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Abstract: In this paper, we consider robust semidefinite programs with functional variables. In
the proposed approach, an approximate semidefinite program is constructed based on approx-
imation with the sum-of-squares technique. Unlike the conventional use of the sum-of-squares
technique, the quality of approximation is improved by dividing the parameter region into several
subregions. The idea is generalized from that of Jennawasin and Oishi (in Proceedings of the
46th IEEE Conference on Decision and Control, New Orleans, USA, December 2007), where
robust semidefinite programs without functional variables are considered. The present approach
is asymptotically exact in the sense that the optimal value of the approximate problem converges
to that of the original problem as the resolution of the division becomes finer. Our approach
also gives an a priori upper bound on the discrepancy between the optimal values of the two
problems in terms of the resolution of the division.

1. INTRODUCTION

Optimization problems with polynomials have been known
to cover a wide range of applications. Some of concrete
examples in control are robust stability/performance anal-
ysis of linear systems affected by real parametric uncer-
tainties [7], [5], [19], and analysis of nonlinear systems
[15], [16]. Due to the development of the computational
tool called “the sum-of-squares (SOS) approach” [17], a
wide class of optimization problems involving polynomials
can be efficiently solved. This is based on a connection
between the SOS approach and a semidefinite program
(SDP), which is computationally tractable and easy to
handle using current solvers [21]. More discussions on the
SOS approach can be found in [16], [11].

Here we consider an application of the SOS approach to
robust semidefinite programs (robust SDPs) [1], [2], [6],
[19], [9] which play an important role in robustness anal-
ysis/synthesis of linear systems. However, robust SDPs
considered in the literature are limited to a specific class
that does not cover some important applications in control.

In this paper, we consider a wider class of problems than
those considered in [1], [2], [6], [19], [9]. The problems
considered in this paper are described as follows:

minimize cTx
subject to F(x, φ(θ), θ) � 0, ∀θ ∈ Θ,

}
(1)

where the optimization variables are a vector x ∈ Rn and
a function φ. The function φ belongs to the space of piece-
? Part of this work is supported by a Grant-in-Aid of the Ministry
of Education, Culture, Sports, Science and Technology of Japan and
the Pache Research Fund 2007-I-A-2 of Nanzan University, Japan.

wise continuous functions which map from Θ ∈ Rp to Rnφ .
A parameter θ, which represents the uncertainties in the
given system, can take any value in the set Θ. We assume
throughout this paper that the set Θ is a given multi-
dimensional interval in Rp. The function F(x, a, θ) is an
m×m symmetric-matrix-valued function which is affine in
x ∈ Rn and a ∈ Rnφ , and depends polynomially on θ. This
problem has an important application to robustness anal-
ysis/synthesis for a parameter-dependent linear systems
with parameter-dependent Lyapunov functions. The prob-
lem (1) is also called a robust SDP because the constraint
has to be satisfied for all possible values of θ ∈ Θ. Note
here that the robust SDPs in the literature [1], [2], [6], [19],
[9] can be considered as (1) without the functional variable
φ. A robust SDP in the form (1) is difficult to solve due
to its infinite-dimensional nature caused by the functional
variable φ. One way to deal with this problem is to reduce
the problem into a finite-dimensional one by choosing
an appropriate functional basis; for example, polynomial
basis, for φ. Bliman [4] showed that the resulting finite-
dimensional robust SDP is asymptotically exact to the
original one as the degree grows up. This convergence
result is available when the system smoothly depends on
parameters. Once the finite-dimensional robust SDP is
obtained, one can apply the SOS approach to solve it in
an asymptotically exact fashion (see [20], [9] for details).
Besides the SOS approach, the Kalman-Yakubovich-Popov
(KYP) Lemma [3], the Pólya’s lemma [18] or the matrix-
dilation approach [12], [13] can be applied with guaranteed
asymptotic exactness. However, little is known about the
tradeoff between the computational complexity and the
amount of conservatism. This might be due to the difficulty
to investigate such relationship in general.
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Our approach aims to address the above issue for the
SOS approach, which is the most widely used among the
mention approaches due to its efficacy in implementation
with the software SOSTOOLS [17]. Our strategy is based
on extending the idea of [9] to the robust SDP (1) in a
straightforward manner. We first construct a correspond-
ing finite-dimensional problem by dividing the parameter
set, and consider a piecewise polynomial consistent with
the division. Then we construct a finite number of LMI
constraints from the semi-infinite constraint using the SOS
approach. Therefore, a standard SDP which approximates
the original robust SDP is constructed. In contrast with
the conventional approach, however, the quality of approx-
imation is improved by making subdivision on subregions,
while the degree of polynomial remains unchanged. This
reveals the main feature of our approach. The convergence
result of our approach to (1) is similarly obtained as that
of [9]. In particular, we show that the optimal value of
the approximate problem converges to that of the original
problem, as the resolution of the division becomes higher.
Moreover, an upper bound on the discrepancy between the
two optimal values can be a priori obtained in terms of the
resolution of the division. Therefore, the tradeoff between
the computational complexity and the amount of conser-
vatism can be understood via this bound. Moreover, this
bound can be used to construct an efficient division, which
attains good approximation with moderate computational
cost. We emphasize here that the procedure to obtain the
main result of this paper can be done in a similar fashion to
[9], though major difference between a robust SDP with a
functional variable and that without a functional-variable.
Finally, we provide an example to demonstrate a benefit
of our approach in the sense of computational complexity.

A closely related result was proposed in [14]. The approach
in [14] is also based on the division on the parameter
set, and a piecewise polynomial solution candidate is con-
sidered in this setting. Construction of an approximate
problem in [14], however, relies on the matrix-dilation
approach, which is difficult to implement than the SOS
approach due to the lack of user-friendly software pack-
ages.

The paper is structured as follows. We first introduce
the concept of sum-of-squares matrices in Section 2. Our
approach is presented in Section 3, where an upper bound
on the approximation error is derived here. Section 4
presents a numerical example. Section 5 concludes the
paper.

2. SUM-OF-SQUARES POLYNOMIAL MATRICES

Let R[θ]m×n denote the set of m× n polynomial matrices
in θ ∈ Rp and S[θ]n denote the set of n × n symmetric
polynomial matrices. We define the notion of sum-of-
squares (SOS) polynomial matrices as follows.
Definition 1. [10], [20] A polynomial matrix S ∈ S[θ]m
is said to be a sum of squares (SOS) if there exists a
polynomial matrix T ∈ R[θ]q×m such that

S(θ) = T (θ)TT (θ).

This is a generalization of the SOS representation for
scalars [11], [16]. We use Σ[θ]m to represent the set of m×m
SOS polynomial matrices. It is clear that any polynomial

matrix S ∈ Σ[θ]m is globally positive semidefinite, but the
converse is not true in general.

A computational procedure for verifying whether S(θ)
is an SOS proceeds as follows. Choose pairwise different
monomials u1(θ), . . . , unu(θ) and search for the coefficient
matrix Y in the representation

T (θ) = Y (u(θ)⊗ Im)
with Y = (Y1, . . . , Ynu) and u(θ) = (u1(θ), . . . , unu(θ))T.
In [20], the matrix S(θ) is said to be an SOS with respect
to u(θ) if there exists some Y satisfying S(θ) = (u(θ) ⊗
Im)T(Y TY )(u(θ)⊗ Im). Substituting Z = Y TY yields the
following result.
Proposition 1. [10], [20] A polynomial matrix S ∈ S[θ]m
is an SOS with respect to the monomial basis u(θ) if and
only if there exists a symmetric matrix Z � O with

S(θ) = (u(θ)⊗ Im)TZ(u(θ)⊗ Im). (2)

The condition (2) can be interpreted as an affine constraint
in Z. This implies that the problem to find Z � O with
(2) can be formulated as an SDP. In other words, we can
check whether S ∈ Σ[θ]m with respect to some monomial
basis by solving an SDP.

3. THE PROPOSED APPROACH

3.1 Construction of an approximate problem by dividing
the region

An approximate approach to the robust SDP (1) is de-
scribed in this section. In our approach, we make the prob-
lem finite-dimensional by choosing φ as a polynomial with
low degree. In order to improve the quality of approxima-
tion, we divide the parameter set Θ into several subregions
and allow φ to be a piecewise polynomial consistent to the
division. Then we have a finite-dimensional robust SDP
with several semi-infinite constraints corresponding to the
division. To deal with the semi-infinite constraints, we
apply the concept of sum-of-squares matrices in Section 2.
Finally, we obtain an approximate problem which is a stan-
dard SDP. The optimal value of the approximate problem
converges to that of the original problem, as the resolution
of the division becomes higher. This convergence result will
be quantitatively investigated in the next subsection.

For the functional variable φ(θ), we use a fixed-degree
polynomial

∑
α∈V uαθα for some finite set V ⊂ Zp

+.
Here the symbol θα stands for the product θα1

1 θα2
2 · · · θαp

p

with α = [α1 α2 · · · αp] ∈ Zp
+. We use the coefficients

u = (uα) ∈ Rnu to characterize the polynomial and write
φu(θ) =

∑
α∈V uαθα. Substitution of φu(θ) into F makes

this function dependent on finite-dimensional variables x
and u. In particular, we define the notation

F (x, u, θ) := F(x, φu(θ), θ).
Note that F is affine in x and u while polynomial in θ.

The definition of a division ∆ of the parameter set Θ
is given here for the succeeding discussion. We define a
division ∆ = {Θ[j]}J

j=1 of Θ as a set of closed convex
polytopes such that Θ = ∪J

j=1Θ
[j] holds and Θ[j] ∩ Θ[k]

has no interior point whenever j 6= k. Each element Θ[j]

of a division ∆ is called a subregion. We assume that
each Θ[j] is a p-dimensional interval Πp

i=1[θ
[j]
i , θ

[j]

i ]. Here,
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the coefficients u is allowed to take a difference value u[j]

depending on the subregion Θ[j], for each j = 1, 2, . . . , J .
Hence, the function φ is a piecewise polynomial.

We then consider the following finite-dimensional problem:
P0(∆) : minimize cTx

subject to F (x, u[j], θ) � 0, ∀θ ∈ Θ[j],
∀j = 1, 2, . . . , J,


where the optimization variables are x ∈ Rn and
u[1], u[2], . . . , u[j] ∈ Rnu . Since only a specific class of func-
tion are considered for φ in this problem, we immediately
have inf P0(∆) ≥ vopt, where inf P0(∆) and vopt denote
the optimal values of P0(∆) and (1) respectively.

The problem P0(∆) is still difficult to solve due to its semi-
infinite constraint. Here, we apply the result of Proposition
1 to overcome this difficulty. In particular, an approximate
problem for P0(∆) with the notion of SOS matrices:

P (∆) : minimize cTx

subject to F (x, u[j], θ) = S
[j]
0 (θ)

+
p∑

i=1

(θi − θ
[j]
i )(θ

[j]

i − θi)S
[j]
i (θ),

∀j = 1, 2, . . . , J,


where S

[j]
0 , S

[j]
1 , . . . , S

[j]
p ∈ Σ[θ]m, for all j = 1, 2, . . . , J . In

our setting, we use the same monomial basis, say ui(θ), for
the SOS matrices S

[j]
i (θ), for all j = 1, 2, . . . , J . This leads

to the parameterization S
[j]
i = (ui(θ) ⊗ Im)TZ

[j]
i (ui(θ) ⊗

Im), ∀j = 1, 2, . . . , J , for some positive semidefinite ma-
trices Z

[j]
i ’s. With this parameterization, it is not difficult

to express the problem P (∆) as an SDP in the decision
variables x, u[j], and Z

[j]
0 , Z

[j]
1 , . . . , Z

[j]
p , for j = 1, 2, . . . , J ,

using the idea discussed at the end of Section 2.

For each j, the existence of the SOS matrices S
[j]
0 , S

[j]
1 , . . . , S

[j]
p

implies that F (x, u[j], θ) � 0,∀θ ∈ Θ[j]. This is im-
mediately obtained from the definition of SOS matrices
and the assumption on Θ[j]. Hence the feasible region of
P (∆) projected into the space of x and u[1], u[2], . . . , u[J]

is included in the feasible region of P0(∆). In particular,
inf P (∆) ≥ inf P0(∆) ≥ vopt.

We now have an approximate problem, which is a standard
SDP, for (1). In order to improve the approximation,
we make subdivision on ∆ and solve again the new ap-
proximate problem P (∆). This procedure is repeatedly
performed until the obtained optimal value inf P (∆) is
satisfactory. In the next subsection, we show that the
approximate optimal value inf P (∆) converges to vopt

when the resolution of division is fine enough. The con-
vergence result is shown in a quantitative manner, that
is, an a priori upper bound on the approximation error
| inf P (∆)− vopt| is available with some mild assumptions
on the original problem.

3.2 An upper bound on the approximation error

In this subsection, we provide an a priori upper bound on
the approximation error | inf P (∆) − vopt| and discuss its
implications. This is a generalization of the upper bound
in [9], which is for a robust SDP without a functional
variable.

We need the following assumption in order to obtain the
result. The implications of these assumption can be found
in [14].
Assumption 1.

(a) There exist x ∈ Rn and φ such that F(x, φ(θ), θ) �
0, ∀θ ∈ Θ.
(b) There exist three positive numbers ε̄, x̄, and φ̄ such
that, for any 0 ≤ ε ≤ ε̄ and any v ∈ Rn, the set

{(x, φ) | cTx ≤ v, F(x, φ(θ), θ) � εI, ∀θ ∈ Θ}
is either empty or having an element (x, φ) with ||x|| < x̄
and ||φ(θ)|| < φ̄ for any θ ∈ Θ.
(c) The set V in the polynomial φu(θ) =

∑
α∈V uαθα

contains the origin. 2

We next need a measure of the resolution of the division.
For a division ∆ = {Θ[j]}J

j=1 of Θ, The radius of the

subregion Θ[j] is defined as rad Θ[j] := maxi
θ
[j]
i −θ

[j]
i

2 . The
maximum radius of a division ∆ is defined as rad ∆ :=
maxj rad Θ[j]. We use the maximum radius to measure
the resolution of ∆.

Our main result, which provides the desired upper bound,
is given in the following theorem.
Theorem 2. Suppose that Assumption 1 holds. Then, with
the monomial bases

u0(θ) =
[
1 θ1 θ2 · · · θd1+1

1 θd2+1
2 · · · θdp+1

p

]T
,

ui(θ) =
[
1 θ1 θ2 · · · θd1

1 θd2
2 · · · θdp

p

]T
, i = 1, . . . , p,

the approximate problem P (∆) satisfies
| inf P (∆)− vopt| ≤ Crad ∆ (3)

for any division ∆ with rad ∆ ≤ C1, where C1 and C are
positive numbers independent of ∆.

A direct consequence of this theorem is the asymptotic
exactness of our approach. As we can see from (3), the ap-
proximation error | inf P (∆)−vopt| converges to zero as the
maximum radius of the division goes to zero. Evaluation
of C1 and C is available in [13] for the case of robust SDPs
without functional variables, though the resulting bound is
often conservative. However, it is difficult to compute the
constants C1 and C for the problem in this paper because
of difficulty in evaluation of x̄ and φ̄. Recall that the
existing approach with the degree increase on polynomials
does not provide a corresponding quantitative result.

The upper bound (3) also gives a relationship between
the approximation error and the size of the approximate
problem. Namely, in order to reduce the approximation
error, we need to decrease the maximum radius. This
increases the number of subregions and, then, the number
of variables and constraints in the approximate problem
P (∆). Especially when the parameter dimension is high,
this increase is rapid and makes the approximate problem
more difficult to solve. In order to reduce the compu-
tational complexity, however, it is possible to apply the
concept of adaptive division of the parameter region in
a similar fashion to [12]. The details will be discussed as
follows.

For a division ∆, consider a minimizer (x, u[j], {Z [j]
i }p

i=0)
of the problem P (∆). With this minimizer, a subregion
Θ[j] is said to be active if at least one of the matrices
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Z
[j]
0 , Z

[j]
1 , . . . , Z

[j]
p has a zero eigenvalue. Since an active

subregion is an important one, we now define a new index
for the resolution of the division:

a-rad ∆ := max
j

rad Θ[j],

where the maximum is taken over all j such that the
subregion Θ[j] is active.

We improve the quality of approximation by repeatedly
dividing an active subregion until a good approximate
optimal value is obtained. A heuristic algorithm for this
purpose can be constructed in a similar fashion to [12],
[14] as below.
Algorithm:
0. Consider a coarse division ∆.
1. Solve P (∆) for the current division ∆.
2. Stop if the obtained optimal solution is satisfactory.
3. Find an active subregion for the obtained optimal solu-
tion.
4. Divide the found subregion into two subregions.
5. Go back to Step 1 with the updated division ∆.

This algorithm is justified by the next theorem, which
guarantees that we do not need to decrease the maximum
radius but the maximum active radius for the reduction of
the approximation error.

Remark: A way to determine the stopping criterion in
Step 2 is to compute the a priori error bound in (3). If
that error bound is small enough, then we can conclude
that a good approximate optimal value is attained in the
division ∆. Another way is to compute a lower bound
on the optimal value by randomly sampling in Θ, and
solve an SDP corresponding to the sampled points. If the
lower bound and the upper bound inf P (∆) are close to
each other, then a good approximate optimal value can be
obtained from inf P (∆).
Theorem 3. With the same assumptions and symbols as
in Theorem 2, we have

| inf P (∆)− vopt| ≤ Ca-rad ∆,

for any division ∆ with a-rad ∆ ≤ C1.

Proof This theorem can be proved using the result of
Theorem 2. The procedure for the proof follows in the
same line as [12]. 2

3.3 A proof on the main theorem

This subsection is devoted to prove Theorem 2. In order
to prove the statement, some results of the matrix-dilation
approach [12], [13], [14] are necessary. In particular, a
relationship, which is explored by [9], between the SOS-
based approach and the matrix-dilation approach plays
a key role in the proof. Here, the procedure to compute
the upper bound can be divided in two steps. In the first
step, we construct an auxiliary approximate problem, say
P1(∆), by utilizing the matrix-dilation approach suggested
by [13]. Then we combine the results of [13] and [14] to
prove the existence of an upper bound on the approxima-
tion error | inf P1(∆)− vopt|. In the second step, we show
some connections between P1(∆) and P (∆). This gives a
way to compute an upper bound on | inf P (∆)−vopt| from
that on | inf P1(∆)− vopt|.

We now give the overview of the matrix-dilation approach,
in order to construct the auxiliary approximate problem
P1(∆). First, we expand F (x, u, θ) as a polynomial in θ:

F (x, u, θ) = F00···0(x, u) + F10···0(x, u)θ1 + · · ·
+Fd1d2···dp

(x, u)θd1
1 θd2

2 · · · θdp
p .

Based on it, we consider a decomposition 2F (x, u, θ) =
M(θ)TG(x, u)M(θ). The matrix G(x, u) contains matrix
coefficients of F (x, u, θ), while

M(θ) =
[
Im θ1Im θ2Im · · · θd1

1 θd2
2 · · · θdp

p Im

]T
,

i.e., the matrix M(θ) contains all of monomials whose each
element θi has degree less than or equal to di. Moreover, we
consider a matrix H(θ) such that the matrix [M(θ) H(θ)]
is nonsingular and the relation M(θ)TH(θ) = O holds for
all θ ∈ Rp. Such H(θ) is called an orthogonal complement
of M(θ). An important fact is that the orthogonal com-
plement H(θ) can be chosen to be affine in θ.

For a given division ∆, pick up one subregion Θ[j], which
is a multi-dimensional interval Πp

i=1[θ
[j]
i , θ

[j]

i ] by assump-
tion. We define θc as the center of Θ[j], that is θc :=[
θ
[j]
1 + θ

[j]

1

2
θ
[j]
2 + θ

[j]

2

2
· · ·

θ[j]
p + θ

[j]

p

2

]
. Since H(θ) is affine

in θ, it can be expanded around θc as
H(θ) = H(θc)+(θ1−θc

1)H1+(θ2−θc
2)H2+· · ·+(θp−θc

p)Hp,

where H1, . . . ,Hp are constant matrices. We now consider
the constraints

G(x, u[j]) + H(θc)(W [j])T + W [j]H(θc)T −
p∑

i=1

V
[j]
i � O, (4)

V
[j]
i + (θ

[j]
i − θc

i )(Hi(W
[j])T + W [j]HT

i ) � O, (5)

V
[j]
i − (θ

[j]
i − θc

i )(Hi(W
[j])T + W [j]HT

i ) � O. (6)

Here the subscript i runs from 1 to p. By following the
idea of Ben-Tal and Nemirovski [2], it is easy to see that
if there exist V

[j]
1 , V

[j]
2 , . . . , V

[j]
p satisfying the inequalities

(4)–(6), then (x,W [j]) satisfies the constraint

G(x, u[j]) + H(θ)(W [j])T + W [j]H(θ)T � O (7)

for any vertex of Θ[j]. For example, adding the p inequali-
ties of (5) to (4), we can see that the inequality of (7) holds
at the vertex θ

[j]
:=

[
θ
[j]

1 θ
[j]

2 · · · θ
[j]

p

]
. Since the inequality

(7) is affine in θ, (x,W [j]) satisfies (7) for any point in
Θ[j]. Premultiplication of M(θ)T and postmultiplication of
M(θ) to this inequality give F (x, u[j], θ) � O, ∀θ ∈ Θ[j].

Define S1(Θ[j]) as the set of all (x, u[j],W [j], {V [j]
i }p

i=1)
such that (4)–(6) hold. We now obtain the following new
approximate problem:

P1(∆) : minimize cTx

subject to (x, u[j],W [j], {V [j]
i }p

i=1) ∈ S1(Θ[j]),
∀j = 1, 2, . . . , J.


By construction, the feasible region of P1(∆) is included
in that of (1), which implies inf P1(∆) ≥ vopt.

The result on the approximation error | inf P1(∆) − vopt|
is given in the following proposition.
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Proposition 4. Under Assumption 1, there exist constants
C1 and C such that, if a given division ∆ satisfies rad ∆ ≤
C1, then

| inf P1(∆)− vopt| ≤ Crad ∆.

Proof This proposition can be proved by combining the
results of Theorem 4 in [14] and Theorem 7 in [13]. 2

We next prepare the following lemma, which explains
the relationship between the problems P1(∆) and P (∆).
The subscript [j] is omitted in the following lemma for
convenience.
Lemma 5. If there exist x, u, W and {Vi}p

i=1 such that

G(x, u) + H(θc)WT + WH(θc)T −
p∑

i=1

Vi � O,

Vi + (θi − θc
i )(HiW

T + WHT
i ) � O, ∀i = 1, . . . , p,

Vi − (θi − θc
i )(HiW

T + WHT
i ) � O, ∀i = 1, . . . , p,

(8)
then there exist SOS matrices S0(θ), S1(θ), . . . , Sp(θ) sat-
isfying

F (x, u, θ) = S0(θ) +
p∑

i=1

(θi − θi)(θi − θi)Si(θ). (9)

Moreover, the monomial bases u0(θ), u1(θ), . . . , up(θ) are
expressed as follows:

u0(θ) =
[
1 θ1 θ2 · · · θd1+1

1 θd2+1
2 · · · θdp+1

p

]T
,

ui(θ) =
[
1 θ1 θ2 · · · θd1

1 θd2
2 · · · θdp

p

]T
, i = 1, . . . , p.

(10)

Proof This is an immediate result from Lemmas 1 and 2
in [9], which were derived by the present authors. 2

Now we give the proof of our main theorem.
Proof of Theorem 2. Suppose in the problem P (∆)
that the monomial bases u0(θ), u1(θ), . . . , up(θ) of the SOS
matrices S0(θ), S1(θ), . . . , Sp(θ) are chosen as (10). Lemma
5 implies that, for each subregion Θ[j], the constraint of
the problem P1(∆) is just a sufficient condition of the
constraint of P (∆). Therefore, the feasible region of P1(∆)
is included in that of P (∆), and thus vopt ≤ inf P (∆) ≤
inf P1(∆). If a given division ∆ satisfies rad ∆ ≤ C1, then
we obtain from Proposition 4 that

| inf P (∆)− vopt| ≤ | inf P1(∆)− vopt| ≤ Crad ∆,

which completes the proof. 2

4. NUMERICAL EXAMPLE

In this section, we demonstrate the effectiveness of our
approach by an example on robust H∞ analysis of a linear
uncertain system. All the computations are executed using
Matlab 6.1, SOSTOOLS [17] with Matrix Patch [8]. The
computer is equipped with Celeron 897 MHz and 256
MByte memory.

Consider the following uncertain system borrowed from
[5].

ẋ = A(θ)x + Bw
y = Cx + Dw,

}
where A(θ) = θ1A1 + θ2A2 + (1− θ1 − θ2)A3 with

A1 =

−0.42 −1.68 −2.24 2.92
−0.74 −1.74 −4.58 1.44
−2.92 3.84 −6.98 2
−4.92 −2.68 −8.66 −0.78

 ,

A2 =

−0.78 5.52 1.36 5.8
−5.42 −4.62 −0.26 −1.08
2.48 6 −7.7 −7.72
−1.32 3.8 2.14 2.1

 ,

A3 =

−4.2 −3.12 −2.96 1.84
4.48 −1.02 −2.78 −7.38
1.22 −0.12 −2.66 −0.34
2.1 4.52 −1.28 −1.5

 ,

B =

1
0
0
0

 , C =

0
0
0
1


T

, D = 0.

The parameter set is given by
Θ = {θ ∈ R2 | 0 ≤ θ1 ≤ 0.5, 0 ≤ θ2 ≤ 0.5}.

The robust H∞ performance of the above system can be
computed by solving the following optimization problem:

minimize γ
subject to P (θ) � 0, ∀θ ∈ Θ,

G(θ, P (θ)) +
[
CT

DT

]
[C D] ≺ 0, ∀θ ∈ Θ,


(11)

where

G(θ, P (θ)) =
[
A(θ)TP (θ) + P (θ)A(θ) P (θ)B

BTP (θ) −γ2

]
.

The problem (11) is a robust SDP with a functional
variable P (θ). Solving (11) with restricting P (θ) to be
a polynomial yields an upper bound on the robust H∞
performance.

With the conventional approach, which is based on the
degree increase of P (θ), we obtain the following results.

Table 1. The results of the conventional ap-
proach

Degree of Upper Number of Times (sec.)

P (θ) bound variables

1 1.2236 482 3.525

2 1.2152 1587 12.688

We now apply the proposed approach by dividing Θ into
two subregions Θ[1] = [0, 0.5]×[0, 0.25] and Θ[2] = [0, 0.5]×
[0.25, 0.5], and considering P (θ) being piecewise affine in
θ. We obtain the upper bound 1.2152, which is the same
as that obtained by P (θ) of degree two. The results are
summarized in the following table.

Table 2. The results of the proposed approach

Number of Upper Number of Times (sec.)

subregions bound variables

1 1.2236 482 3.525

2 1.2152 963 5.758

It can be seen that improving the upper bound by the
region-dividing approach requires less computational cost
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than that by the degree-increasing approach. This is due to
the fact that the degree increase of P (θ) leads to increase
of the required degrees of SOS matrices, which results in
rapid growth of the number of decision variables in the
approximate problem.

5. CONCLUSION

We have provided an approximate approach for ro-
bust SDPs with functional variables. Our approximation
scheme is shown to be asymptotically exact. The con-
vergence result is quantitative in the sense that approx-
imation error can be explicitly obtained in terms of the
resolution of the division. Extension of our approach to
problems with derivative of the functional variables will
be a possible research direction in the near future.
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