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Abstract: In this paper, we use system identification methods for abnormal condition detection of a 
cement rotary kiln. After selecting proper inputs and output, an input-output model is identified for the 
plant. A novel approach is used in order to estimate the delays of the input channel of the kiln. By means 
of that, the identification task gets easier and the results are more accurate. To identify the kiln, Locally 
Linear Neuro-Fuzzy (LLNF) model is used. This model is trained by LOLIMOT algorithm which is an 
incremental tree-structure algorithm. Finally, a model for the healthy mode of the kiln is obtained through 
which it is possible to detect abnormal conditions in the process. We distinguished two common 
abnormal conditions in kiln and another one which was not characteristically known for cement experts 
as well. 

 
1. INTRODUCTION 

During the operation of a plant, some process variables are 
measured to monitor the behavior of the plant, either to 
control them or for safety reasons. In automation system of a 
plant, these variables are compared by their proposed normal 
values and if their values are beyond some thresholds, control 
or safety commands are given or warning alarms are 
produced. But, generally there are many abnormal conditions 
where the sensory and automation system of the plant cannot 
recognize them. In these cases, an expert operator who knows 
how the plant should operate in normal condition can detect 
its abnormality. Due to the importance of these abnormal 
conditions, automatic abnormal condition monitoring is 
necessary for a full automatic control system. 

For this reason, modern condition monitoring approaches are 
introduced. With these approaches, it is possible to diagnose 
and/or prognosticate a faulty situation beforehand in the 
operation of a plant in order to prevent damages to 
instruments or a collapse in the process. 

In this paper we use system identification methods in order to 
detect common abnormal conditions in the most vital part of 
a cement factory, i.e. cement rotary kiln. To identify the kiln, 
we use LLNF model, also referred to as Takagi-Sugeno fuzzy 
models (Takagi et al, 1985). We used LOLIMOT algorithm 
(Nelles, 2001) to learn the weights. 

In the next section, a brief description on rotary kiln is given. 
Also some abnormal conditions that may happen in it are 
mentioned. Then the reasons above input-output selection are 
discussed. In section 3, using a novel approach which was 
first presented by the authors (Makaremi, 2007, Makaremi et 
al, 2008), the input channel delays on the model are 
estimated. Afterward in section 4, with NNLF model and 

LOLIMOT learning algorithm, a model for the kiln is 
obtained. Section 5 is devoted to the discussion on detecting 
three abnormal conditions that were observed in test and 
validation data. Conclusion comes at the end. 

2. CEMENTROTARY KILN 

Cement is a substance which is made of grinded gypsum and 
cement clinker which itself is produced from a burned 
mixture of limestone and clay in certain percentages. Cement 
is used to bind other materials together. 

Since cement factory is much expanded and it is consisted of 
different instruments and various processes in each part, 
modern condition monitoring methods are seemed suitable to 
be used in order to prevent abnormal conditions which end in 
a loss. 

Cement rotary kiln is the most vital part of a cement factory 
whose outcome is cement clinker. A rotary kiln is a cylinder 
with a length of around 70 meters and a diameter of around 5 
meters in a factory with a capacity of producing about 2000 
tons of clinker in a day. The kiln is rotated by a powerful 
electrical motor. The temperature in the hottest point in the 
kiln is up to 1400ºC. 

The kiln works nonstop and an impeding fault may cause 
inferior product at the end of the line or a halt in a large part 
of the factory with irreparable damages to equipments. 
Hence, it is essential to use some methods in order to prevent 
such faults. 

Many of the abnormal conditions in the plant are detected 
and reported by the plant automation and safety system such 
as high temperature of cyclones, lack of pressure in hydraulic 
systems and so on. There are, however, other abnormal 
conditions which are not detected by conventional 

Identification and Abnormal Condition Detection of a 
Cement Rotary Kiln 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 7233 10.3182/20080706-5-KR-1001.2513



 
 

 

automation systems. In these cases, none of the measured 
variables are beyond their limitations, but the overall 
behavior of the plant is abnormal. An expert operator can 
recognize these conditions by comparing the current behavior 
of the plant by what was expected from the normal condition 
behavior. What we are concerned about in this paper is these 
types of faults or abnormality which cause poor product or 
are the origin of a halt in the process. For instance, some of 
the common abnormalities in the kiln are 

• Coating disintegration 

• Ringing 

• Super heated or super chilled 

We use system identification approaches for the sake of 
abnormal condition detection. The output that is going to be 
identified is the consumed power by the motor which spins 
the kiln. The inputs are kiln speed, raw material feed rate, 
fuel feed rate, secondary air pressure, and I.D. fan speed. The 
reason of this selection is a negotiation with experts and 
process engineers of the factory. In their point of view, power 
of the electrical motor illustrates the internal condition of the 
kiln and by means of the selected inputs it is possible to 
recognize whether the process is going well or something 
undesirable is taking place. 

Saveh white cement company1 is where we develop the 
method for. This factory produces about 500 tons white 
cement every day. We used past data of the plant. The data 
were collected during normal operation of the plant without 
any interference to optimize it for condition monitoring. 
Therefore, as an abnormal condition happens, operators 
detect it and make proper reaction to overcome the condition. 
It means that the period which an abnormal condition stays is 
short and we have to detect it in this short period. 

They are for 7 days of normal operation of the plant. In some 
periods of time, operator changes some of the inputs abruptly 
due to some operation policies. These intervals are deleted 
from the data set. The remained data set has 300,000 data 
points which 50% of that is used as the training set, 20% as 
the test set and the rest of it as the validation data set.  

3. INPUT CHANNELS DELAY ESTIMATION 

Before identifying the 5 input – 1 output model of the kiln, 
we are going to estimate its input channels delays. The reason 
that we estimate the inputs delays with a free-model approach 
is that determining them during the identification, makes this 
task burdensome and computational effort increases 
exponentially. Therefore determining the input channel 
delays shrinks the search space to a high extent and makes 
the rest of the work easier and more accurate. 

The approach that we use is based on Lipschitz numbers (He 
et al, 1993). In the following, this method is briefly described 
and then the consequence of applying it on this problem is 
represented. 

                                                 
1 Saveh Cement Company Homepage, http://www.savehcement.ir 

3.1- Delay Estimation Based on Lipschitz Numbers 

This approach is based on Lipschitz theorem which states that 
every continuous mapping has bounded gradient which can 
be estimated by the maximum of the gradients at the known 
points. Therefore this idea can be used if it is assumed that 
the relation between input and output is a smooth map which 
is obligatory in any black-box nonlinear system 
identification. The algorithm which was proposed for the first 
time by (Makaremi, 2007, Makaremi et al, 2008) has two 
steps.  

In the first step the Lipschitz method is performed on the 
output and a set of different delays of input,{ }1 2, , , Dx x xK , 
where kx  is the k − th delay of the input. The Lipschitz 
quotient and Lipschitz number are calculated as (1) and (2) 
respectively: 
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where ( )nL k  is the k − th largest quotient among all n
ijL . 

The amount of p is about 1 or 2 percent of the amount of data 
used for the calculations. By including more delays of the 
input, the Lipschitz number decreases gradually and when all 
of its relevant dynamics are included, this number does not 
decrease greatly afterward (Fig.1 (a)). Where the curve lies 
(the 0D − th delay), all relevant dynamics are included. 

In the next step, the Lipschitz quotients and numbers should 
be calculated for a 0D − member set of delayed input, 

{ }01 2, , , Dx x xK , in a reverse way. For this purpose, the 

quotient of the d − th delay is calculated in the form of (3) 
and its Lipschitz number is obtained by (4): 
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Fig.1 (b) shows Lipschitz numbers of the dynamics which are 
calculated in this part. The place where the first sudden 
increase in the values occurs is known as the first delay. 

3.2- Estimating the Input Channel Delays of the Kiln Model 

In this part, we apply the delay estimation method on the 
input-output data of the kiln. In the following the result of 
five inputs paired with the output is presented in Table 1. 
Fig.2 also shows the diagrams of Lipschitz numbers of raw 
material feed rate. Because of lack of space, the other 
diagrams are not brought in this paper. The results in Table 1 
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are very close to what the experts stated. For instance, once a 
command is given to change the material feed rate, it takes 
about ten minutes to enter to the kiln and affect the consumed 
power by the motor. As it is stated in Table 1, and depicted in 
Fig.2, the input delay computed by this method is 13 minutes. 
As another example, when the kiln speed changes, its 
consumed power changes immediately, i.e. there is no delay 
between them. Again due to Table 1, the computed input 
delay is zero. 

 

Fig 1: (a) Performing the first part of the algorithm which is the 
Lipschitz method, the number of relevant dynamics of the input is 
revealed. (b) The second part of the algorithm discloses the early delay 
of the input. The first abrupt raise in the value of Lipschitz number is 
where the first relevant dynamic of the input is eliminated. 

 
Fig 2: Diagrams of Lipschitz numbers of raw material feed rate. 

Table 1: Estimated delays with delay estimation method. 
Input Delay (min) 

Material Feed Rate 13 

I.D. Fan speed 10 

Fuel Feed Rate 27 

2ndary Air Pressure 31 

Kiln Speed 0 

 

4. KILN IDENTIFICATION 

In the preceding section, we estimated the input channel 
delays of the kiln. Knowing these parameters, the search 
space for the identification shrinks and it’s easier to do the 
rest of the job, i.e. determining the suitable number of 
dynamics on each input and the output, and approximating 
the best function which represents the behavior of the kiln as 
well. 

We use Locally Linear Neuro-Fuzzy (LLNF) network to 
identify the healthy condition of kiln and the LOLIMOT2 
algorithm to find the best structure and parameters of the 
network. 

LLNF is one of the well-known structures in nonlinear 
system identification .Each cell in this structure contains a 
linear model which its validity is based on a membership 
function. The output of the network is the weighted outputs 
of locally linear models. In other word, with use of validation 
functions, the network can interpolate the intervals between 
locally linear models. 

There are several learning algorithm for this network. 
LOLIMOT is one of the algorithms that can very effectively 
find the suitable structure of the model and estimate the 
parameters. LOLIMOT is an incremental tree-structure 
algorithm that partitions the input space respect to its 
orthogonal axis. In each iteration, a new rule, which 
represents a locally linear model, is added to the model. This 
algorithm uses a hierarchical method for producing the 
structure and eschews the nonlinear optimization algorithms. 
The consequent rules are optimized by weighted least square 
technique. 

By means of NNLF network and LOLIMOT as its learning 
algorithm we identify the kiln behavior. Here is a problem we 
contributed during the identification. As it seems, each input 
has its particular effect duration on the output. For instance, 
materials fed to the kiln, are there for about 30 minutes. 
Besides the variation of temperature inside the kiln, which is 
a consequence of changing fuel flow rate and secondary air 
pressure, lasts for about 20 minutes. And kiln speed variation 
effects may not last more than two or three minutes on the 
consumed power of the motor. 

Table 2: For different variables, discrepant sampling rate is used. 

Input Sampling Time 
(Sec) 

Material Feed Rate 135 

I.D. Fan speed 135 

Fuel Feed Rate 225 

2ndary Air Pressure 225 

Kiln Speed 45 

Motor Power 45 

 
Considering this fact, one should take all the dynamics during 
the period that each input affects the output. But the other 
point is that these inputs are changed once in couple of 
minutes. Thus it is a wise decision to resample them with a 
larger rate to eschew enlarging the input space of the model 
without adding any proper information about them. 
Therefore, we resampled each input with a different rate. 
Table 2 shows sampling time for each of them. 

                                                 
2 LOcally LInear MOdel Tree 
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The last problem was to find the number of dynamics of the 
output and the inputs. We determined them with pre-
knowledge about the kiln properties and trial and error during 
identification. The best number of dynamics that was used for 
identification is as presented in table 3. Recall that 6 sample 
of the material feed rate equals 810 seconds, but 3 samples of 
the kiln speed equals 135 seconds using sampling times in 
Table 2. 
Table 3: The best number of dynamics obtained for the output and the 

inputs. 
Input No. of Dynamics 

Material Feed Rate 6 

I.D. Fan speed 6 

Fuel Feed Rate 4 

2ndary Air Pressure 4 

Kiln Speed 3 

Motor Power 2 
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Fig 3: Error on train and test data respect to different number of 
neurons. 
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Fig 4: Errors on normalized data and their histograms. 

Whereas our goal is abnormal condition detection, the 
prediction horizon in the identification is seven minutes to 
increase the prediction horizon in order to predict kiln 

conditions some minutes in advance.  

Fig. 3 shows the error on train and test sets respect to the 
number of the neurons in the model. It shows that a LLNF 
with two neurons can model the plant adequately. Also Fig. 4 
illustrates errors on normalized data and their histogram. 

5. FAULT DETECTION IN CEMENT ROTARY KILN 

In the previous section, a model for the kiln has been 
developed. In this part, some abnormal conditions that are in 
test and validation data are extracted and discussed. The 
concept that we use to detect an abnormality is that it has a 
more lasting effect on the output rather that those of noise or 
disturbance (Chiang et al, 2001). In the following, three 
abnormal situations observed in test and validation data are 
discussed. These conditions are distinguished with their large 
error and a long period lasting. It should be noticed that the 
backend temperature is also displayed. This variable can give 
an approximate estimation of the temperature in the kiln. 

5.1- Super Heated 

This situation comes to exist when the materials are burned 
sooner than the projected time. As a result, they will be sticky 
and while the kiln is rotating, they fall down in a higher 
angle. This causes in higher power consumption by the 
motor. This condition is detected in the test data. The real 
output and the model output are shown in Fig. 5. As it is 
obvious, the model approximates the output less than its real 
amount. Fig. 6 shows the inputs in the same interval. 
Operator has the quality of the material which is reported by 
the laboratory. Accordingly, he inferred that the material had 
changed that they were burned sooner than the expected time 
for material with normal quality. Therefore, he increased the 
material feed rate by about 0.5 ton/hr. He also decreases the 
fuel feed rate since the required heating energy for this kind 
of material is lower. Also the operator increased the kiln 
speed to exit the material from the kiln faster so the kiln bears 
not too much load. The backend temperature is also increased 
in a short period but with varying the speed of ID fan, it was 
again decreased. 

5.2- Super Chilled 

This is the opposite side of super heated condition. In this 
situation, because of the kiln condition or the material 
ingredients, they are not melted in time and they remain solid 
for a long time. Not being melted causes not being sticky 
enough to stick to the kiln’s sidewall. Therefore the motor 
consumes less power than the normal situation. 

Fig. 7 shows a similar situation in validation data where the 
output is less than what our model predicts. In this situation, 
according to Fig. 8, all of the inputs except the fuel feed rate 
which was increased, were constant. From this state, it can be 
inferred that because of the super chilled condition in the 
kiln, the operator decided to increase the fuel feed rate in 
order to increase the internal temperature and accordingly 
help the materials to be melted. 

5.3- Unrecognized Condition 

Fig. 9 shows a discrepancy between the model and real 
outputs again in validation data. This abnormality took place 
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in a situation that most of the inputs were fixed except 
material and fuel feed rates (The amount of variation of the 
secondary pressure is not so much to be effective). In this 
interval, the material feed rate was suddenly decreased to a 
high extent and by increasing the fuel feed rate, the operator 
was going to increase the kiln temperature. But disregard to 
that, the power consumption is still growing up. It is 
corroborant of an abnormal condition. This fault was not 
distinguished by cement experts, but its abnormality is 
approved. This shows that this model is capable of 
illuminating undefined faults as well as those who are known 
by the experts. 
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Fig 5: Super Heated. The model output is not as the same as the real 
output and this discrepancy lasts about 40 minutes. 
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Fig 6: Inputs and backend temperature in the interval that the super 
heated fault occurred.  

6. CONCLUSION 

In this paper, system identification method was used to detect 
the abnormal conditions of the cement rotary kiln in Saveh 
Cement Company. Consumed power by the motor which 
spins the kiln was used as the process monitor of the 
condition. The special character of this variable is that it can 
illustrate various abnormal conditions inside the kiln. Then, 
the effective inputs were selected. To ease the identification 
of the kiln, we used a novel approach for estimating the input 

channel delays. This method is based on Lipschitz numbers. 
Then, with LLNF models and LOLIMOT learning algorithm, 
a model was developed for the healthy condition of the kiln. 
By means of that model, we could discriminate three 
abnormal conditions in test and validation data. 
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Fig 7: Super chilled. The model output is not as the same as the real 
output and this discrepancy lasts about 10 minutes. 
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Fig 8: Inputs and backend temperature in the interval that the super 
chilled fault occurred. 
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Fig 9: An unrecognized fault. The model output is not as the same as the 
real output and this discrepancy lasts about 20 minutes. 
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Fig 10: Inputs and backend temperature in the interval that the 
unknown fault occurred. 
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