

Towards the conformance Analysis of IEC 61131-3 PLC Programming Tools

M. Marcos, E. Estévez, I. Sarachaga, A. Burgos

Automatic Control and Systems Engineering Department, University of the Basque Country,
Bilbao, Spain (e-mail: marga.marcos@ehu.es, elisabet.estevez@ehu.es, isabel.sarachaga@ehu.es, ispbufea@ehu.es).

Abstract: Industrial Process Measurement and Control Systems are used in most of the industrial sectors
to achieve production improvement, process optimization and time and cost reduction. Integration, reuse,
flexibility and optimization are demanded to adapt to a rapidly changing and competitive market. In fact,
standardization is a key goal to achieve these goals. The international standardization efforts have lead to
the definition of the IEC 61131 standard. Part 3 of this standard defines a software model for defining
automation projects as well as 5 programming languages. Nowadays, a major part of Programmable Logic
Controllers (PLC) vendors follows this standard, although each programming tool adds particularities and
stores the automation project in different manner. This work presents an approach for analyzing the
conformance to the IEC 61131-3 standard of a programming tool. The conformance analyser is designed at
different levels, covering the data types, programming languages and software architecture. Besides,
within each level of conformance, different sublevels can be certified.

1. INTRODUCTION

Nowadays most of the industrial sectors use Programmable
Logic Controllers (PLCs) to achieve the control of their
productive systems. In the last years, technological advances
in these controllers allow the production improvement,
process optimization and time and cost reduction. On the
other hand, for many years, only proprietary programming
languages could be used for vendor specific equipment.
Although some languages, such as ladder diagram or
instruction list were very widespread, their implementation
used to be rather different. It was obvious the need of
standardization in the field, covering from the hardware to
configuration issues, up to the programming languages. In
1993, the International Electrotechnical Commission (IEC)
published the IEC 61131, International Standard for
Programmable Controllers (IEC, 2003).

The IEC 61131-3 standard deals with the software model and
programming languages for Industrial Process Measurement
and Control Systems (IPMCS) (Lewis, R.W, 1998), (John,
K.H and Tiegelkamp M, 2001). In this sense, it has provoked
a movement to Open Systems in this application field. Thus,
the so-called Open PLCs that are open architecture
controllers that replace a PLC with a computer, have begun to
appear in the market.

Nowadays, most of the PLC vendors are doing a great effort
for becoming IEC 61131-3 standard compliant. In fact, this
offers great advantages to the control system engineers, as the
programming techniques become vendor independent.
Notwithstanding this, it is impossible to assure if a PLC
programming tool is full IEC 61131 standard compliant.

Efforts are being done by international organizations in order
to promote the use of standards of the field. The most
important related to the IEC 61131-3 standard is PLCopen
(1992), a vendor- and product-independent worldwide

association, whose mission is to be the leading association
resolving topics related to control programming. Its main
goal is to support the use of international standards in this
field. PLCopen has several technical and promotional
committees (TCs).

In particular, TC6 (TC6, 1992) for XML has defined an open
interface between all different kinds of software tools, which
provides the ability to transfer the information that is on the
screen to other platforms. The eXtensible Markup Language
(XML) (W3C, 2006a) was selected for defining the interface
format and in April 2004, the first XML schema for the
graphical languages was released for comments (W3C,
2004). The goal is to achieve interchange of code in graphical
language by expressing what is in the screen in XML,
including the graphical information.

On the other hand, TC3 (TC3, 1992) defines a certification
system for PLC programming environments, focussing on
testing the features of a tool. Thus, PLCopen TC3 certifies
IEC 61131-3 environments. It certifies three compliant
levels: a Base Level (BL) a Conformity Level (CL) and
Reusability Level (RL) that implies possibility of interchange
Function and Function Block definition with other RL
products. The compliance test is performed by a test
laboratory accredited by PLCopen. Therefore, those PLC
programming tools having the PLCopen CL could exchange
source code.

The work presented here presents the design of a framework
for analyzing the grade of conformance of models exported
by PLC programming tools. It defines different levels of
conformity: Data Types (elementary or extended), the
Program Organization Units (POU interface & source code)
and the automation project structure. This work extends and
modifies the proposal of TC6. The extension consists of
including the constraints that both, the elements of software
architecture and the elements of the programming languages,

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 8467 10.3182/20080706-5-KR-1001.2511

must meet to define correct automation projects. The
modification consists of eliminating any element or
characteristic related to the visualization of code. This is
achieved combining XML technologies: XML schema (W3C,
2004), schematron rules (Rick J., 2006), XML Stylesheets
and the SAX (Simple API of XML) (SAX, 2004) or DOM
(Document Object Model) (W3C, 2005) XML Application
Program Interfaces. The conformance analyser is based on
previous work of authors (Marcos and Estévez, 2005) that
focussed on achieving the collaboration, along the
development cycle of an application of a set of heterogeneous
tools. To do that, the IEC 61131-3 software model was
expressed as a XML schema. The current work extends the
schema with a set of composition rules to check the
constraints to be met.

The layout of the paper is as follows: section 2 briefly
describes the elements of the IEC 61131-3 software model.
Section 3 presents the definition of the IEC 61131-3
conformance templates. The conformance analysis is divided
in different aspects and for each one various levels of
conformity have been defined.

2. THE IEC 61131-3 SOFTWARE MODEL

The IEC 6131-3 standard is defines three different parts: Data
types, source code in Program Organisation Units (POU) and
the Software architecture in terms of the Automation project
definition. The following sub-sections analyses the
characteristics of each part.

2.1. Data Types

Within the common elements, the data types are defined.
Data typing prevents errors in an early stage. It is used to
define the type of any parameter used. This avoids, for
instance, dividing a Date by an Integer. Table 1 illustrates the
Elementary Data types of the IEC 61131-3 standard.

TABLE 1. IEC 61131-3 ELEMENTARY DATA TYPES

Key Word DataType

BOOL Boolean
SINT Short Integer
INT Integer
DINT Double Integer
LINT Long Integer
USINT Unsigned Short Integer
UINT Unsigned Integer
UDINT Unsigned Double Integer
ULING Unsigned Long Integer
REAL Real
LREAL Long Real
TIME Duration
DATE Data
TIME_OF_DAY (TOD) Time of Day
DATE_AND_TIM (DT) Data and time of Day
STRING String
BYTE Bit string of length 8
WORD Bit string of length 16
DWORD Bit string of length 32
LWORD Bit string of length 64

The standard defines the representation patterns, range of
values of each data type (IEC, 2003). It also associates a Key
word to each type of data and the space of memory they
require. The number of bits needed to define data types are
tool dependent.

Programmers can define their own personal data types based
on these elementary data types. These are known as derived
data types and they also group structures, arrays and
enumeration values.

2.2. Source Code

Part 3 of the IEC 61131 standard specifies the grammar,
syntax and semantics of a suite of five programming
languages for programmable controllers.

Concretely, two of them are textual and three graphical:

� The Instruction List (IL) is a low level textual language,
similar to the assembler. It consists of text lines and each
line describes an operation instruction.

� The Structured Text (ST) is a high level textual language,
structured in blocks. It is close to Pascal, and it is
influenced by ADA and C programming languages. It is
commonly used for complex process automation.

Related to the graphical languages, three are provided by the
standard:

� The Ladder Diagram (LD), based on graphical symbols
laid out in networks in a similar way to a rung of relay
ladder logic diagram. It is specially oriented to Boolean
signals.

� The Function Block Diagram (FBD) is used for complex
procedures programmed by graphical objects or blocks
which represent functions, function blocks or programs,
like in electronic circuit diagrams. It is widely used in
the process industry.

� The Sequential Function Chart (SFC) focuses on
structuring sequential tasks of an automation application
through programs and function blocks. It can be
programmed in a textual or graphical way.

TABLE 2: IEC 61131-3 POUS

POU
Type Interface Body

Program
Input/output formal parameters
and local variable characterised by
name, type and initial values

ST,IL,
LD,FBD,
SFC

Function
Block

Input/output formal parameters
and local variables characterised
by name, type and initial values

ST,IL,
LD,FBD

Function

Input formal parameters,
Only an output parameter and
local variables. All of them
characterised by name, type and
initial values

ST,IL,
LD,FBD

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8468

Furthermore, the IEC 61131-3 standard provides three type of
Program Organization Units (POU). A POU is composed by
the interface, which contains the formal parameters, and the
body that contain the source code. Table 2 illustrates the
characteristics of each type of POU in terms of formal
parameters of the interface, and the language for
programming the functionality or body

2.3. Structure of the Automation Project

The elements provided by the standard in order to define the
automation project are:

Configurations: for instance they can be a PLC or an
OpenPLC. Resource: It provides support for program
execution. It can be a CPU or a Virtual Machine. Task: It
allows the designer to control the execution rates of different
parts of the program. POU: Program Organisation Units
which are Programs, Function Blocks and Functions and they
provide software reuse. They are once programmed and they
can be used whenever necessary. This assures modularity and
reusability of applications.

Finally, the Variables represent the communication between
software components. In fact, their visibility identifies the
IEC 611313-3 elements that are involved in the
communication:

� VAR_ACCESS identifies the communications between
programs residing in different configurations.

� VAR_GLOBAL at Configuration level identifies
communication between programs residing in different
resources of the same configuration.

� VAR_GLOBAL at resource level identifies the
communication between programs of the same resource.

� VAR_LOCAL identifies the communication among
nested POUs.

As any other high level programming language, they are
characterised by their type and initial value. In Estevez et al
(2007a) a Component Based Technology is used for
identifying the different components and connectors of the
IEC 61131-3 software model. Two types of components can
be distinguished: those that do not encapsulate code,
Configurations, Resources and Tasks, and the Program
Organization Unit (POU) that encapsulates code. These latter
can be Programs, Function Blocks and Functions.

3. AN IEC 61131-3 CONFORMANCE ANALYSER

The XML schema (W3C, 2004) standard and schematron
(Rick, 2006) technologies proposed by The World Wide Web
Consortium have been selected for developing the IEC
61131-3 Conformance analyser.

In particular, the simpleType and complexType mechanisms,
provided by W3C schema, have been used for defining in
XML the IEC 61131-3 elements, taking into account all their
characteristics and making use of attributes, restrictions and
representation patterns. Other W3C XML schema elements,

such as sequence and choice, have been used for defining the
architectural style of the IEC 61131-3 software model.

On the other hand, and in order to check cross contents, the
schema element for defining constraints (key/keyref), jointly
with schematron rules are used. Fig. 1 illustrates different
schemas defines to form the core of the conformance. These
technologies have been used for defining the IEC 61131
grammar as a set of XML schemas (See Fig. 1). The
conformance analyser uses these schemas in order to perform
the different conformity checks.

Elementary
DataType

.xsd

DerivedData
Type
.xsd

<<include>>

Standard POUs
.xsd

UserDefined
DataTypes

.xsd

DataType
.xsd

swEng
.xsd

Programmed
POUs
.xsd

<<include>>

<<include>> <<include>>

<<include>><<include>>

<<include>>

Elementary
DataType

.xsd

DerivedData
Type
.xsd

<<include>>

Standard POUs
.xsd

UserDefined
DataTypes

.xsd

DataType
.xsd

swEng
.xsd

Programmed
POUs
.xsd

<<include>>

<<include>> <<include>>

<<include>><<include>>

<<include>>

Fig. 1. General scenario of IEC 61131-3 conformance
analyzer

The information related to types is defined separately from
the automation project itself. The DataType.xsd and
ProgrammedPOUs.xsd XML schemas define in XML the
data types and POUs, respectively, which are used in the
automation project. In particular, DataType.xsd schema
includes the characterization of the IEC 61131-3 elementary
data types, contained in ElementaryDataType.xsd as well as
the application derived data types, i.e. new data defined by
the programmer. The software architecture defined Markup
language is available in
(www.disa.bi.ehu.es/gcis/projects/merconidi). The Fig. 2
illustrates the control flow of the conformance analyzer.

XSLTXSLT

Appl
.svg

generic
.svg

SVG
DOM

svg2xml
.xsl

SwEng.
.xsd

XML
Parser
XML
Parser

Appl
.xml

Error
Messages

XSLTXSLT

Appl
.svg

generic
.svg

SVG
DOM

svg2xml
.xsl

SwEng.
.xsd

SwEng.
.xsd

XML
Parser
XML
Parser

Appl
.xml

Error
Messages

Fig. 2. The control flow of the conformance analyzer

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8469

To obtain a model to be analyzer from a tool, the integration
techniques proposed in (Estévez, et al., 2007a) can be used.

4. DEFINITION OF CONFORMITY LEVELS

Three levels of conformance have been defined, one for each
part of IEC 61131-3 standard identified in the previous
section. The following sub-sections detail each level of the
conformance analyzer.

4.1. Data Types conformance level

The DataType.xsd is responsible for checking the
conformance of the PLC programming tool at data type level.
It is composed by two XML schemas, one for the elementary
data type and other for derived data type (see Fig. 1).
ElementaryDataTypes.xsd schema contains a XML
simpleType definition for each elementary data type as
defined in the IEC 61131 standard. Thus, it includes the
name, the range of values and the representation patterns. As
a simple example, Fig. 3 illustrates the definition of SINT
data type. As the IEC 61131 standard specifies, it is an
integer value with or without sign being its range of values
between -128 and 128, both inclusive.

<xs:simpleType name="SINT">
<xs:annotation>

<xs:documentation>SINT: [-128, +127]</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:int">

<xs:maxInclusive value="+127"/>
<xs:minInclusive value="-128"/>
<xs:pattern value="(\-|\+)?\d*"/>

</xs:restriction>
</xs:simpleType>

Fig. 3. Characterization of SINT data type

Fig. 4 shows a more complex data type, the TIME type as the
standard defines different representation patterns.

<xs:simpleType name="TIME">
<xs:restriction base="xs:string">

<xs:pattern value="(T|t|TIME|time)(#\d*\p{P}?\d*d)"/>
<xs:pattern value="(T|t|TIME|time)(#\d*d\d*\p{P}?(_)?\d*(h|m|s|ms))"/>
<xs:pattern value="(T|t|TIME|time)(#\d*d\d*\p{P}?(_)?\d*h\d*\p{P}?(_)?\d*(m|s|ms))"/>
<xs:pattern value="(T|t|TIME|time)(#\d*d\d*\p{P}?(_)?\d*m\d*\p{P}?(_)?\d*(s|ms))"/>
<xs:pattern value="(T|t|TIME|time)(#\d*d\d*\p{P}?(_)?\d*s\d*\p{P}?(_)?\d*ms)"/>
<xs:pattern value="(T|t|TIME|time)(#\d*h\d*\p{P}?(_)?\d*(m|s|ms))"/>
<xs:pattern value="(T|t|TIME|time)(#\d*h\d*\p{P}?(_)?\d*m\d*\p{P}?(_)?\d*(s|ms))"/>
<xs:pattern value="(T|t|TIME|time)(#\d*m\d*\p{P}?(_)?\d*(s|ms))"/>
<xs:pattern value="(T|t|TIME|time)(#\d*m\d*\p{P}?(_)?\d*s\d*\p{P}?(_)?\d*ms)"/>
...

</xs:restriction>
</xs:simpleType>

Fig. 4. Characterization of the TIME data type

As a few tools support them, the conformity of the TIME,
DATE, TIME-OF_DATE and DATE-AND-TIME data types
correspond to the advanced data type conformance level.

4.2. Source Code Conformance Level

The POU XML schema (ProgramedPou.xsd in Fig. 1)
characterises in XML the three types of POUs that the IEC
61131-3 standard distinguishes.

Two sub-levels of conformance have been identified at POU
level. The basic level is related to the POU interface. The
goal of the advanced level is to assure that both, the interface
and the source code contained in the body, are IEC 61131-3
compliant.

The three POU types are characterised by the interface and
the functionality. The interface of a Function Block or
Program is defined by the input and output formal parameters
characterised by their name, position and the data type. Each
formal parameter is defined in XML as a Variable XML
element, and its characteristics are defined as XML attributes.
The interface of a Function POU type is different as only one
output formal parameter is defined that is the type of the
function (see Fig. 5 and Fig. 6).

Fig. 5: POU Type definition

Fig. 6: Function interface

The advanced conformity level includes the analysis of the
POU functionality. In order to add this possibility, a XML
schema for each of the programming languages provided by
the standard has been developed.

Fig. 7 illustrates the XML schema defined for characterizing
the Function Block Diagram (FBD) graphical language
(Estevez et al, 2007b).

A POU written in FBD language is composed at least by a
network defined by an identifier (id), and optionally by a
label and a comment. Each network could contain blocks,
jumps, returns and/or connectors. For instance, each block is
defined as a XML schema element characterised by a set of
attributes: an identifier (id) and the POU from which it is an
instance (typeName). If the POU is of FB Type, it is also
necessary to indicate the name of the Instance
(instanceName). Finally, it is also necessary to indicate the
block appearance order (line and position) within the
network.

The parameters (inputs, outputs and inOuts) are characterised
by their order and they can be negated or not. The inputs have
a connection that can come from a variable, a connector, or

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8470

from an output of another block. On the other hand, the block
outputs could have a connection that updates a variable value.

Fig. 7: FBD language definition in XML

Fig. 8: General scenario of the Software Engineering Markup Language

4.3. Software Architecture conformance Level

The schema form overall software architecture is illustrated
in Fig. 8. In particular, the architectural style of the software
architecture is contained in the swEng XML schema. An
Automation project must be composed at least by one
configuration, containing one or more resources which
contain the source code (ProgramInstances) that could be or
not organized by tasks.

Each of the program instances contained in a resource
correspond to a particular instance of a program Type POU
characterised by its Name. If such program instance is
organized by a task, it will have the withTask attribute with
the name of the task.

Finally, the program instance will have actual parameters that
must correspond in type and position to its formal
parameters. Fig. 9 illustrates the characterization of the
program instances and task elements.

Fig. 9: programInstance and Task elements

Task elements can represent a periodic or sporadic execution.
In the first case they are characterised by the period attribute
that must be of type TIME.

In the second case, the task is characterised by the event that
triggers it, whose type must be BOOL. The event may be an
external or internal interrupt.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8471

Fig. 10: Resource

The Resource elements could be downloaded to a processor;
in this case, the name of this processor must be the value of
the on attribute (see Fig. 10).

Finally, Fig. 11 illustrates the characterisation of the
configuration element. It corresponds to a PLC and it is at
least composed by one resource.

Fig. 11: Configuration

The automation project variables are defined at Configuration
and at Resource level, depending on their visibility.
Configurations exchange information through Access
variables.

Fig. 11 illustrates how by means of the key/keyref
mechanism provided by XML schema, it is assured that the
access variable corresponds to a global variable defined in
this configuration.

5. CONCLUSIONS

A conformance analyser has been proposed that allows
assuring the level of conformance to the IEC 61131 standard
of a PLC programming tool.

The analyser has been developed using the potentialities of
the XML technologies, that allow defining not only the
architectural style of the software architecture and
programming languages but also to check cross contents.
This conformance analyser can be very useful for the final
users as it assures that the software developed within a PLC
programming tool can or cannot be reusable in others.

6. ACKNOWLEDGEMENTS

This work was financed by the MCYT&FEDER under DPI-
2006-4003 and by UPV/EHU under project DIPE 06-16.

REFERENCES

E. Estévez, M. Marcos and D. Orive (2007a). Automatic
Generation of PLC Automation Projects from
Component-Based Models. The International Journal of
Advanced Manufacturing Technology. Springer London.
Vol: 35, pp: 527:540. 2007

E. Estévez, M. Marcos, D. Orive, E. Irisarri and F. Lopez
(2007b). XML based Visualization of the IEC 61131-3
Graphical Languages. Proc. of the 5th International
Conference on Industrial Informatics, pp: 279-285
(INDIN 2007). Vienna, Austria.

IEC (2003). International Electrotechnical Commision. IEC
International Standard IEC 61131-3 Programmable
Controllers. Par3: Programming Languages.

John, K.H and Tiegelkamp M. (2001). Programming
Industrial Automation Systems. Springer.

Lewis, R.W. (1998). Programming Industrial Control
Systems using IEC 61131-3.IEE Control Engineering
Series.

M. Marcos, E. Estévez, “Formal Modelling of Industrial
Distributed Control Systems” 16th IFAC World
Congress. Praha.

Medvidovic, N. and Taylor, R.N. (1997). Exploiting
architectural style to develop a family of applications.
IEE Proc. Software Eng. 144 (5–6), pp:237–248.

PLCopen (1992), Web-site: http://www.plcopen.org
Rick J. (2006). Resource Directory (RDDL) for Schematron

1.5. Web Site: http://xml.ascc.net/schematron/
SAX (2004). Simple API of XML (SAX).

 Web Site: http://www.saxproject.org/
TC3 (1992), PLCopen Technical Committee 3.Web-site:

 http://www.plcopen.org/pages/tc3_certification/
TC6 (1992), PLCopen Technical Committee 6.Web.site:

 http://www.plcopen.org/pages/tc6_xml/
Tidwell, D.(2001). XSLT, Ed. O’REILLY.
Van der Vlist, E. (2002), “XML Schema”. Ed. O’REILLY.
W3C (2004). XML Schema Part 0: Primer (Second Edition),

W3C REC-xmlschema-0-20041028. Available at:
http://www.w3.org/TR/2004/REC-xmlschema-0-
20041028/

W3C (2005). Document Object Model (DOM),
 Web Site http://www.w3.org/DOM/

W3C (2006a). eXtenslble Markup Language (XML) 1.0
(Fourth Edition), W3C Recommendation. Available at:
http://www.w3.org/TR/2006/REC-xml-20060816/

W3C (2006b). Extensible Stylesheet Language (XSL)
Version 1.1, W3C Proposed Recommendation PR-xsl11-
20061006.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8472

