

Middleware for Control Kernel Implementation in Embedded Control Systems

A. Fernández*, M. Vallés**, A. Crespo**, P. Albertos **, J. Simó **

*Departamento de Automática y Computación,
Instituto Superior Politécnico José Antonio Echevarría, La Habana, Cuba

(e-mail: adel@electrica.cujae.edu.cu)
** Instituto Automática e Informática Industrial

Universidad Politécnica de Valencia, Valencia, Spain. P.O.Box 22012 E-46071
(e-mail: mvalles, pedro@isa.upv.es; alfons,jsimo@disca.upv.es)

Abstract: Control tasks require a number of activities, not all of them with the same relevance and
priority. The critical subtasks constitute what is denoted as the control kernel. The design of ECS should
be structured, with a kernel unit providing the most basic features. Most of these activities, such as data
acquisition or control action delivering, are common to a number of control loops implemented in the same
CPU. In this paper, the architecture of a middleware (MW) for essential control activities to ensure
economic, safe and reliable operation is discussed. It is specially designed for control purposes, interacting
with the peripherals (sensors, actuators and communication channels), with the OS, and exchanging
information with the bunch of control algorithm implemented in the application area. As part of the
facilities of the middleware, some issues for improving in a transparent manner these characteristics are
considered. Finally, an example of controller implementation by using this middleware is presented.

1. INTRODUCTION

Embedded Control Systems operate under highly changeable
and uncertain environments with strong resource constraints.
Control tasks require a number of activities, not all of them
with the same relevance and priority. They are RT tasks of
reactive nature, delivering control actions at prescheduled
time instants. The critical subtasks constitute what is denoted
as the control kernel.

Most of these activities, such as data acquisition (ADQ) or
control action delivering (CAD), are common to a number of
control loops implemented in the same CPU. Moreover,
classical CPU operation implies a sequential behaviour.

Thus, in order to save resources and to be as fast as possible,
some basic actions should be implemented at a very low level
(close to the OS), with high priority.

Control kernel activities have been discussed in previous
papers (Albertos et al., 2007), and different options for its
implementation have been also presented (Albertos et al.,
2006). One of them is to establish a middleware specially
designed for control purposes and interacting with the
peripherals (sensors, actuators and communication channels),
with the OS, and exchanging information with the bunch of
the control algorithm implemented in the application area.

The paper is structured as follows: first, the main features of
the ECS as well as the facilities linked to the control kernel
are reviewed. Then, the priorities of the control subtasks and
their interaction are discussed. Their implementation in a
middleware area is then presented. Some alternatives to

guarantee the safe operation of the control are proposed. In
particular, special attention is paid to the local control
structure, to guarantee the control action delivering in the
event of resources shortage: computation time, data
availability or emergency operation. Finally, these concepts
are applied to the control of a robot with a flexible joint.

2. EMBEDDED CONTROL SYSTEMS

The strong increasing presence of embedded systems (ES) in
products and services creates huge opportunities for the
future in different areas such as industrial control systems,
avionics, health care, environment, security, mechanics, …
(Chinook, 2004). Thus, there is a growing scientific interest
on conceptual and practical tools for their development
(Dreamteach, 2002). In particular, their use in control
applications is becoming very popular.

RT control applications on ES require the best use of the
available computation resources. Among the main
advantages they offer are the reduced price and size,
broadening the scope of possible applications: mass-
production systems due to the cost reduction and specific
accurate applications for their reduced size and high
performances. But the most important problem is the limited
computational capabilities they can use because it is well
known that, in general, short sampling periods and non-
delayed control actions allow for better control performances.

So, one of the most important issues related with ES in
control applications are related with the reliable and optimal
use of their computational resources and what the resource
shortage involves in the design and implementation of the

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 8475 10.3182/20080706-5-KR-1001.2512

control algorithms. So, it seems interesting to extract the
main characteristics of the ES applicable to ECS and the
problems they pose from the point of view of interaction
between computers, communication and control.

The basic characteristics of ECS are compact and reduced
size, autonomy, reconfigurability, safety, fault-tolerant and
missing data operation. As for any control application, RT
issues are crucial to guarantee the system response under any
operating conditions.

Specifically, at the control applications, the use of embedded
systems generates problems related to their implementation,
the computational load and resources sharing and the control
performance degrading. A detailed description of these can
be found at (Albertos, et al., 2005).

 3. CONTROL TASK MODEL

In most control applications it is quite common that various
processes (multiprocess), with many control variables and
sensors (multivariable), involving many control loops
(multiloop) and operating at different sampling rates
(multirate) exist. If these applications are implemented over a
monoprocessor computational system, several tasks will be
implemented sharing the same processor and so, depending
on the priorities and the scheduling used, a variable delay
(jitter) appears affecting the nominal execution times.

Several real-time task models have been proposed for, or
motivated by, control applications. Among them, the most
commonly used is the hard real-time model. However,
adaptive task model, subtask models, and weakly hard
models are to some extent also relevant in this context. In
discrete-event based control, though, truly hard deadlines are
more common. These controllers have to respond to external
events within certain deadlines by providing the correct
output actions.

Subtask scheduling models are well suited for control. A
control algorithm can naturally be divided into two or more
parts. In this way the input-output latency caused by task
execution can be minimized. Alternatively, the sampling and
the output are also considered as separate subtasks, possibly
being separately scheduled.

Several sub-task scheduling models and offset-based
scheduling models have been proposed in the scheduling
community. These include the multi-frame model (Baruah et
al. 1997) and the serially executed subtask model (González-
Harbour et al., 1994). The objective is not to achieve better
control performance but to enhance the schedulability of the
task set under fixed-priority (FP) scheduling.

In (Crespo et al., 1999) and (Albertos et al., 2000) a subtask
scheduling of control tasks has been proposed. Each task is
decomposed into three parts with different priorities: the

input operation (medium priority), the control computation
(low priority), and the output operation (high priority). The
goal of the scheduling design is to minimize the input-output
jitter and improve the control performances by reducing the
variable delay of all tasks. In (Balbastre et al., 2000) the
partitioning method was developed for EDF scheduling
policy. The advantages of the appropriate variable delay
reduction related to a control parameter such as the control
effort were reported in (Albertos et al., 2000).

In this paper this task decomposition is also used and the
priorities for each one are assigned taken into account that,
from the point of view of a control application, sending a
control action at the corresponding instant is the most
important task to be done. Thus, the final task should have
the highest priority, followed by the initial task, afterwards
the mandatory one and finally the optional one.

4. MIDDLEWARE ARCHITECTURE

4.1 Middleware objectives

The generally accepted definition of Middleware is computer
software that connects software components or applications.
It is used most often to support complex and distributed
applications.

Some works have been reported related with the
implementation of middleware for distributed real-time and
embedded computing. The main objective is to develop
architectures allowing the use of different communication
networks and computational platforms. Most of them are
used for the case of embedded mobile devices ((Cassinis,
2007) (Lakhotia et al., 2006) (Wu et al., 2007)) but some of
them are related with control applications where some
sensors and actuators information is shared over a network
((Baliga, 2005), (Wang et al., 2007) (OMG DDS standard)).
Several kinds of middleware are proposed as composition of
building blocks (Schmidt et al. 2002). ACE (ACE Project)
provides communication services and portability across
different operating systems and hardware platforms. Real-
time CORBA provides efficient and predictable middleware
structures and services, and adaptive QoS management
policies. An example of open source implementation of RT-
CORBA is TAO (Gill et al. 2002). PolyORB (Thomas et al.
2004) as TAO, are geared toward providing predictable
timing of end-to-end method invocations. Also, additional
works on PolyORB provide mechanism to high integrity real-
time systems (Zamorano et al. 2007). In this paper, a
middleware for control applications is proposed.

The control application can be implemented either on a single
computational element with different computational capacity
and resources availability (from a PC to a microcontroller), or
on a distributed computational network with different
communication protocols (CAN, Ethernet, wireless). So, the
final execution platform could be very different depending on
which part of the control application is being implemented.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8476

The general objective of this middleware is to support all
these possibilities.

So, the general objectives of the middleware are:

- To provide a flexible interface for handling the acquired
information. This includes dealing with the registration and
deregistration of sensors for a control application at runtime.
In this way, reconfigurability on changing environments can
be ensured. The same for the actuation elements.

- From the point of view of the control system, it is needed
that the system is being controlled in all situations. So, each
element of the control system has to be capable of,
autonomously, control its part of the control system.

- To be robust from the control perspective, some supervisory
functions are needed for detecting and adapting to changing
situations or, more basically, for detecting miss
functionalities of sensors, actuators, networks, etc …

As the final platform over which the controller will be
implemented can be very different in terms of computing
resources, a layered structure is needed in such a way that the
basic requirements will be accomplished at the most
elementary part of a control system. This middleware has not
been designed to provide a complete support of object
oriented distribution. It has been focused to provide specific
management mechanisms to control applications. These
functionalities, defined in the Control Kernel (Albertos et al.
2006), are not supported by general purpose middleware
(ACE, TAO, PolyORB, etc.), the main advantage being the
specific control services included in the middleware.

This paper has focused on defining the basic layer that every
element of the control system should have. It is supposed that
there is a single computational element with local access to
the sensor and actuators elements.

4.2 Middleware architecture

The basic architecture of control tasks executions has been
described in previous papers (Albertos et al., 2007), and is
given according to the Figure 4.2.1

Figure 4.2.1. Decomposition levels

The middleware should use the maximum capacities of a
RTOS in order to execute control applications. It should
group together the common functions of the control tasks to
guarantee the correct use of the available resources at each
instant of time and to send the best control action to the
process. Be aware that control algorithm is not part of MW
because it is particular of the process to be controlled.

The interaction between the MW and the controllers executed
in a mono-processor environment are shown in figure 4.2.2.

Using the services of RTOS, the MW can acquire the
measurements of the physical sensors and deliver the control
action to the physical actuators, both located outside.

Figure 4.2.2, Middleware architecture

Following the previously proposed scheme of control tasks
model, inside the MW there is a module to coordinate the
process of acquisition of data, and another one to coordinate
the delivered control actions, independently of to which
controller it belongs to. S1, S2 … Sn and A1, A2 … An, are
the memory blocks to store data and configurations
corresponding to the sensors and actuators.

The supervisor module verifies the sensors and actuators
state, the available resources and takes the decision of the
correct action to be delivered to each controlled process.

The interactions between the MW and the controllers can be
seen in figures 4.2.3 a and b. Three parts are considered: data
acquisition, control action delivering and supervision.

Data acquisition (figure 4.2.3 a)

Each physical sensor has a structure inside the ADQ module
to keep the parameters of each external variable. This
structure will be named S = {T, B, C, E}, where T is the
sampling period, B is the buffer to store the n last values, C
the controller to which belongs the measure and E the sensor
state. The last one is a very important parameter to decide
which action will be delivered. It can be in one of three
possible states:

• Fail: the acquisition signal is not received from physical
sensor, this signal is identified like noise, using an
alarm, or the signal corresponds to the limit of the scale.

• Event: the same value is received n times.
• No_fail: none of the previous options happen and

the operation is normal.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8477

The ADQ module has one subsystem to keep the
measurement state and to determine the acquisition quality.
To evaluate the quality this module computes the concept of
data acquisition interval DAI (Crespo et al., 1999). It
expresses the variable time delay in acquire a measurement
from sensors due to the processor sharing. This module
calculates for each measurement the maximum DAI, the
average DAI and its variance.

Figure 4.2.3 a, Acquisition module.

Control action delivering (figure 4.2.3 b)

Each physical actuator has a structure inside CAD module to
keep the parameters of each control action. This structure will
be named A= {T, O, B, R, C, E}, where T is the sampling
period, O is the offset, in absolute time, between delivering
of the action and acquisition of data, B is the buffer to store
the n last values, R is the buffer to store the n future
references values, C is the controller to which the action
belongs and E is the actuator state. The last one is also a very
important parameter to decide which action will be delivered
and, again, it can be in one of three possible states:

• Fail: it is detected that the action has not been delivered
• Event: the computed action is delayed, and the stored

actions are old
• No_fail: none of the previous options happen and the

operation is normal.

The CAD module has one subsystem to keep the actuator
state and to determine the delivering actions quality. To
evaluate the quality, this module computes the concept of
control action interval, CAI (Crespo et al., 1999). It expresses
the variable time delay in delivering the control action due to
the processor sharing. This module calculates for each action
the maximum CAI, the average CAI and its variance.

Supervisor

This module makes the decisions in the MW. To carry out the
supervision it should know the state of the sensors and
actuators corresponding to one controller; the control state
and the available resources.

Figure 4.2.3 b delivering action module

Every controller can be associated to s sensors and a
actuators, the sensors will be classified in one main sensor
(ms) and several secondary sensors (ss). The sensor indicated
as ms is the one that measures that variable that allows
computing a basic control action on the process.

The possible decisions taken by the supervisor are:

1. If ms is in failed state (no transitory) it proceeds to
deliver the secure control action.

2. If ss is in failed state (no transitory) it proceeds to
compute and deliver the basic control action.

4.3. Quality and Robustness of the basic controller

Besides the previously commented functions for ensuring the
right functionality of the controller based on the developed
middleware, some functions have been added in order to
improve the quality and robustness of the control actions
delivered by the controller. These ones are the following:

In some situations, the control actions could be evaluated by
a complex (optimal) algorithm that could be implemented
remotely or locally but subjected to the computational
resources availability. If the control algorithm has not
provided the next ones, these could be projected from the
present ones.

If the input signals do not vary, it is supposed that the system
is in a stable state, so the present control action is projected
for the future and the controller is put in a sleep mode. In this
way, computational resources as well as battery are saved.
This module is activated a short time before changing the
signal to the failure state; their main purpose is to assure a
correct operation of the system in transitory failure situations.
See the prediction module in figure 4.2.3 a.

Another possibility, also related with this, is to enlarge the
period of the actuator. The period for the acquisition is kept
for detecting variations at the input signals but the buffer is
filled only with the data for the same period of the actuator

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8478

(the last one or a mean of those between two samples of the
actuator). This module is activated a short time before
changing the actuator to the failure state; their main purpose
is to assure a correct operation of the system in transitory
failure situations. For permanent failures the basic action
algorithm or the secure action registered to the controller will
be invoked. See the prediction module in figure 4.2.3 b.

The basic control action implemented up to now in the MW
is a proportional control that is registered with the controller.
The secure action should be taken according to the controlled
system; it can be to close a valve, to stop a motor, etc.

The middleware interface is responsible for the interaction
between the controllers and the sensors/actuators. The
controller must ensure the computing of the N future control
actions and must send them to the buffer B of the related
actuator at each sample interval. It must also get direct
information about the state of the acquisition process. It must
be able to ask for a state change over the MW, depending on
the quality of ADQ, AC and the available resources. It must
be also able to ask for a change on the sampling period and
offset for the acquisition and the AC and it must ensure that
the N future references will be sent, allowing MW to
compute the basic control.

5. EXAMPLE

The MW has been designed and implemented as a functions
library. The user must make the calls to the necessary
functions, according to the following order:

1. MW Configuration.
2. Sensors, actuators and controller registrations.
3. Start control procedure.
4. Stop control procedure.

In order to illustrate how to use this library we took the same
example mentioned in (Albertos et al., 2007), a robot with a
unique flexible join. The dynamical equations are:

 (5.1)

where q2, q1 are the positions and J y D are the inertia of the
actuator and the terminal element, respectively. In this
setting, the torque (τ) applied to the actuator generates a
movement that is transmitted to the terminal element by a
spring with elastic constant Ks.

From these differential equations, it is possible to model the
flexible robot's behaviour in the space of states. The
following matrix was used to control the system with a
sample period T=0.01 seg.

[K1 K2] = [-5.5032 0.06223 0.053 7.17334] (5.2)

To build the controller the user must write a function that
evaluate these equations and send to the MW the computed
action. The general form is the following one

void user_controller(void)

{
value_q1 = read_data_sensor(idq1);
value_q2 = read_data_sensor(idq2);
evaluation of the equation 7.2
u = calculate_acción(value_q1, value_q2);
send_action(idu, u);

}
In order to carry out the supervision, the MW assumes the
variable q1 as the main sensor (ms) while q2 is considered as
the secondary sensor (ss). This should be defined at the time
the user registers the sensors, actuators and controllers. The
parameters used in the example are:

• t=10 ms: sample period to acquire data and deliver
control actions

• p1=1, p2=2: priority with respect to others actuators or
sensors registered.

• o=3 ms: offset in time between the data acquisition and
deliver control action.

• k=1.5: proportional constant, in the basic control action.
• s= 0 volt: secure action.
• buffersize = 100: ADQ and CAD buffer size.
• wt =10 T: Integer determining the windows time, must

be a multiple of the period, to verify failure conditions.
• h= 0.1 rad: hysteresis value to return to normal

conditions
• d=0.2 rad: maximum variation allowed in measure

value, between t and t+1.
• cd=10: number of times that a maximum change of

value d is tolerated before throwing the message: fail.
• s= [6 0 -6] rad: 3 real elements vector that register the

instrument scale limit.
• cs=10 number of times that a scale limit value s[i] is

tolerated before throwing the message: fail.
• r=100: number of times that a same value is repeated

without throwing the message: event.

To use the middleware function, the user has to configure the
used resources in the following way:
procedure configuration {
//allocating resources and failure handlers
 idq1=register_sensor(t,p1,buffersize);
 idq2=register_sensor(t,p2,buffersize);
 register_fail_detection(idq1,wt, h, cd, d, sc, p , r);
 register_fail_detection(idq2,wt, h, cd, d, sc, p , r);
 idu=register_actuator(t,o,p1,buffersize);
 register_controller(user_controller, [idq1 idq2] ,idu);
// start control
 start_controllers();
}

procedure finish {
// free the resources allocated
 stop_controllers();
}
The graph shown in the Figure 5.1 is taken directly from a
process controlled with the MW. Between t=10s and t=25s,
the system is stable. In this interval, the control action period
can be increased, only if there are not changes in the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8479

measures. In t=26 the supervisor must return to the previous
period.

0 5 10 15 20 25 30 35
-0.5

0

0.5

1

1.5

2

t (seconds)

O
ut

pu
t

Figure 5.1 change of simple periods

The measurements of the process should be kept in two
buffers, one with data got at the current rate and another one
at the previous one, to guarantee that the transition process in
t=26s is transparent.

6. CONCLUSIONS

A middleware for control applications has been presented
where the basic functionality for an elementary node of a
control application has been defined. The case of a local
controller has been considered in order to clarify the structure
at the most basic level. The case of distributed applications
will be considered in the next development based on the
proposed architecture.

Some functions for ensuring the right performing of the
controller even in autonomic working mode have been also
introduced. These ones have been complemented with others
that introduce some quality and robustness considerations.

Finally, an example for the control of a robot with a flexible
joint has been presented where the developed middleware has
been used. It has been described the way that the controller
will be implemented over the middleware and some
experiments has been shown for illustrating how the
middleware works when a sensor does not work.

REFERENCES

Albertos, P., A. Crespo, M. Vallés and I. Ripoll, P. Balbastre
(2000). RT Control Scheduling to Reduce Control
Performance Degrading. 1 Proc. 39th IEEE Conference
on Decision and Control. Sydney (Australia).

Albertos, P., A. Crespo, M. Vallés and I. Ripoll (2005).
Embedded control systems: some issues and solutions.
16th IFAC World Congress, Praga (República Checa)

Albertos P., A. Crespo , José Simó. Control Kernel: a Key
concept in Embedded Control Systems. IFAC Conf. on
Mechatronics. Heidelberg, 2006.

Albertos, P., M. Vallés, A. Cuenca and A. Valera. (2007).
Essential control in Embedded Control Systems. IFAC
Symp. On Cost Oriented Automation. Havana. Cuba.

Crespo, A., I. Ripoll, P. Albertos (1999). Reducing delays in
RT control: The control action interval. In Proceedings
of the 14th IFAC World Congress, pp. 257-262.

Balbastre, P., I. Ripoll, A. Crespo (2000). Control task delay
reduction under static and dynamic scheduling policies”.
In Proceedings of the 7th International Conference on
Real-Time Computing Systems and Applications.

Baliga, G., P. R. Kumar (2005). A Middleware for Control
Over Networks. Decision and Control, 2005 and 2005
European Control Conference. CDC-ECC '05. pp 482-
487 ISBN: 0-7803-9567-0

Baruah, S.K., D. Chen and A.K. Mok (1997). Jitter concerns
in periodic task systems. 18th Real-Time Systems Symp.

Cassinis, R., F. Tampalini (2007). AMIRoLoS an active
marker internet-based robot localization system.
Robotics and Autonomous Systems, 55(4), pp.306-315

Chinook.webpage:
 http://www.cs.washington.edu/research/chinook/links.html
Dreamtech Software Team, (2002). Programming for

Embedded Systems: Cracking the CodeTM. J. Wiley.
Gill C, Gokhale A, Natarajan B, Schmidt DC, Wang N.

“TAO: A Pattern-Oriented Object Request Broker for
Distributed Real-time and Embedded Systems", IEEE
Distributed Systems Online, 3(2), February 2002.

Lakhotia, A., S. Golconda, A. Maida, P. Mejia, A.
Putambeker, G. Seetharaman, S. Wilson (2006).
CajunBot: Architecture and algorithms. Journal of Field
Robotics, 23(8), pp. 555-578.

OMG DDS standard. OMG standard specification of Data
Distribution Service for Real-time Systems
specification, version 1.2.
http://www.omg.org/technology/documents/formal/data
_distribution.htm

Schmidt DC, ACE project.
 http://www.cs.wustl.edu/~schmidt/ACE.html
Schmidt, D. C. "Middleware for real-time and embedded

systems," Communications of the ACM, vol. 45, pp. 43-
48, Jun 2002.

Vergnaud, T., J. Hugues, L. Pautet, and F. Kordon.
PolyORB: a schizophrenic middleware to build versatile
reliable distributed applications. In Proc. of the 9th Int.
Conf. on Reliable Software Technologies Ada-Europe
2004 (RST'04), volume LNCS 3063, pages 106 - 119,
Palma de Mallorca, Spain, Jun 2004. Springer Verlag.

Wang, XR., YM. Chen, CY. Lu, X. Koutsoukos (2007). FC-
ORB: A robust distributed real-time embedded
middleware with end-to end utilization control. Journal
of Systems and Software, 80 (7), pp. 938-950

Wu, ZH., Q. Wu, H. Cheng, G. Pan, MD. Zhao, J. Sun (2007)
CudWare: A semantic and adaptive middleware platform
for smart vehicle space. IEEE Transactions on Intelligent
Transportation Systems, 8(1), pp. 121-132

Zamorano J.,de la Puente J.A., Hugues J., Vardanega T..
Run-time mechanisms for property preservation in high-
integrity real-time systems. In NICTA, editor,
Proceedings of OSPERT 2007 - Workshop on
Operating Systems Platforms for Embedded Real-Time
applications, pages 65-68, Pisa, Italy, Jul 2007.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8480

