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Abstract: Control tasks require a number of activities, not all of them with the same relevance and 
priority. The critical subtasks constitute what is denoted as the control kernel. The design of ECS should 
be structured, with a kernel unit providing the most basic features. Most of these activities, such as data 
acquisition or control action delivering, are common to a number of control loops implemented in the same 
CPU. In this paper, the architecture of a middleware (MW) for essential control activities to ensure 
economic, safe and reliable operation is discussed. It is specially designed for control purposes, interacting 
with the peripherals (sensors, actuators and communication channels), with the OS, and exchanging 
information with the bunch of control algorithm implemented in the application area. As part of the 
facilities of the middleware, some issues for improving in a transparent manner these characteristics are 
considered.  Finally, an example of controller implementation by using this middleware is presented. 

 

1. INTRODUCTION 

Embedded Control Systems operate under highly changeable 
and uncertain environments with strong resource constraints. 
Control tasks require a number of activities, not all of them 
with the same relevance and priority. They are RT tasks of 
reactive nature, delivering control actions at prescheduled 
time instants. The critical subtasks constitute what is denoted 
as the control kernel. 

Most of these activities, such as data acquisition (ADQ) or 
control action delivering (CAD), are common to a number of 
control loops implemented in the same CPU. Moreover, 
classical CPU operation implies a sequential behaviour. 

Thus, in order to save resources and to be as fast as possible, 
some basic actions should be implemented at a very low level 
(close to the OS), with high priority. 

Control kernel activities have been discussed in previous 
papers (Albertos et al., 2007), and different options for its 
implementation have been also presented (Albertos et al., 
2006). One of them is to establish a middleware specially 
designed for control purposes and interacting with the 
peripherals (sensors, actuators and communication channels), 
with the OS, and exchanging information with the bunch of 
the control algorithm implemented in the application area. 

The paper is structured as follows: first, the main features of 
the ECS as well as the facilities linked to the control kernel 
are reviewed. Then, the priorities of the control subtasks and 
their interaction are discussed. Their implementation in a 
middleware area is then presented. Some alternatives to 

guarantee the safe operation of the control are proposed. In 
particular, special attention is paid to the local control 
structure, to guarantee the control action delivering in the 
event of resources shortage: computation time, data 
availability or emergency operation. Finally, these concepts 
are applied to the control of a robot with a flexible joint.   

2. EMBEDDED CONTROL SYSTEMS 

The strong increasing presence of embedded systems (ES) in 
products and services creates huge opportunities for the 
future in different areas such as industrial control systems, 
avionics, health care, environment, security, mechanics, … 
(Chinook, 2004). Thus, there is a growing scientific interest 
on conceptual and practical tools for their development 
(Dreamteach, 2002). In particular, their use in control 
applications is becoming very popular. 

RT control applications on ES require the best use of the 
available computation resources. Among the main 
advantages they offer are the reduced price and size, 
broadening the scope of possible applications: mass-
production systems due to the cost reduction and specific 
accurate applications for their reduced size and high 
performances. But the most important problem is the limited 
computational capabilities they can use because it is well 
known that, in general, short sampling periods and non-
delayed control actions allow for better control performances. 

So, one of the most important issues related with ES in 
control applications are related with the reliable and optimal 
use of their computational resources and what the resource 
shortage involves in the design and implementation of the 
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control algorithms. So, it seems interesting to extract the 
main characteristics of the ES applicable to ECS and the 
problems they pose from the point of view of interaction 
between computers, communication and control.  

The basic characteristics of ECS are compact and reduced 
size, autonomy, reconfigurability, safety, fault-tolerant and 
missing data operation. As for any control application, RT 
issues are crucial to guarantee the system response under any 
operating conditions.  

Specifically, at the control applications, the use of embedded 
systems generates problems related to their implementation, 
the computational load and resources sharing and the control 
performance degrading. A detailed description of these can 
be found at (Albertos, et al., 2005). 

 3. CONTROL TASK MODEL 

 
In most control applications it is quite common that various 
processes (multiprocess), with many control variables and 
sensors (multivariable), involving many control loops 
(multiloop) and operating at different sampling rates 
(multirate) exist. If these applications are implemented over a 
monoprocessor computational system, several tasks will be 
implemented sharing the same processor and so, depending 
on the priorities and the scheduling used, a variable delay 
(jitter) appears affecting the nominal execution times.  
  
Several real-time task models have been proposed for, or 
motivated by, control applications. Among them, the most 
commonly used is the hard real-time model. However, 
adaptive task model, subtask models, and weakly hard 
models are to some extent also relevant in this context. In 
discrete-event based control, though, truly hard deadlines are 
more common. These controllers have to respond to external 
events within certain deadlines by providing the correct 
output actions.  
 
Subtask scheduling models are well suited for control. A 
control algorithm can naturally be divided into two or more 
parts.  In this way the input-output latency caused by task 
execution can be minimized. Alternatively, the sampling and 
the output are also considered as separate subtasks, possibly 
being separately scheduled. 
 
Several sub-task scheduling models and offset-based 
scheduling models have been proposed in the scheduling 
community. These include the multi-frame model (Baruah et 
al. 1997) and the serially executed subtask model (González-
Harbour et al., 1994). The objective is not to achieve better 
control performance but to enhance the schedulability of the 
task set under fixed-priority (FP) scheduling. 
 
In (Crespo et al., 1999) and  (Albertos et al., 2000) a subtask 
scheduling of control tasks has been proposed. Each task is 
decomposed into three parts with different priorities: the 

input operation (medium priority), the control computation 
(low priority), and the output operation (high priority). The 
goal of the scheduling design is to minimize the input-output 
jitter and improve the control performances by reducing the 
variable delay of all tasks. In (Balbastre et al., 2000) the 
partitioning method was developed for EDF scheduling 
policy. The advantages of the appropriate variable delay 
reduction related to a control parameter such as the control 
effort were reported in (Albertos et al., 2000).  
 
In this paper this task decomposition is also used and the 
priorities for each one are assigned taken into account that, 
from the point of view of a control application, sending a 
control action at the corresponding instant is the most 
important task to be done. Thus, the final task should have 
the highest priority, followed by the initial task, afterwards 
the mandatory one and finally the optional one. 

4. MIDDLEWARE ARCHITECTURE 

4.1 Middleware objectives 

The generally accepted definition of Middleware is computer 
software that connects software components or applications. 
It is used most often to support complex and distributed 
applications. 

Some works have been reported related with the 
implementation of middleware for distributed real-time and 
embedded computing. The main objective is to develop 
architectures allowing the use of different communication 
networks and computational platforms. Most of them are 
used for the case of embedded mobile devices ((Cassinis, 
2007) (Lakhotia et al., 2006) (Wu et al., 2007)) but some of 
them are related with control applications where some 
sensors and actuators information is shared over a network 
((Baliga, 2005), (Wang et al., 2007) (OMG DDS standard)). 
Several kinds of middleware are proposed as composition of 
building blocks (Schmidt et al. 2002). ACE  (ACE Project) 
provides communication services and portability across 
different operating systems and hardware platforms. Real-
time CORBA provides efficient and predictable middleware 
structures and services, and adaptive QoS management 
policies. An example of open source implementation of RT-
CORBA is TAO (Gill et al. 2002). PolyORB (Thomas et al. 
2004) as TAO, are geared toward providing predictable 
timing of end-to-end method invocations. Also, additional 
works on PolyORB provide mechanism to high integrity real-
time systems (Zamorano et al. 2007). In this paper, a 
middleware for control applications is proposed. 

The control application can be implemented either on a single 
computational element with different computational capacity 
and resources availability (from a PC to a microcontroller), or 
on a distributed computational network with different 
communication protocols (CAN, Ethernet, wireless). So, the 
final execution platform could be very different depending on 
which part of the control application is being implemented. 
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The general objective of this middleware is to support all 
these possibilities. 

So, the general objectives of the middleware are: 

- To provide a flexible interface for handling the acquired 
information. This includes dealing with the registration and 
deregistration of sensors for a control application at runtime. 
In this way, reconfigurability on changing environments can 
be ensured. The same for the actuation elements.  

- From the point of view of the control system, it is needed 
that the system is being controlled in all situations. So, each 
element of the control system has to be capable of, 
autonomously, control its part of the control system. 

- To be robust from the control perspective, some supervisory 
functions are needed for detecting and adapting to changing 
situations or, more basically, for detecting miss 
functionalities of sensors, actuators, networks, etc … 

As the final platform over which the controller will be 
implemented can be very different in terms of computing 
resources, a layered structure is needed in such a way that the 
basic requirements will be accomplished at the most 
elementary part of a control system. This middleware has not 
been designed to provide a complete support of object 
oriented distribution. It has been focused to provide specific 
management mechanisms to control applications. These 
functionalities, defined in the Control Kernel (Albertos et al. 
2006), are not supported by general purpose middleware 
(ACE, TAO, PolyORB, etc.), the main advantage being the 
specific control services included in the middleware. 

This paper has focused on defining the basic layer that every 
element of the control system should have. It is supposed that 
there is a single computational element with local access to 
the sensor and actuators elements. 

4.2 Middleware architecture 

The basic architecture of control tasks executions has been 
described in previous papers (Albertos et al., 2007), and is 
given according to the Figure 4.2.1 

 

Figure 4.2.1. Decomposition levels 

The middleware should use the maximum capacities of a 
RTOS in order to execute control applications. It should 
group together the common functions of the control tasks to 
guarantee the correct use of the available resources at each 
instant of time and to send the best control action to the 
process. Be aware that control algorithm is not part of MW 
because it is particular of the process to be controlled. 

The interaction between the MW and the controllers executed 
in a mono-processor environment are shown in figure 4.2.2.  

Using the services of RTOS, the MW can acquire the 
measurements of the physical sensors and deliver the control 
action to the physical actuators, both located outside.  
 

 

Figure 4.2.2, Middleware architecture 

Following the previously proposed scheme of control tasks 
model, inside the MW there is a module to coordinate the 
process of acquisition of data, and another one to coordinate 
the delivered control actions, independently of to which 
controller it belongs to. S1, S2 … Sn and A1, A2 … An, are 
the memory blocks to store data and configurations 
corresponding to the sensors and actuators. 

The supervisor module verifies the sensors and actuators 
state, the available resources and takes the decision of the 
correct action to be delivered to each controlled process. 

The interactions between the MW and the controllers can be 
seen in figures 4.2.3 a and b. Three parts are considered: data 
acquisition, control action delivering and supervision. 

Data acquisition (figure 4.2.3 a) 

Each physical sensor has a structure inside the ADQ module 
to keep the parameters of each external variable. This 
structure will be named S = {T, B, C, E}, where T is the 
sampling period, B is the buffer to store the n last values, C 
the controller to which belongs the measure and E the sensor 
state. The last one is a very important parameter to decide 
which action will be delivered. It can be in one of three 
possible states: 

• Fail: the acquisition signal is not received from physical 
sensor, this signal is identified like noise, using an 
alarm, or the signal corresponds to the limit of the scale.  

• Event: the same value is received n times. 
• No_fail: none of the previous options happen and 

the operation is normal. 
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The ADQ module has one subsystem to keep the 
measurement state and to determine the acquisition quality.  
To evaluate the quality this module computes the concept of 
data acquisition interval DAI (Crespo et al., 1999). It 
expresses the variable time delay in acquire a measurement 
from sensors due to the processor sharing.  This module 
calculates for each measurement the maximum DAI, the 
average DAI and its variance.   

 

Figure 4.2.3 a, Acquisition module. 

Control action delivering (figure 4.2.3 b) 

Each physical actuator has a structure inside CAD module to 
keep the parameters of each control action. This structure will 
be named A= {T, O, B, R, C, E}, where T is the sampling 
period, O is the offset, in absolute time, between delivering 
of the action and acquisition of data, B is the buffer to store 
the n last values, R is the buffer to store the n future 
references values, C is the controller to which the action 
belongs and E is the actuator state. The last one is also a very 
important parameter to decide which action will be delivered 
and, again, it can be in one of three possible states: 

• Fail: it is detected that the action has not been delivered  
• Event: the computed action is delayed, and the stored 

actions are old  
• No_fail: none of the previous options happen and the 

operation is normal. 
 

The CAD module has one subsystem to keep the actuator 
state and to determine the delivering actions quality.  To 
evaluate the quality, this module computes the concept of 
control action interval, CAI (Crespo et al., 1999). It expresses 
the variable time delay in delivering the control action due to 
the processor sharing. This module calculates for each action 
the maximum CAI, the average CAI and its variance.   

Supervisor 

This module makes the decisions in the MW. To carry out the 
supervision it should know the state of the sensors and 
actuators corresponding to one controller; the control state 
and the available resources.  

 

Figure 4.2.3 b delivering action module 

Every controller can be associated to s sensors and a 
actuators, the sensors will be classified in one main sensor 
(ms) and several secondary sensors (ss). The sensor indicated 
as ms is the one that measures that variable that allows 
computing a basic control action on the process. 

The possible decisions taken by the supervisor are:  

1. If ms is in failed state (no transitory) it proceeds to 
deliver the secure control action. 

2. If ss is in failed state (no transitory) it proceeds to 
compute and deliver the basic control action. 

 
4.3. Quality and Robustness of the basic controller 

Besides the previously commented functions for ensuring the 
right functionality of the controller based on the developed 
middleware, some functions have been added in order to 
improve the quality and robustness of the control actions 
delivered by the controller. These ones are the following: 

In some situations, the control actions could be evaluated by 
a complex (optimal) algorithm that could be implemented 
remotely or locally but subjected to the computational 
resources availability. If the control algorithm has not 
provided the next ones, these could be projected from the 
present ones.  

If the input signals do not vary, it is supposed that the system 
is in a stable state, so the present control action is projected 
for the future and the controller is put in a sleep mode. In this 
way, computational resources as well as battery are saved. 
This module is activated a short time before changing the 
signal to the failure state; their main purpose is to assure a 
correct operation of the system in transitory failure situations. 
See the prediction module in figure 4.2.3 a.  

Another possibility, also related with this, is to enlarge the 
period of the actuator. The period for the acquisition is kept 
for detecting variations at the input signals but the buffer is 
filled only with the data for the same period of the actuator 
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(the last one or a mean of those between two samples of the 
actuator). This module is activated a short time before 
changing the actuator to the failure state; their main purpose 
is to assure a correct operation of the system in transitory 
failure situations.  For permanent failures the basic action 
algorithm or the secure action registered to the controller will 
be invoked. See the prediction module in figure 4.2.3 b.  

The basic control action implemented up to now in the MW 
is a proportional control that is registered with the controller.  
The secure action should be taken according to the controlled 
system; it can be to close a valve, to stop a motor, etc. 

The middleware interface is responsible for the interaction 
between the controllers and the sensors/actuators. The 
controller must ensure the computing of the N future control 
actions and must send them to the buffer B of the related 
actuator at each sample interval. It must also get direct 
information about the state of the acquisition process. It must 
be able to ask for a state change over the MW, depending on 
the quality of ADQ, AC and the available resources. It must 
be also able to ask for a change on the sampling period and 
offset for the acquisition and the AC and it must ensure that 
the N future references will be sent, allowing MW to 
compute the basic control. 

5.  EXAMPLE 

The MW has been designed and implemented as a functions 
library. The user must make the calls to the necessary 
functions, according to the following order: 

1. MW Configuration. 
2. Sensors, actuators and controller registrations. 
3. Start control procedure. 
4. Stop control procedure. 

 

In order to illustrate how to use this library we took the same 
example mentioned in (Albertos et al., 2007), a robot with a 
unique flexible join. The dynamical equations are:  

 
          (5.1) 

where q2, q1 are the positions and J y D are the inertia of the 
actuator and the terminal element, respectively. In this 
setting, the torque (τ) applied to the actuator generates a 
movement that is transmitted to the terminal element by a 
spring with elastic constant Ks.  

From these differential equations, it is possible to model the 
flexible robot's behaviour in the space of states. The 
following matrix was used to control the system with a 
sample period T=0.01 seg. 

[K1 K2] = [-5.5032 0.06223 0.053 7.17334]  (5.2) 

To build the controller the user must write a function that 
evaluate these equations and send to the MW the computed 
action. The general form is the following one 

void user_controller(void) 

{ 
value_q1 = read_data_sensor(idq1); 
value_q2 = read_data_sensor(idq2); 
evaluation of the equation 7.2 
u = calculate_acción(value_q1, value_q2); 
send_action(idu, u); 

} 
In order to carry out the supervision, the MW assumes the 
variable q1 as the main sensor (ms) while q2 is considered as 
the secondary sensor (ss). This should be defined at the time  
the user registers the sensors, actuators and controllers. The 
parameters used in the example are: 

• t=10 ms: sample period to acquire data and deliver 
control actions  

• p1=1, p2=2: priority with respect to others actuators or 
sensors registered. 

• o=3 ms: offset in time between the data acquisition and 
deliver control action. 

• k=1.5: proportional constant, in the basic control action. 
• s= 0 volt: secure action.  
• buffersize = 100: ADQ and CAD buffer size. 
• wt =10 T: Integer determining the windows time, must 

be a multiple of the period, to verify failure conditions. 
• h= 0.1 rad: hysteresis value to return to normal 

conditions 
• d=0.2 rad: maximum variation allowed in measure 

value, between t and t+1. 
• cd=10: number of times that a maximum change of 

value d is tolerated before throwing the message: fail. 
• s= [6 0 -6] rad: 3 real elements vector that register the 

instrument scale limit. 
• cs=10 number of times that a scale limit value s[i] is 

tolerated before throwing the message: fail. 
• r=100: number of times that a same value is repeated 

without throwing the message: event. 
 
To use the middleware function, the user has to configure the 
used resources in the following way: 
procedure configuration { 
//allocating resources and failure handlers 
    idq1=register_sensor(t,p1,buffersize); 
    idq2=register_sensor(t,p2,buffersize); 
    register_fail_detection(idq1,wt, h, cd, d, sc, p , r); 
    register_fail_detection(idq2,wt, h, cd, d, sc, p , r); 
    idu=register_actuator(t,o,p1,buffersize); 
  register_controller(user_controller, [idq1 idq2] ,idu); 
// start control 
   start_controllers(); 
} 
 
procedure finish { 
// free the resources allocated 
   stop_controllers(); 
} 
The graph shown in the Figure 5.1 is taken directly from a 
process controlled with the MW. Between t=10s and t=25s, 
the system is stable. In this interval, the control action period 
can be increased, only if there are not changes in the 
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measures. In t=26 the supervisor must return to the previous 
period. 
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Figure 5.1 change of simple periods 

The measurements of the process should be kept in two 
buffers, one with data got at the current rate and another one 
at the previous one, to guarantee that the transition process in 
t=26s is transparent. 
 

6. CONCLUSIONS 

A middleware for control applications has been presented 
where the basic functionality for an elementary node of a 
control application has been defined. The case of a local 
controller has been considered in order to clarify the structure 
at the most basic level. The case of distributed applications 
will be considered in the next development based on the 
proposed architecture.  

Some functions for ensuring the right performing of the 
controller even in autonomic working mode have been also 
introduced. These ones have been complemented with others 
that introduce some quality and robustness considerations. 

Finally, an example for the control of a robot with a flexible 
joint has been presented where the developed middleware has 
been used. It has been described the way that the controller 
will be implemented over the middleware and some 
experiments has been shown for illustrating how the 
middleware works when a sensor does not work. 
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