
A Benchmark Problem for Robust Control

of a Multivariable Nonlinear Flexible

Manipulator
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Abstract: A benchmark problem for robust feedback control of a manipulator is presented.
The system to be controlled is an uncertain nonlinear two link manipulator with elastic gear
transmissions. The gear transmission is described by nonlinear friction and elasticity. The system
is uncertain according to a parametric uncertainty description and due to uncertain disturbances
affecting both the motors and the tool. The system should be controlled by a discrete-time
controller that optimizes performance for given robustness requirements. The control problem
concerns only disturbance rejection. The proposed model is validated by experiments on a real
industrial manipulator.
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1. INTRODUCTION

There exists a gap between control theory and control
practise, i.e., many control methods suggested by re-
searchers are seldom implemented in real systems and,
on the other hand, many important industrial control
problems are not studied in the academic research. This
is recognized in, e.g. Åström (1994) where the need for a
balance between theory and practise is expressed. From
Bernstein (1999) we quote ”I personally believe that the
gap on the whole is large and warrants serious introspec-
tion by the research community”. The same article also
points out that the control practitioners must articulate
their needs to the research community, and that motivat-
ing the researchers with problems from real applications
”can have a significant impact on increasing the relevance
of academic research to engineering practise”.

This paper presents an industrial benchmark problem
with the intention to stimulate research in the area of
robust control of flexible industrial manipulators and thus
bridging the gap between control theory and practice.
The MIMO benchmark problem presented in this article
is an extension of a similar SISO problem presented in
Moberg and Öhr (2005). The SISO benchmark model is
experimentally validated and further described together
with an analysis of some suggested solutions in Moberg
et al. (2007). In summary, the SISO problem can be solved
with a PID controller and it is in fact hard to improve the
performance further no matter which controller is used.
This is quite a surprising result and now the investigation
continues. The main difference of the new problem is
that the realism is increased one step further, not only
by making the problem multivariable, but also by adding
some nonlinearities ignored in the previous benchmark.

Fig. 1. IRB6600 from ABB equipped with a spot welding
gun

The paper is organized as follows. Section 2 presents
the control problem, and Section 3 presents the nonlin-
ear manipulator model. Section 4 describes the complete
benchmark system, and the proposed model structure is
validated by experiments on a real industrial manipulator
in Section 5. Finally, the control design task is presented
in Section 6.

2. PROBLEM DESCRIPTION

The most common type of industrial manipulator has six
serially mounted links, all controlled by electrical motors
via gears. An example of a serial industrial manipulator
is shown in Figure 1. The dynamics of the manipulator
change rapidly when the robot links move fast within
the manipulator workspace, and the dynamic couplings
between the links are in general strong. Moreover, the
structure is elastic and the gears have nonlinearities such
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as hysteresis, backlash, friction and nonlinear elasticity.
From a control engineering perspective a manipulator
can be described as a nonlinear multivariable dynamical
system having the six motor currents as the inputs and
the six motor angles as measurable outputs. The main
objective of the motion control is, however, to control the
orientation and the position of the tool when moving the
tool along a certain desired path.

The benchmark problem described in this paper concerns
only the so-called regulator problem, where a feedback
controller should be designed such that the tool position
is close to the desired reference, in the presence of motor
torque disturbances, e.g., motor torque ripple, and force
disturbances acting on the tool, e.g., during material pro-
cessing. Only the second and third links of the manipulator
will be included in the benchmark model. These links
are chosen in order to get a strong dynamic coupling.
The model will include the nonlinear rigid body dynamics
associated with the change of configuration (link posi-
tions) as well as gravity, centripetal and Coriolis torques.
Moreover, the nonlinear elasticity and friction of the gear
transmissions will be included in the model.

The rationale behind the different choices in the problem
design is that a benchmark problem should be sufficiently
realistic and complete to act as a substitute for real control
experiments. However, the number of researchers who will
have time and resources to take on the problem and
propose solutions and methods, will certainly decrease
with increased problem complexity. If reference tracking
was included in the problem specification and/or if all links
of an industrial manipulator were included in the model,
both the realism and the complexity of the problem would
increase. The suggested benchmark problem is hopefully a
good trade-off.

3. THE MANIPULATOR MODEL

The two link manipulator is a model of link 2 and 3 for a
typical large industrial robot, see Figure 1. The model is
planar, i.e., all movements are constrained to the x,z plane.
The model is illustrated in Figure 2. In the following, the
links are denoted as link 1 and link 2. Each link has the
following rigid body attributes:

• mass m1 and m2

• link length l1 and l2
• center of mass ξ1 and ξ2 (distances from the centers

of rotation)
• inertia w.r.t. center of mass j1 and j2

The links are actuated by electrical motors, connected to
the links via elastic joints. The joints (gear transmissions)
are described by the nonlinear spring torque τs(q), the
linear damping matrix D, the friction torque f(q̇), and
the gear ratios (n1 and n2). The motors are described
by their inertias jm1 and jm2. There are two degrees
of freedom (DOF) for each axis described by the motor
angular positions qm1, qm2 and link angular positions qa1,
qa2. The control signals are the motor torques um1 and
um2, which are subject to saturation. The motor torque
control is modeled as a gain uncertainty γ and a time
delay Td1. The only measured output signals are the motor
angular positions, and these are subject to measurement
noise and a time delay Td2. This time delay is motivated by
the computational and communication delay. Two sources
of disturbance are acting on the system. A force F is
applied at the tool center point (TCP) at angle φF and a

Fig. 2. A two link robot model

motor torque disturbance is applied as input disturbance
signals ud1 and ud2. The angular positions and the model
inputs are described by

q =







qa1

qa2

qm1/n1

qm2/n2






, u =







ua1

ua2

(um1 + ud1)n1

(um2 + ud2)n2






. (1)

The manipulator is described by its dynamics

u = M(q)q̈ + C(q, q̇) +G(q) +Dq̇ + τs(q) + f(q̇). (2)

The inertial coupling between the motor and link rotation
is neglected due to the high gear ratio, see e.g. Spong
(1987). The inertia matrix M , gravity vector G and vector
of speed dependent torques (Coriolis and centripetal) C
can then easily be derived as (see e.g. Sciavicco and
Siciliano (2000))

M(q) =







J11(q) J12(q) 0 0
J21(q) J22(q) 0 0

0 0 jm1n
2

1
0

0 0 0 jm2n
2

2






, (3a)

J11(q) = j1 +m1ξ
2

1
+ j2 +m2(l

2

1
+ ξ2

2
− 2l1ξ2 sin qa2),

(3b)

J12(q) = J21(q) = j2 +m2(ξ
2

2
− l1ξ2 sin qa2), (3c)

J22(q) = j2 +m2ξ
2

2
, (3d)

G(q) = [g1(q) g2(q) 0 0]
T
, (3e)

g1(q) = −g(m1ξ1 sin(qa1)+

m2(l1 sin(qa1) + ξ2 cos(qa1 + qa2))), (3f)

g2(q) = −m2ξ2g cos(qa1 + qa2), (3g)

C(q, q̇) =







−m2l1ξ2 cos(qa2)(2q̇a1q̇a2 + q̇2a2
))

m2l1ξ2 cos(qa2)q̇
2

a1

0
0






, (3h)

where g is the gravitational constant. The nonlinear spring
torque is given by

τs(q) =







τs1(∆q1)
τs2(∆q2)
τs1(−∆q1)
τs2(−∆q2)






, (4a)

∆qi = qai − qmi/ni, i = 1 . . . 2. (4b)

with
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Fig. 3. Example of nonlinear stiffness (elasticity).
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Fig. 4. Example of nonlinear friction.

τsi = ki1∆qi + ki3∆
3

qi, |∆qi| ≤ ψi, (5a)

τsi = sign(∆qi)(mi0 +mi1(|∆qi| − ψi)), |∆qi| > ψi,
(5b)

ki1 = klow
i , (5c)

ki3 = (khigh
i − klow

i )/(3ψ2

i ), (5d)

mi0 = ki1ψi + ki3ψ
3

i , (5e)

mi1 = khigh
i . (5f)

The nonlinear stiffness (elasticity) is then specified by the

lowest stiffness klow
i , the highest stiffness khigh

i , and the
breakpoint deflection ψi, see Figure 3. The linear damping
matrix is

D =







d1 0 −d1 0
0 d2 0 −d2

−d1 0 d1 0
0 −d2 0 d2






. (6)

The nonlinear friction torque, see Figure 4, is approxi-
mated as acting on the motor only and is given by the
following equation

f(q̇) = [0 0 f1(q̇) f2(q̇)]
T
, (7)

where

fi(q̇) = ni(fdiq̇mi + fci(µki + (1 − µki)

cosh−1(βiq̇mi)) tanh(αiq̇mi)), i = 1 . . . 2. (8)

This smooth friction model is suggested in Feeny and
Moon (1994) and avoids discontinuities to simplify numer-
ical integration. The TCP position X is described by the
kinematics

X = Γ(q) =

[

x(q)
z(q)

]

=

[

l1 sin(qa1) + l2 cos(qa1 + qa2)
l1 cos(qa1) − l2 sin(qa1 + qa2)

]

.

(9)
The relation between the disturbance force F and joint
torques ua is given by the velocity Jacobian J(qa) as

ua = JT (qa)F, ua =

[

ua1

ua2

]

, F =

[

F cos(φF )
F sin(φF )

]

, (10)

Fig. 5. A block diagram of the benchmark system

J(qa) =

[

∂Γ(qa)

∂qa

]

=

[

l1 cos(qa1) − l2 sin(qa1 + qa2) −l2 sin(qa1 + qa2)
−l1 sin(qa1) − l2 cos(qa1 + qa2) −l2 cos(qa1 + qa2)

]

.

(11)

4. THE BENCHMARK SYSTEM

The benchmark system consists of the manipulator model
P described in Section 3 and a feedback controller G as
illustrated in Figure 5. The model uncertainty description
is parametric and expressed as uncertainty in some of
the physical parameters. The friction and stiffness uncer-
tainties are motivated by modeling errors and differences
between the gearbox individuals. The mass uncertainty is
due to errors in the definition of the user loads attached to
the manipulator and the gain error reflects to the accuracy
of the torque control.

The discrete-time controller G is implemented with sample
time Ts, time delay Td and a control signal limitation
umax

m . The time delay includes both the delay of the torque
control and the computational and communication delay
described in Section 3, i.e., Td = Td1 + Td2. The DA and
AD conversions are modeled by a 12 bit quantization of
the output torque and a 16 bit quantization of the motor
position.

The system is influenced by the following uncertain distur-
bances: a measurement noise n with power Pn, a distur-
bance force F in direction φF applied at t1 and released
at t2 and finally a motor torque disturbance ud applied
from t3 to t4. F can be applied in any direction and
the torque disturbance ud is a chirp with amplitude Ac,
start frequency fcs and end frequency fce. The motor
torque disturbance is motivated by internally generated
ripple disturbances due to the design of the motors and
the gear boxes. These disturbances have frequency com-
ponents proportional to the motor speed and can cause
significant position errors in some frequency regions. The
force disturbance is motivated by various externally gener-
ated disturbances, e.g., the release of a load, forces due to
material processing, or forces due to the impact at spot-
welding. The force disturbance pulse serves as a gener-
alization of all real application-specific disturbances. The
manipulator model parameters, the controller parameters,
the disturbance parameters, and the uncertainty descrip-
tions are listed in Table 1. The parameters with no axis
index are the same for both axes although the uncertainty
is independent for each parameter. The parameter values
and the uncertainties are known (by experience) to be
realistic, although the exact combination of parameters
used do not correspond to a specific industrial robot.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1208



Table 1. Nominal and Uncertain Parameters

Parameter Value Unit Uncertainty

jm1 0.004 kg ·m2

jm2 0.001 kg ·m2

j1 5 kg ·m2

j2 50 kg ·m2

m1 50 kg ±10 %
m2 150 kg ±10 %
l1 1.0 m
l2 1.5 m
ξ1 0.5 m
ξ2 0.8 m
n 200

khigh
1

0.5 · 106 Nm/rad ±20 %

klow
1

1.5 · 106 Nm/rad ±20 %
ψ1 2 arcmin ±20 %

khigh
2

0.2 · 106 Nm/rad ±20 %

klow
2

0.6 · 106 Nm/rad ±20 %
ψ2 3 arcmin ±20 %
d1 600 Nm · s/rad ±20 %
d2 200 Nm · s/rad ±20 %
fv1 0.006 Nm · s/rad ±80 %
fc1 1.5 Nm ±80 %
fv2 0.003 Nm · s/rad ±80 %
fc2 1.0 Nm ±80 %
µ 0.5 ±50 %
β 0.4 ±50 %
α 5
g 9.81 m/s2

γ 1 ±10 %
Pn 3 · 10−12

F 500 N
φF π rad ±π
t1 10 s
t2 10.5 s
Ac1 1 Nm
Ac2 −1 Nm
t3 0.5 s ±0.5 s
t4 8 s
fcs 0 or 15 Hz random choice
fce 0 or 15 Hz random choice
Ts 0.25 · 10−3 s
Td 0.25 · 10−3 s
umax

m1
35 Nm

umax
m2

20 Nm
K1

p 45

K1

i
30

K1

d
1.5

K2
p 15

K2

i
10

K2

d
0.5

zp 0.95

The benchmark system, available for download, has a
discrete-time diagonal PID controller with derivative filter
described by the transfer function

Gpid(z) =

[

g11(z) 0
0 g22(z)

]

, (12)

where

gii(z) = Ki
p +Ki

d

z − 1

Tsz

(1 − zi
p)z

z − zi
p

+
Ki

iTsz

z − 1
. (13)

The PID controller should only be seen as an example of a
controller yielding a stable system and does not represent
an optimal design.

5. MODEL VALIDATION

In this section the model proposed in Section 3 is validated
by experiments made on the second and third links of
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Fig. 6. The tool position error for a tool step force
disturbance.

an industrial robot from ABB, using an experimental
controller. All model parameters, except the α parameters
of the friction model (8) and the damping D in (6), were
known with sufficient accuracy. The configuration of the
wrist, i.e., axis 4 - 6, was chosen to minimize the coupling
between the modeled links and the wrist. The robot links
were controlled with a diagonal PID controller of the same
type as the default controller of the benchmark system.

In the first experiment a tool load was instantaneous
released, i.e., a step disturbance force was applied. The tool
response was measured using a laser measurement system
LTD600 described in Leica (2007). The elasticity of the
model was then tuned w.r.t. the transient response. The
resulting elasticity was somewhat lower than the known
elasticity of the gear boxes. This was expected since a
modern industrial robot cannot be fully modeled by the
so-called flexible joint approach, see, e.g., Moberg and
Hanssen (2007). The damping was set to a reasonable
value, in fact, the response of the controlled system is quite
insensitive to the damping. The remaining unknown model
parameter, α, was tuned w.r.t. the measured response.
Note that the factor tanh(αq̇m) in (8) approximates the
discontinuous friction behavior at zero speed and cannot
be directly measured. The result is shown in Figure 6. The
experiment was repeated for a number of controller tunings
with good correspondence between simulation model and
real robot.

In the second experiment, a chirp torque disturbance ud

was added to the control signal while the manipulator was
moving at a low speed. This is motivated by the fact that
internally generated torque disturbances are present only
when the robot is moving and that the nonlinear friction
at zero speed otherwise would reduce the effect of the
disturbance, e.g., no movement would be generated if the
disturbance level was below the Coulomb friction level.
Moving the manipulator at a low speed thus linearizes
the system w.r.t. friction and the robot response can
thus be compared with the model response when the
nonlinear friction, fc, is set to zero. This comparison is
shown in Figure 7 and the correspondence is good. In the
benchmark problem, the chirp disturbance is applied at
zero speed. This choice was made to avoid introduction
of a reference signal and is justified by the fact that the
relative disturbance rejection at zero speed also reflects the
disturbance rejection when moving.

The third validation experiment concerned the stability
margin of the model. The loop gain of the robot system
was increased for one channel at a time until the stability
limit was reached. The experimentally determined ampli-
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Fig. 7. The tool position error for a motor torque distur-
bance of chirp type.

tude margin was in good agreement with the one of the
simulated system.

6. THE DESIGN TASK: PERFORMANCE
SPECIFICATION AND COST FUNCTION

Design a discrete-time controller to control the manip-
ulator in the entire manipulator workspace defined by
qa1 ∈ [−90◦ . . . 180◦] and qa2 ∈ [−180◦ . . . 80◦]. The con-
troller can be of any kind, e.g., linear or non-linear, diag-
onal or full-matrix, time-invariant or gain scheduled. The
controller inputs are the measured motor positions and
constant motor position references. The motor position
references qref

m and the initial gravity torques may be used
for initializing the controller. The motor position given as
reference represents a steady-state solution at the desired
link position, i.e., the differences between the motor and
link initial state is equal to the gravity deflection.

The designed controller should replace the default PID
controller but the system described in Section 4 must
otherwise be unchanged. For all configurations inside the
workspace, for all systems and disturbances in the uncer-
tainty description, the following requirements concerning
stability must be fulfilled:

• A1: The system must remain stable for a loop gain
increase of a factor of 2.5 (one channel at a time).

• A2: The system must remain stable for a delay
increase of 1.5 ms (one channel at a time).

• A3: Maximum limit cycle peak amplitude in TCP
position must be lower than 10µm for all test cases
including the stability tests A1 and A2.

The following requirements are to be regarded as target
values for the design:

• B1: Maximum motor torque due to measurement
noise axis 1: 0.7 Nm

• B2: Maximum motor torque due to measurement
noise axis 2: 0.4 Nm

• B3: Maximum motor torque axis 1: 35 Nm
• B4: Maximum motor torque axis 2: 20 Nm
• B5: Max TCP position error due to force disturbance:

7 mm
• B6: Max TCP settling time, i.e., error < 0.1 mm,

after end of force disturbance pulse: 3 s
• B7: Max TCP position error due to motor torque

disturbance: 0.5 mm

Note that the dynamics of the manipulator varies with
the tool position and also due to the uncertainty of the
manipulator model. Furthermore, the disturbances are

−10 0 10

−5

0

5

x [mm]

z
 [

m
m

]

Fig. 8. Target for disturbance rejection w.r.t. tool force
disturbance. TCP shall always be inside the large
circle, and be inside the small circle after target
settling time. Note that the small circle in this figure
is enlarged for illustration purposes. The actual radius
is 0.1 mm

also uncertain, the force can have any direction and the
motor torque ripple can also change direction.

At each configuration Qk = [qa1 qa2]
T
, the following cost

function is defined

Vk =

7
∑

i=1

wi max
P,D

(bi), (14)

where P is a set containing all manipulator models ob-
tained from the uncertainty description and D is the corre-
sponding set for the disturbances. The relative fulfillment
of specification Bi is denoted bi, e.g. a settling time of 2 s
gives b6 = 2/3. The weights wi are [3 3 2 2 25 40 25],
i.e., a controller which fulfils all requirements exactly,
has a cost function V = 100. The design should aim at
minimizing the average cost function

V =
1

NQ

NQ
∑

k=1

Vk, (15)

where the performance is evaluated for a suitable grid of
NQ configurations in the manipulator work space. The
problem of computing the average (w.r.t. workspace) worst
case (w.r.t. uncertainty) performance for a non-linear sys-
tem might seem hard from a theoretical point of view.
However, a wisely chosen grid of configurations and a set
of assumed worst case uncertainties in combination with
some random uncertainties yields a reasonable approxima-
tion of the average worst case performance.

The simulation model including the default PID controller
is available for download at Moberg (2007) where some
additional information about this benchmark problem
also can be found. The simulation model is implemented
in MatlabTM and SimulinkTM. The approximate average
worst case performance for the proposed controller is com-
puted by the model. This computation is based on a prede-
fined set of uncertainties and configurations. Solutions to
the problem can be sent to one of the authors for further
evaluation. Our plan is that the proposed solutions shall
be presented and discussed at, e.g., an invited session at
some appropriate future conference.

The target requirements due to force disturbances are
illustrated in Figure 8. In Figure 9 - 10, the TCP posi-
tion errors are shown for the nominal manipulator model
controlled by the default PID controller when one example
disturbance is applied. The result for 20 uncertain systems,
i.e., 20 sets of model and disturbance uncertainties, in one
specific position, is shown in Figure 11 - 12.
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Fig. 9. Example of TCP position error due to force
disturbance.
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Fig. 10. Example of TCP position error due to motor
torque disturbance.

Fig. 11. Example of TCP position error for uncertain
system due to force disturbance.

Fig. 12. Example of TCP position error for uncertain
system due to motor torque disturbance.

As an example of computation of the average worst case
performance, the benchmark system, controlled by the
default PID controller, was simulated over a grid of 18
configurations. At each configuration, 3 uncertain systems
were evaluated. The target values concerning disturbance
rejection, B5 - B7, are in general not fulfilled. The perfor-
mance is summarized in Table 2.

Table 2. Average worst case performance of
default PID controller

Item Result for PID Desired Value

B1 0.17 0.7
B2 0.06 0.4
B3 9.6 35

B4 9.1 20

B5 10.2 7

B6 3.5 3

B7 1.1 0.5
V 141 100

7. SUMMARY

A benchmark problem treating disturbance rejection for
a nonlinear flexible two-link manipulator has been pre-
sented. The system is uncertain due to a parametric un-
certainty description and uncertain disturbances affecting
both the motors and the tool. The proposed model was
validated on a real industrial manipulator. The system
should be controlled by a discrete-time controller that
optimizes performance for given robustness requirements.
Our ambition and hope is that some researchers will be
stimulated to work with this benchmark problem using
their favorite controller design method. The proposed so-
lutions will be presented at some appropriate future event.
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