and ksc is a rate constant.

Virtual patient generation In order to obtain param-
eter joint distributions in type 1 diabetes, the parameter
identified in 204 subjects in health were used as starting
point Dalla Man et al. (2007). Some modification was
needed to realistically describe a type 1 diabetic subject:
basal glucose concentration was assumed to be on average
50 mg/dl higher than in subjects in health; steady state
insulin concentration (due to an external insulin pump)
was assumed to be on average four times higher than in
subjects in health; basal endogenous glucose production
was assumed to be 35% higher than in subjects in health,
and steady state insulin clearance was assumed to be one
third lower than in subjects in health; parameters relating
to insulin action on both glucose production and utiliza-
tion were assumed to one third lower than in subjects in
health. For all these parameters/variable the same inter-
subject variability found in subjects in health was main-
tained. The parameters were assumed to be log-normal
distributed to guarantee that they were always positive,
thus covariance matrix (26× 26) was calculated using the
log-transformed parameters. 100 subjects were generated
using the joint distribution, i.e. 100 realization of the log-
transformed parameter vector were randomly extracted
from the multivariate normal distribution with mean equal
to mean of the log-transformed parameters and 26 × 26
covariance matrix. Finally, the parameters in the 100 in
silico subjects were obtained by antitransformation.

3. MODEL PREDICTIVE CONTROL

The glucose metabolism model can be rewritten in the
following compact way

ẋ(t) = f(t, x(t), u(t), d(t))
y(t) = GM (t)

where x = [Qsto1
, Qsto2

, Qgut, Gp, Gt, Ip,X, I1, Id, Il, S1,
S2, GM ], and f(·, ·, ·, ·) is derived from the model equa-
tions reported in Section 2. The system is subject to the
following constraints

xmin ≤ x ≤ xmax (1)

umin ≤ u ≤ umax (2)

where xmin, xmax, umin and umax denote lower and upper
bounds on the state and input respectively. Typically, they
represent limits on the glucose concentration and on the
insulin delivery rate. In the following, it is assumed that
meal announcement is available, i.e. the disturbance signal
(the meal) is known in advance.

The MPC control law (Mayne et al. (2000), Camacho
and Bordons (2004), Maciejowski (2001)) is based on the
solution of a Finite Horizon Optimal Control Problem
(FHOCP ), where a cost function J(x̄, u) is minimized
with respect to the input u subject to the state dynamics of
a model of the system, and to state- and input-constraints.
Letting uo be the solution of the FHOCP , according
to the Receding Horizon paradigm, the feedback control

law u = κMPC(x) is obtained by applying to the system
only the first part of the optimal solution. In this way, a
closed-loop control strategy is obtained solving an open-
loop optimization problem.

MPC control laws can be formulated for both discrete-
and continuous-time systems. In this paper, a discrete-time
Linear MPC (LMPC) is derived from an input-output
linearized approximation of the full model. Moreover,
a state-feedback nonlinear MPC (NMPC) scheme is
derived that exploits the full nonlinear model.

3.1 Unconstrained Linear Model Predictive Control

Given the basal values of Gp, Gt, and Ip that are character-
istic of each patient, the associated equilibrium point with
D = 0 is called (x̄, ū, d̄). Around this equilibrium point,
assuming kgut(t,Qsto) = (kmax − kmin) /2, the system is
linearized and discretized with sample time Ts yielding

x(k + 1) = ADx(k) + BDuu(k) + BDdd(k)
y(k) = CDx(k)

After a model order reduction step the following transfer
function representation is obtained

Y (z) =
NU (z)

DE(z)
U(z) +

ND(z)

DE(z)
D(z) (3)

with

NU (z) = bn−1z
n−1 + ... + b0

DE(z) = zn + an−1z
n−1 + an−2z

n−2 + ... + a0

ND(z) = bDn−1z
n−1 + ... + bD0

Since the two transfer functions have the same denomina-
tor, the following input-output representation is obtained

y(k + 1)
= −an−1y(k) − an−2y(k − 1) − ... − a0y(k − n + 1)

+bn−1u(k) + ... + b0u(k − n + 1)
+bDn−1d(k) + ... + bD0d(k − n + 1)

Finally, system (3) can be given the following state-space
(nonminimal) representation

xIO(k + 1) = AIOxIO(k) + BIOu(k) + MIOd(k)
y(k) = CIOxIO(k)

where xIO(k+1) = [y(k+1)′,...,y(k−n+2)′, u(k)′, ..., u(k−
n+2)′, d(k)′, ..., d(k−n+2)′]′ and the matrices AIO, BIO,
MIO, CIO are defined accordingly.

In order to derive the LMPC control law the following
quadratic discrete-time cost function is considered

J(xIO(k), u(·))

=
∑N−1

i=0

(

∥

∥y0(k + i) − y(k + i)
∥

∥

2

QD
+ ‖u(k + i)‖

2
RD

)

+
∥

∥y0(k + N) − y(k + N)
∥

∥

2

SD

where N is the prediction horizon, yo(k) the desired output
at time k and QD = Q′

D ≥ 0, RD = R′

D > 0, SD = S′

D ≥ 0
symmetric matrices.

The evolution of the system can be re-written in a compact
way as follows

Y (k) = AcxIO(k) + BcU(k) + McD(k)

where Y (k) = [y(k+1), y(k+2), ..., y(k+N−1), y(k+N)],
D(k) = [d(k)′, d(k + 1)′, ..., d(k + N − 1)′, d(k + N)′]′,
U(k) = [u(k)′, u(k + 1)′, ..., u(k + N − 1)′, u(k + N)′]′ and
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Ac, Bc, Mc, are derived using the discrete time Lagrange
formula
xIO(k + i) = Ai

IOxIO(k)

+
i−1
∑

j=0

Ai−j−1
IO (BIOu(k + j) + MIOd(k + j))

In this way, letting Y o(k) = [yo(k+1)′, yo(k+2)′, ..., yo(k+
N − 1)′, yo(k + N)′]′ the cost function becomes

J̄(x(k), u(·))
= (Y o(k) − Y (k))

′

Q (Y o(k) − Y (k)) + U ′(k)RU(k)
= (Y o(k) −AcxIO(k) − BcU(k) −McD(k))

′

Q
∗ (Y o(k) −AcxIO(k) − BcU(k) −McD(k))
+U ′(k)RU(k)

where Q and R are block-diagonal matrices that contain
the matrices Q, R and S. In the unconstrained case, the
solution of the optimization problem is

Uo(k) =
(

B′

cQB′

c + R
)

−1
B′

c

∗Q (Y o(k) −AcxIO(k) −McD(k))

where the future values of the set point and the distur-
bance signal (meal) are considered. Finally, following the
Receding Horizon approach the control law is given by

uo(k) = [ I 0 . . . 0 ] Uo(k)

In view of the input constraints (2), only a saturated value
will be applied to the system. The satisfaction of the state
constraints, on the contrary, cannot be guaranteed; it is
only possible to tune parameters Q, R, S and N to improve
the regulation performance. The major advantages of this
input-output LMPC scheme are that an observer is not
required (xIO includes past input and output values only),
and that it is very easily implementable because on-line
optimization is avoided.

3.2 Constrained Linear Model Predictive Control

With a relatively small increase of the computational bur-
den it is possible to consider explicitly both input and
state constraints by solving a constrained linear quadratic
optimization problem. This can be done by solving on-line
a quadratic programming problem or by using an explicit
solution derived through a multiparametric approach. In
this paper the results obtained with constrained LMPC
are not reported because they did not show any significant
improvement. In fact, the explicit consideration of only
input constraints does not improve the performance of
the unconstrained saturated control law, while the fully
constrained problem, i.e. also with state constraints, intro-
duces nontrivial problems due to the approximation error
caused by linearization and model reduction. Further work
is required to explore this approach.

3.3 Nonlinear Model Predictive Control

The potentiality of a full nonlinear approach were explored
by considering a state-feedback nonlinear MPC where the
following continuous time cost function is used

J(x̄, u(·), t̄)

=
∫ t̄+L

t=t̄

(

y0(τ) − y(τ)
)

′

Q
(

y0(τ) − y(τ)
)

+(u(τ) − ū)
′

R (u(τ) − ū) dτ

In order to develop a full hybrid solution, the control input
u(τ) is constrained to be piecewise constant, see Magni

and Scattolini (2004). Both input and state constraints
are explicitly considered.

4. PERFORMANCE ASSESSMENT

Virtual protocol The performance of closed-loop glucose
control was tested on a 4-day virtual protocol:

• the simulation starts in basal steady-state and the
first meal is the dinner at 7.30 pm of Day 1;

• the patient has breakfast at time 9.30 am with 45g of
glucose, lunch at 13.30 with 75g of glucose and dinner
at 7.30 pm within 85g of glucose;

• in the first part of the simulation the patient has a
subcutaneous bolus based on an open-loop strategy,
while at 9.30 pm of day 2 the controller is plugged in.

Performances indices Some established indices of glu-
cose control were considered.

(1) Low Blood Glucose Index (LBGI) Kovatchev et al.
(2005): Given n samples of the glucose mass in the
plasma Gp(i)

LBGI =
1

n

n
∑

i=1

rl(Gp(i)/VG)

where rl(·) = 10 ∗ (g (ln(·)
a
− b))

2
if g (ln(·)

a
− b) < 0

and zero otherwise. The parameters g, a and b are
equal to 24.7159, 0.3043 and 1.6156 respectively. This
index captures the propensity of the algorithm to
overshoot the target and eventually trigger hypo-
glycemia.

(2) High Blood glucose index (HBGI) Kovatchev et al.
(2005): Directly linked with LBGI it captures the
propensity of the algorithm to stay above the target
range

HBGI =
1

n

n
∑

i=1

rh(Gp(i)/VG)

where rh(·) = 10∗ (g (ln(·)
a
− b))

2
if g (ln(·)

a
− b) > 0

and zero otherwise.
(3) Percent of time spent below the lower bound of the

target range (PERCL): the target range is defined
as 90 mg/dl ≤ Gp/VG ≤ 180 mg/dl; percent of time
is computed on a 1 minute basis over the considered
simulation interval.

(4) Percent of time spent over the upper bound of the
target range (PERCH).

(5) Minimum of blood glucose concentration Gp/VG

(Min Glycemia).
(6) Maximum of blood glucose concentration Gp/VG

(Max Glycemia).

In order to allow for the transition from open-loop to
closed-loop regulation all the indices are computed for two
different periods: commutation since 9.30 pm of day 2 to
6.30 am of day 3 and regulation after 6.30 am of day 3.

5. RESULTS

Experiment 1 The ingested amount of glucose is ex-
actly the one considered in the protocol. 100 subjects are
simulated using an LMPC control law synthesized with
Ts = 30 min, n = 2, N = 8, RD = 1 and QD = SD = q,
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where q has been tuned for each subject and the set point
is taken equal to 135 mg/dl. For a more detailed analysis of
the effect of q on the performance see Magni et al. (2007)).

Experiment 2 The ingested amount of glucose is ran-
domly varied within ±40% of the nominal value for all 100
patients. The LMPC control law has the same parameters
as those used for Experiment 1 and relies on the nominal
glucose dose to decide the feedforward action.

Experiment 3 The amount of ingested glucose is the
same as in Experiment 2 for all 100 patients, but the
LMPC control law is applied without meal announce-
ment.

Experiment 4 In order to explore the potentiality of
NMPC, some virtual patients undergoing Experiment
1 were also controlled by means of an NMPC scheme
with set point 135 mg/dl. The following constraints were
imposed on glucose plasma concentration and external
insulin: Gp/VG > 90 mg/dl, 0 ≤ u ≤ 150U/h. In the
cost function L = 4h, R = 1, and Q was tuned for each
subject.

Experiments evaluation Figure 1 shows the scatter plot
of the Min Glycemia and Max Glycemia during regulation
for Experiments 1-3. Figure 2 shows the plasma glucose
and external insulin evolution in Subject 3. Nominal and
real meals are reported in the bottom panel. In Figure 3
the boxplots for indices 1-4 are reported for Experiments
1-3 during both commutation (“c”) and regulation (“r”)
periods. In Fig. 4, the LMPC and NMPC are compared
in Subjects 88 and 36 showing plasma glucose and external
insulin evolution.

The vertical black lines in Fig. 2 and 4 represent the
beginning and the end of the commutation period.

With reference to the regulation period, it is apparent from
Figs. 1 and 3 that during Experiment 1 no hypoglycemic
events occurred. In fact, the minimum value of Glycemia
is always greater than 90 mg/dl. Conversely, in some sub-
jects the maximum value is rather high but only episodi-
cally for short time periods after meal. In fact, the values of
the index HBGI, reported in Figure 3, are not excessively
high (note that HBGI ≃ 10 with Gp = 190 mg/dl). As
evident from Figure 2, the controller normalizes Glycemia
very quickly even starting from unfavorable initial condi-
tions. The transient of the external insulin and the meal
plot show that the insulin flux increase anticipates the
meal when meal announcement is used. Imperfect knowl-
edge of the amount of ingested glucose (Experiment 2)
causes an only marginal deterioration of performance of
the regulator, while the results obtained with Experiment
3 show the benefit of meal announcement, see Figs. 1-3.
As shown in Fig. 4 for Subjects 88 and 36, the adoption of
an NMPC scheme, in place of an LMPC one, can bring
substantial improvement with respect to the prevention of
hypo- and hyper-glycemic events. The advantage of the
nonlinear predictive control scheme is twofold: constraints
on Glycemia are explicitly allowed for and knowledge of
the nonlinear dynamics is exploited.
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Fig. 1. Minimum versus maximum value during regulation
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Fig. 2. Subject 3: Experiment 1 (continuous), Experiment
2 (grey), Experiment 3 (dashed)

6. CONCLUSIONS

The in silico trial has demonstrated that linear output
feedback MPC achieves satisfactory Glycemia regulation
in a population of 100 type 1 diabetic patients. Preliminary
tests conducted in some virtual patients have shown that
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Fig. 3. Boxplot of the indices for the Experiments 1-3
during commutation and regulation respectively

state-feedback NMPC has the potential to introduce fur-
ther improvements. The proposed scheme is also robust
with respect to noise in the meal announcement signal.
Robustness in the face of sensor errors could be investi-
gated by complementing the simulator with a probabilis-
tic model of the sensor noise. Another research direction
concerns the development of state observers to be used in
conjunction with nonlinear MPC.
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