

Middleware based on XML technologies for achieving true interoperability
between PLC programming tools

E. Estévez, M. Marcos, D. Orive,

F. López, E. Irisarri, F. Pérez

Automatic Control and Systems Engineering Department, University of the Basque Country
Bilbao, Spain, (e-mail: {elisabet.estevez, marga.marcos, dario.orive, fabian.lopez, edurne.irisarri, federico.perez}@ehu.es)

Abstract: Industrial Process Measurement and Control Systems are used in most of the industrial sectors
to achieve production improvement, process optimization and time and cost reduction. Integration, reuse,
flexibility and optimization are demanded to adapt to a rapidly changing and competitive market. In fact,
standardization is a key goal to achieve these goals. The international standardization efforts have lead to
the definition of the IEC 61131 standard. Part 3 of this standard defines a software model for defining
automation projects as well as 5 programming languages. Nowadays, a major part of Programmable Logic
Controllers (PLC) vendors follows this standard, although each programming tool adds particularities and
stores the automation project in different manner. But, although they may use the same software model and
the same programming languages, source code reuse is not available. This work presents an infrastructure
that allows transferring source code from one PLC programming tool to any other transparently to the
users. The proposal consists of a textual expression of the software model and the programming languages,
as well as the mechanisms, based on XML technologies, to achieve tool interoperability.

1. INTRODUCTION

Nowadays most of the industrial sectors use Programmable
Logic Controllers (PLCs) to achieve the control of their
productive systems. In the last years, technological advances
in these controllers allow the production improvement,
process optimization and time and cost reduction. On the
other hand, for many years, only proprietary programming
languages could be used for vendor specific equipment.
Although some languages, such as ladder diagram or
instruction list were very widespread, their implementation
used to be rather different. It was obvious the need of
standardization in the field, covering from the hardware to
configuration issues, up to the programming languages. In
1993, the International Electrotechnical Commission (IEC)
published the IEC 61131, International Standard for
Programmable Controllers (IEC, 2003).

The IEC 61131-3 standard deals with the software model and
programming languages for Industrial Process Measurement
and Control Systems (IPMCS) (Lewis, R.W, 1998), (John,
K.H and Tiegelkamp M, 2001). In this sense, it has provoked
a movement to Open Systems in this application field. Thus,
the so-called Open PLCs that are open architecture
controllers that replace a PLC with a computer, have begun to
appear in the market.

Nowadays, most of the PLC vendors are doing a great effort
for becoming IEC 61131-3 standard compliant. In fact, this
offers great advantages to the control system engineers, as the
programming techniques become vendor independent.
Notwithstanding this, the standard does not specify an
import/export format but the elements of the software model

and the mechanisms to be offered to the user in order to
graphically define an application. Thus, every tool uses its
own storage format an offers commonly a set of Application
Program Interface (API) functions or, alternatively, an
import/export option. In this sense, it is impossible to reuse
the code programmed in one tool in others. It is necessary to
edit the code again. In order to achieve true reusability,
interoperability among tools is needed. The international
organization PLCopen (1992) is a vendor- and product-
independent worldwide association, whose mission is to be
the leading association resolving topics related to control
programming. Its main goal is to support the use of
international standards in this field. PLCopen has several
technical and promotional committees (TCs). In particular,
TC6 for XML has defined an open interface between all
different kinds of software tools, which provides the ability to
transfer the information that is on the screen to other
platforms. The eXtensible Markup Language (XML) (W3C,
2006a) was selected for defining the interface format and in
April 2004, the first XML schema for the graphical languages
was released for comments (W3C, 2004).

Nevertheless, the PLCopen interface is not universally
supported yet. Besides, the proposed interface focuses mainly
on transferring what is in the screen and thus, adds graphical
information as well as new elements to those used by the
standard. Finally, it does not impose an architectural style,
assuming that the code being transferred is correct. Thus the
XML schema defined represents the elements of the IEC
61131-3 software model but it does not impose the
restrictions that an automation project must meet. XML is
being more and more used in factory automation (Younis and
Frey, 2005), (Itoh et al., 2002), (Mizura, 2005), (E. Estevez,

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 8461 10.3182/20080706-5-KR-1001.2508

et al, 2007a, b). The goal of the work presented here goes
further, as an interoperability middleware is proposed. It
consists of a common XML format for representing the IEC
61131-3 software model and languages and the mechanisms
to import/export information from/to every tool. It is based
on previous work of authors (Marcos and Estévez, 2005),
(Estévez, et al., 2005) where a framework for integrating the
tools involved in the development cycle of Industrial Control
Systems is presented. This work focuses on the
representation of the software architecture of the application
defining the techniques that allow import and export
information among tools.

The layout of the paper is as follows: section 2 briefly
describes the elements of the IEC 61131-3 software model.
Section 3 presents the interoperability middleware that acts as
a common road for achieving true interoperability. Finally,
section 4 illustrates an example of interoperability between
two PLC programming tools.

2. THE IEC 61131-3 SOFTWARE MODEL

This section describes the software model proposed by IEC
61131-3 standard in order to identify the architectural style
and composition rules that any application IEC 61131-3
compliant must meet.

The architectural style is identified in a Component-based
fashion. The component-based strategy aims at managing
complexity, shortening time-to-market, and reducing
maintenance requirements by building systems with existing
components. Generally speaking, software architectures are
defined as configurations of components and connectors. An
architectural style defines the patterns and the semantic
constraints on a configuration of components and connectors.

In (E. Estevez, et al, 2007a) the different components and
connectors for defining software model of IEC 61131-3 are
identified. Two types of components can be distinguished:
those that do not encapsulate code, Configurations, Resources
and Tasks, and the Program Organization Unit (POU) that
encapsulates code. These latter can be Programs, Function
Blocks and Functions.

Fig. 1. Architectural style of IEC 61131-3 software model

On the other hand, in this model, the variables act as
connectors. They represent the communication between
software components. In fact, their visibility identifies the
components that are involved in the communication. In Fig. 1
the architectural style of the IEC 61131-3 software model is
illustrated using a meta-model expression. Every component
and connector has its own characteristics as defined in (E.
Estevez, et al, 2007a). This architectural is complemented
with a set of composition rules that jointly defines the
grammar that allows defining IEC 61131-3 software
architecture. In Table 1 the identified composition rules are
summarized.

TABLE 1. COMPOSITION RULES FOR IEC 61131-3 SW MODEL

Id Rule

1 The type of a Global Variable must be elementary or
user-defined

2 The value of Global Variables must be in concordance
with their type

3 The type of POU formal parameters must be elementary
or user defined

4 The value of POU actual parameters must be in
concordance with their type

5 An Access variable must give permission to a previously
defined variable

6 Resources of the same configuration must be
downloaded to the same processor

7 Resource POU instances on the same resource must be
organized by tasks of the same resource

3. INTEROPERABILITY MIDDLEWARE

The proposed interoperability middleware is formed by two
main modules. The first one consists of a representation of
the IEC 61131-3 software model in a standard and generic
format. The integration of the model deals with mechanisms
that allow interoperability among tools through the
middleware, achieving code exchange.

The proposed framework is based on XML technologies. In
particular XML schema (W3C, 2004) jointly with
schematron rules (Rick, J., 2006) has been used for defining a
common and generic format of the software model. This
format takes into account both, the architectural style and the
composition rules. Integration techniques involve related
XML technologies, such as XML stylesheets and Document
Object Model (DOM) (W3C, 2005) or Simple API for XML
(SAX, 2004). Fig. 2 illustrates the general scenario of the
proposed middleware for achieving true interoperability
between any PLC programming tools.

Fig. 2. General Scenario of interoperability among PLC
programming tools

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8462

Fig. 3 Architectural style of IEC 61131-3 software model in swEng markup Language

The following sub-sections define both modules in more
detail: a generic representation format of the software model
and the integration mechanisms.

3.1. Standard format for CodeReuse

As commented above, the generic format proposed for
representing the IEC 61131-3 software model, uses the W3C
schema and schematron rules. In particular, each model
element is represented as a XML schema element. The
architectural style is performed making use of the choice,
sequence and multiplicity mechanisms of W3C schema. On
the other hand, the composition rules are performed by means
of the key/keyref constraints of the W3C schema (Van der
Vlist, E., 2002) and also by means of schematron rules. Fig. 3
illustrates a general overview of the IEC 61131-3 standard
software model. It illustrates the architectural style as well as
the implementation of composition rule number five of Table
1 that is implemented by means of the key/keyref mechanism.
The complete definition of this module is available in
(www.disa.bi.ehu.es/gcis/projects/merconidi).

3.2. Integration Techniques

In this section, the different integration techniques that allow
transferring information between programming tools and the
interoperability middleware are analyzed.

The integration techniques depend on the export/import
format of the PLC programming tool, as well as on the API
the tool offers. XML technologies offer powerful
mechanisms for implementing tool integration.

Three tools categories can be distinguished:

a) Tools that import/export information in XML format,
such as MultiprogTM from KW software that follows the
PLCopen TC6 XML interface (www.kw-software.com/)
or Unity ProTM from Schneider (www.schneider-
electric.com/).

b) Tools that import/export information in structured text
format e.g. CoDeSysTM (www.3s-software.com) from
3S.

c) Tools that import/export information in any other
format, e.g. ISaGRAFTM from ICS Triplex
(www.isagraf.com) and Simatic AdministratorTM from
Siemens (www.automation.siemens.com).

Following sub-sections describe the selected integration
technique for each type of PLC programming tool.

Tools with import/export option in XML format. If the tool
provides XML interface or it allows exporting/importing
projects to/from a XML file, the integration is practically
direct. In this case, it is necessary to develop a XML
stylesheet (W3C, 2006b). This XML technology can be used
for processing an input XML file coming from the tool,
filtering information and transforming it giving as output the
reusable code expressed in the format proposed in this work
(tool2standard.xsl). XSLT technology offers two types of
templates that can be used to define the processing of the
input file. The match template contains the processing to be
applied to a particular XML element. This processing could
be organized by means of the so-called name templates
(Tidwell, D., 2001).The same XML technology is also used
for filtering and transforming the reusable code expressed in
standard form to the format of the target PLC programming
tool (standard2tool.xsl).

In the first case the XSL match and name templates are tool
dependent. The match templates of the second case are
known; as they correspond to the elements of the IEC 61131-
3 standard. Notwithstanding this, the algorithms they contain
are again tool dependant. In Table 2 the necessary templates
for transforming the reusable code in standard format to tool
format are summarized.

Tools that import/export structured text. Although the
number of tools that allows exporting/importing information
in XML format is increasing, currently it is not the common.
This sub-section describes the integration techniques for

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8463

those tools that allow exporting/importing code to/from
structured text format. In this case, it is necessary to know the
file structure.

TABLE 2. LIST OF STANDARD2TOOL.XSL TEMPLATES

Templates Characteristics

match=”sw:swEng” Main template, it guides de
transformation.

<xsl:template match="sw:DataTypes"> Generates the derived data
types

<xsl:template match="sw:POUs"> Organizes the POU structure
<xsl:template match="*" mode="POU"> Selects its type of POU
<xsl:template match="sw:Interface">
<xsl:template match="sw:Variables">
<xsl:template match="sw:Body">
<xsl:template match="sw:FBD">
…

A set of templates for
generating the POU interface
and functionality expressed
in any of 5 languages of IEC
61131-3

<xsl:template
match="sw:Configuration">
<xsl:template match="sw:Resource">
<xsl:template name="globalVars">
<xsl:template match="sw:Task">
<xsl:template match="sw:ProgInst">

A set of templates for
generating the automation
project itself

There are different technologies that allow transforming
structured text into XML, such as the Chaperon project
(Stephan M, 2000). It can also be achieved by developing an
application having as input file the structured text file and
making use of DOM or SAX methods for generating an XML
file. Finally, a XML stylesheet will be necessary for
transforming this XML file to the standard format (see Fig.
4).

Fig. 4. General scenario for importing/exporting reusable
code in structured text format

If the tool needs to import source code, XML stylesheets can
be used to transform the code expressed in the generic XML
format to a text file that follows the structure that the tool
expects. Besides the templates of Table 2, it is also necessary
to indicate to the XSLT processor the extension of the
resulting text file. Fig. 4 illustrates the general scenario for
exporting and importing reusable code.

Tools that import/export in any other format. Currently, this
is the more common case, in which tools neither have an
XML interface nor export/import code to/from structured
text. In this case the integration technique consists of
developing an application that makes use of functions

provided by the tool API, as well as methods and functions
offered by SAX or DOM.

Thus, the integration techniques for capturing information
from the tool and to express it in a generic format consist of
an application that generates an initial XML file and an XML
stylesheet for filtering and transforming the information to
the standard format.

The application programming language depends on the tool
API and it also needs:

• The functions provided by the tool API for getting
information from the automation project.

• The functions or methods provided by SAX or DOM.
They are very useful for generating an initial XML file.

In the same way, the integration techniques for setting
information coming from the generic XML file to the tool
consist of an XML stylesheet that adds the tool particularities
to the XML file. Furthermore, it is necessary an application
that reads this XML file and sets all information in the
storage format of the target tool. In this sense, the
programming language of this application also depends on
the tool API and it makes use of:

• SAX or DOM methods for reading and manipulating the
input XML file

• Tool API functions for setting information into target
tool storage format.

Fig. 5. General scenario for getting/setting information via
tool API

Fig. 5 illustrates the general scenario for getting from the tool
information via its API and transforming it to the generic
format. In the same way this figure also illustrates the
mechanisms for setting the code expressed in the standard
format (ReusableCode.xml) to the target tool storage format.

4. CASE STUDY

This section illustrates the proposed interoperability
framework as applied to transfer one POU programmed in
CoDeSysTM from 3S to MultiprogTM from KW software. The
first tool allows exporting/importing information to/from
structured text format. The second follows the interface
proposed by PLCopen TC6 XML. The code to be transferred

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8464

is a very simple example of a function (inRange) written in
Function Block Diagram language. This POU checks if the
content of a variable is between a minimum and a maximum.
To do this, three standard functions have been used (LT, GT
and AND). Fig. 6 illustrates this POU programmed in
CoDesysTM PLC programming tool.

The first step, to achieve the interoperability is to export the
code in text format. This definition contains the POU
interface, formed by three input formal parameters, and the
body expressed by reserved commands which represent the
functionality, originally in FBD, in text format (note that this
is a particularity of the CoDeSysTM tool).

In the second step (see Fig. 5), the interoperability
middleware, an application programmed in java, reads this
file using DOM, translates the textual file into an XML file.
Then it applies an XML stylesheet to this file obtaining the
ReusableCode.xml (illustrated in Fig. 7).

Fig. 6. POU example programmed in CoDeSysTM

Fig. 7. Project expressed in generic format (ReusableCode.xml)

Fig. 8. Example in PLCopen TC6 XML format

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8465

The third step consists of transforming the generic format
XML file to the PLCopen TC6 XML grammar. This
transformation is done by means of a XML stylesheet. The
resulting file of the transformation is illustrated in Fig. 8.
This file contains graphical information, sometimes as
attributes of a XML element (e.g. a block has the width and
height attributes), and sometimes as a new element of the
schema (e.g. a child element of a block is its position in the
screen). Finally, the MultiprogTM tool can import this file.
The resulting project is illustrated in Fig. 9.

Fig. 9. InRange POU reused in MultiprogTM KW

Thus, by means of proposed integration middleware the
inRange POU initially programmed in CoDeSysTM can be
reused in MultiprogTM PLC programming tool. It is important
to remark that the transformations, which are task of the
middleware, are transparent to the user. It is necessary to
develop the stylesheets that transform the software
architecture and program languages between the PLC
programming tool and the middleware framework. This will
be as much simpler as higher the level of conformity with the
IEC 61131 standard.

5. CONCLUSIONS

This paper has presented a formal approach that allows
transferring source code among different vendors of PLC
programming tools. Therefore, true interoperability between
tools is achieved by means of the proposed middleware. The
potentiality of XML technologies have been used for
developing the interoperability middleware. In particular
XML schema jointly with schematron rules form the core of
the proposed middleware. They have been used to express in
XML the IEC 61131-3 software model, taking into account
the architectural style and composition rules. The middleware
also offers mechanisms for tool integration making use of
related XML technologies, such as XSLT, SAX and DOM.
These techniques allows both transforming any tool model to
a generic XML format, and obtaining a vendor
understandable information from this generic XML format.

6. ACKNOWLEDGEMENTS

This work was financed by the MCYT&FEDER under DPI-
2006-4003 and by UPV/EHU under project DIPE 06-16.

REFERENCES

E. Estévez, M. Marcos and D. Orive (2007a). Automatic
Generation of PLC Automation Projects from
Component-Based Models. The International Journal of
Advanced Manufacturing Technology. Springer London.
Vol: 35, pp: 527:540. 2007.

E. Estévez, M. Marcos, D. Orive, E. Irisarri and F. Lopez
(2007b). XML based Visualization of the IEC 61131-3
Graphical Languages. Proc. of the 5th International
Conference on Industrial Informatics, pp: 279-285
(INDIN 2007). Vienna, Austria.

E. Estévez, M. Marcos and U. Gangoiti, “A Tool Integration
Framework for Industrial Distributed Control Systems”
Proc. 44th IEEE Conference on Decision and Control and
 European Control Conference ECC’05. Seville.Spain.

IEC (2003). International Electrotechnical Commision. IEC
International Standard IEC 61131-3 Programmable
Controllers. Par3: Programming Languages.

John, K.H and Tiegelkamp M. (2001). Programming
Industrial Automation Systems. Springer.

Lewis, R.W. (1998). Programming Industrial Control
Systems using IEC 61131-3.IEE Control Engineering
Series.

M. Marcos, E. Estévez, “Formal Modelling of Industrial
Distributed Control Systems” 16th IFAC World
Congress. Praha

M. Bani Younis, G. Frey, “Formalization and Visualization
of Non-Binary PLC programs”, Proceedings of 44th
IEEE Conference on Decision an Control, and the
European Control Conference (CDC-ECC 2005), pp:
8367-8372. 2005

Mizura Tooru, “XML representation for sequential control
programs and its related software tool”, Papers of
Technical Meeting on Systems and Control, IEE Japan,
pp: 7-10.2005.

PLCopen (1992), Web-site: http://www.plcopen.org
Rick J. (2006). Resource Directory (RDDL) for Schematron

1.5. Web Site: http://xml.ascc.net/schematron/
SAX (2004). Simple API of XML (SAX).

 Web Site: http://www.saxproject.org/
Stephan M. (2000), Chaperon Project.

 Web Site: http://chaperon.sourceforge.net/index.html
Tidwell, D.(2001). XSLT, Ed. O’REILLY.
Van der Vlist, E. (2002), “XML Schema”. Ed. O’REILLY.
W3C (2004). XML Schema Part 0: Primer (Second Edition),

W3C REC-xmlschema-0-20041028.
W3C (2005). Document Objecto Model (DOM),

 Web Site http://www.w3.org/DOM/
W3C (2006a). eXtenslble Markup Language (XML) 1.0

(Fourth Edition), W3C Recommendation. Available at:
http://www.http://www.w3.org/TR/2006/REC-xml-
20060816/

W3C (2006b). Extensible Stylesheet Language (XSL)
Version 1.1, W3C Proposed Recommendation PR-xsl11-
20061006.

Y. Itoh, M. Fukagawa, T. Nagao, T. Mizuya, I. Miyazawa, T.
Sekipchi, “On the interoperability and its test of
software in the measurement and control domain”. SICE
2002. Proceedings of the 41st SICE Annual Conference.
Vol 1, pp:370-373.2002.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8466

