
Model Simplification of Signal

Transduction Pathway Networks via a

Hybrid Inference Strategy ⋆

Jianfang Jia ∗ Hong Yue ∗∗

∗ North University of China, Taiyuan 030051, China (e-mail:
jiajf2002@163.com).

∗∗ University of Strathclyde, Glasgow G1 1QE, UK (e-mail:
hong.yue@eee.strath.ac.uk).

Abstract: A full-scale mathematical model of cellular networks normally involves a large
number of variables and parameters. How to effectively develop manageable and reliable models
is crucial for effective computation, analysis and design of such systems. The aim of model
simplification is to eliminate parts of a model that are unimportant for the properties of interest.
In this work, a model reduction strategy via hybrid inference is proposed for signal pathway
networks. It integrates multiple techniques including conservation analysis, local sensitivity
analysis, principal component analysis and flux analysis to identify the reactions and variables
that can be considered to be eliminated from the full-scale model. Using an IκB-NF-κB signalling
pathway model as an example, simulation analysis demonstrates that the simplified model
quantitatively predicts the dynamic behaviours of the network.

1. INTRODUCTION

Cell signal transduction networks are composed of a num-
ber of signal transduction pathways through the cross
talking between pathways. The complexity of signalling
pathways is not directly understandable, and mathemati-
cal modelling provides a way for comprehensive analysis of
such systems (Heinrich and Schuster, 1996; Asthagiri and
Lauffenburger, 2000). With the development of molecular
biology and high throughput experimental techniques, a
large number of data sets have been obtained which makes
it possible to study cell signalling transduction networks
quantitatively (Bhalla, 2002; Neves and Iyengar , 2002).
It is then expected that mathematical models of signal
transduction networks can be properly developed, and the
dynamic behaviours of complex signalling systems can
be analyzed based on manageable and reliable models.
However, since the inner structure and functions of sig-
nalling transduction networks are, in most cases, not fully
understood, the mathematical models developed according
to the mechanism analysis, experimental data and some
hypothesis, normally consist of a large number of variables
and kinetics parameters which are not suitable for theoret-
ical and computational analysis. On the other hand, the
biochemical network contains strong nonlinearity, tempo-
ral behaviour, and the number of the parameters increases
dramatically with the increase of the model complexity.

Functional NF-κB exists in dimeric form that is composed
of combinations of five proteins, cRel, RelA, RelB, p50 and
p52 (Hoffmann and Baltimore , 2006). Several versions of
the computational models have been published in recent
years for this pathway. An early model (Hoffmann et al.,
2002), which measured the behaviour of cell populations
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of the TNFα-induced NF-κB signal pathway, can be de-
scribed by 24 state variables (components with distinct
nuclear and cytoplasmic localizations) and 64 reactions
(Ihekwaba et al., 2004). Using this model, the impact
of the IκBα-mediated negative feedback on oscillations
of NF-κB activity can be observed and analyzed. Imag-
ing studies by microscopy on single cell real-time data
provided further evidence to the oscillation behavior in
this system (Nelson et al. , 2004). Further investiga-
tions revealed that IκBε also mediates functional negative
feedback on NF-κB activity but with a time delay and
it dampens the IκBα-induced oscillations (Kearns et al.,
2006). It is also discovered that different inflammatory
stimuli induce distinct IKK profiles (Werner et al. , 2005).
In the extended models based on these new discoveries,
several degradation reactions were added, which leads to
70 reactions in the model. When NF-κB inducible mRNA
syntheses of IκBε and -β were added, the model consists of
72 reactions in total (Werner et al. , 2005; Kearns et al.,
2006). In the work of (Lipniacki et al. , 2004), the protein
A20 was also considered as an inhibitor of IKK, which
introduced several new variables in the model. Some other
modifications can be found in literature when certain extra
issues need to be addressed (Covert et al., 2005; Cheong
et al., 2006; O′Dea et al. , 2007). The literature study
shows that for such a complex cell network, a number of
models are presented according to different understanding
of the reaction mechanisms. It is therefore essential to
study how to achieve a simple yet reliable ‘core’ model
without losing basic dynamic properties.

Various approaches have been developed for simplifying
biological systems such as lumping methods, timescale-
based techniques, model reduction based on sensitivity
analysis, and balanced truncation method, etc. To name
but a few examples, a framework for model reduction of
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Wnt/β-catenin pathway was proposed based on the differ-
ent time scales of biochemical reaction processes (Kruger
and Heinrich , 2004). A heuristic approach was developed
combining simulation studies and system analysis, and
applied to the model of EGF receptor signalling. The
complex networks was decomposed into modules with
low retroactivity in order to gain the reduced model
through the input/output analysis (Conzelmann et al.,
2004). When combined with flux analysis, parametric sen-
sitivity analysis can also allow model reduction, which is
used to the EGF mediated signalling (Liu et al. , 2005).
For complex metabolism models, sensitivity analysis based
on parameter tuning importance and principle component
analysis was used for model reduction (Degenring et al.,
2004). In recent years, to implement the simplification
of biochemical models, some new approaches have been
developed from the viewpoint of systems engineering and
control theory. A systematic framework was presented
with a step-by-step bottom-up methodology to guide the
development of modular reduced-order signalling pathway
components (Mauryaa et al. , 2006). A domain-oriented
method has been proposed for reducing non-linear kinetic
models of signal transduction networks, in which a large
class of signalling networks was modelled by means of
macro-states instead of micro-states (Conzelmann et al.,
2006).

It is recognized that model simplification is not only im-
portant for effective quantitative comprehension of sys-
tems, but may also provide new insights into signal path-
ways such as identifying model robustness. Due to the
complexity of cellular networks, most of the current meth-
ods were proposed targeting certain type of networks. No
single method is superior in all cases as the efficiency of
model simplification is related to both model complex-
ity and the objective of the simplification (Dano et al.,
2006). In this work, we intend to develop a systematic
approach to simplify signal pathway models. This method
integrates conservation analysis, local sensitivity analy-
sis (LSA), principal component analysis (PCA) and flux
analysis of signal pathway models. The outline of the
paper is organized as follows. Section 1 gives the research
background and motivation. Section 2 describes the hybrid
inference method. This approach is demonstrated through
a case study on an IκB-NF-κB signalling pathway model
in Section 3. Conclusions are given in Section 4.

2. HYBRID INFERENCE METHOD

2.1 Conservation Analysis

Consider a biochemical model consisting of n chemical
species and m reactions. The network can be modelled
by the following ordinary differential equation (ODE)

dX(t)/dt = Nv(X(t), p, t), X(0) = X0. (1)

The state vector X ∈ R
n is composed of the concentra-

tions of each reaction species. The constant r-vector p is
composed of the parameters of interest in the model. r
is normally taken to be the same as m in mass-action
reaction systems. The function v describes the rate of
each reaction as a function of species concentrations and
parameter values. N ∈ R

n×m is the stoichiometry matrix
of the networks.

To consider structural conservations in the network, linear
dependencies inherent in the state variables need to be
identified before performing further analysis. Denoting k
as the row rank of the stoichiometry matrix N , if k = n,
then all the state variables are independent. If k < n, then
the matrix N can be written as

N = LNR (2)

where NR ∈ R
k×m is the reduced stoichiometry matrix

composed of the k linearly independent rows. The link

matrix L ∈ R
n×k has the form of L =

[

Ik

L0

]

, where

Ik denotes the k-dimensional identity matrix, and L0 ∈
R

(n−k)×k.

Since a structural conservation allows one species concen-
tration to be determined as a function of the others, the
states vector X can be decomposed into an independent
species vector X̃ and a dependent species vector X̂ (Ingalls

and Sauro , 2003). Denoting X =

[

X̃

X̂

]

, where X̃ ∈ R
k

and X̂ ∈ R
n−k, (1) is reformulated as

d

dt

[

X̃(t)

X̂(t)

]

=

[

Ik

L0

]

NRv(X(t), p, t)). (3)

It follows that

dX̂(t)/dt = L0NRv (X(t), p, t) = L0dX̃(t)/dt. (4)

Integrating both sides of (4) for all t ≥ 0, the dependent

species vector X̂ can be represented as

X̂(t) = L0X̃(t) − L0X̃(0) + X̂(0)

= L0X̃(t) + T (5)

where T = X̂(0) − L0X̃(0) is an (n − k) - dimensional
constant vector that is determined by the initial conditions
of states. The algebraic equation (AE) (5) shows that the
concentration trajectory of a dependent species can be
represented by independent species concentrations.

As a consequence of the conservation analysis, the system
model (1) is decomposed into two parts: the ODEs of
the independent variables and the AEs of the dependent
variables

dX̃(t)/dt = NRv(X̃(t), X̂(t), p, t) (6)

X̂(t) = X̃(t) + T (7)

2.2 Local Sensitivity Analysis

Sensitivity analysis is used to analyze the variation of
the outputs of a system with respect to the changes in
parameters, inputs or initial conditions. Parametric sen-
sitivities describe the importance of model parameters to
the measurement variables, and it plays an important role
in data analysis, parameter estimation, model validation
and experimental design, etc. Based on the model decom-
position from conservation analysis, in this section, LSA
is performed to analyze the independent model of the
biochemical networks.
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According to the original system model (1), the deriva-
tives of the absolute sensitivity function S = ∂X/∂p is
represented as

d

dt
S(t) =

d

dt

∂X(t)

∂p
= N

(

∂v(t)

∂X(t)

∂X(t)

∂p
+

∂v(t)

∂p

)

. (8)

In the following, time t in bracket is omitted for repre-
sentation convenience. When focusing on the independent
variables, only the sensitivity function of X̃ with respect
to p will be considered, i.e.

d

dt
S̃ =

d

dt

∂X̃

∂p

= NR

[

∂v

∂X̃

∂X̃

∂p
+

∂v

∂X̂

∂

∂p
(L0X̃ + T ) +

∂v

∂p

]

= NR

[

(

∂v

∂X̃
+

∂v

∂X̂
L0

)

∂X̃

∂p
+

∂v

∂X̂

∂T

∂p
+

∂v

∂p

]

= NR

[

∂v

∂X
L

∂X̃

∂p
+

∂v

∂X̂

∂T

∂p
+

∂v

∂p

]

. (9)

Since T is a constant, ∂T/∂p = 0. For the j-th parameter,

S̃j = ∂X̃/∂pj = [ s̃1,j s̃2,j · · · s̃k,j ]
T

is a column sensitiv-
ity vector, then from (9) we have

dS̃j

dt
= NR

∂v

∂X
LS̃j + NR

∂v

∂pj

. (10)

The initial conditions of s̃i,j can be represented as s̃i,j(0) =
δ(pj−x̃i(0)), where δ is the Kronecker delta function, x̃i(0)
is the initial value of the i-th independent state variable.
By solving (6) and (10) in parallel, the sensitivity column

vector S̃j and the independent state vector X̃ can be
obtained simultaneously.

To allow direct comparison of responses at different species
and across different parameters, the scaled sensitivity is
used for further analysis

S̄j =
∂X̃/X̃

∂pj/pj

=
∂ ln X̃

∂ ln pj

. (11)

For a system with r parameters in consideration, the scaled
sensitivity matrix is formed as S̄ = [s̄1, · · · , s̄r].

2.3 Principal Component Analysis

Principal component analysis is a classical statistical
method, which has been widely used in data analysis and
dimensionality reduction. PCA involves a mathematical
procedure that transforms a number of correlated variables
into a number of uncorrelated variables called principal
components. The aim of PCA is to reduce data dimension
by performing a covariance analysis between factors.

In order to study the effect of the parameter variations on
the state variables, the product matrix S̄T S̄ is diagonalized
using its eigenvalues and eigenvectors as follows:

S̄T S̄ = UΛUT (12)

where U = [uj,l] ∈ R
r×r denotes the eigenvectors matrix.

The diagonal matrix Λ is composed of the individual eigen-
values λi of the matrix S̄T S̄, i.e., Λ = diag(λ1, λ2, . . . , λr).

In such an analysis, the eigenvalue provides an absolute
measure of the significance of certain parts of the biological
system that is composed of strongly coupled reactions.
Each eigenvector is a linear combination of reactions, and
the relative magnitude of the elements of each eigenvector
measures the relative importance of each reaction for
the corresponding eigenvalue. Thus, the following PCA
parameter ej can be used to measure the importance of
the j-th reaction (Liu et al. , 2005):

ej =
r

∑

l=1

λluj,l/
r

∑

l=1

λl (13)

Since PCA quantitatively weights the parametric effects
on the network features, reactions can be classified into
’essential’ and ’non-essential’ sets based on the PCA
parameter. The threshold value for this classification is
chosen to be

ê = α · max {|ej | , j = 1, · · · , r} . (14)

where α(0 6 α 6 1) is termed the critical reduction
factor. For the j-th reaction, if |ej | > ê, it is classified
as ‘essential’, otherwise ‘non-essential’. When α = 0, all
the reactions are taken to be ‘essential’ and α = 1 takes
all reactions to be ‘non-essential’. The size of ‘essential’
and ‘non-essential’ reactions can thus be adjusted by
changing the value of α. It should be noted that not
all ‘non-essential’ reactions can be eliminated from the
model. Removal of those ‘non-essential’ reactions that have
relative high flux in the biological systems may exert
serious influence on the model output. Therefore, flux
analysis is undertaken to evaluate the flux measure of each
reaction in the model.

2.4 Flux Analysis

Flux analysis is an established methodology that allows
the quantification of intracellular fluxes. The average re-
action flux of the j-th reaction is represented as

f̄j =

tp
∫

t0

|vj | dt (15)

where t0 and tp are the initial and terminal time for process
simulation. Supposing that the set of the average reaction
flux of all ’essential’ reactions is

{

f̄essential

}

, the threshold
flux value can be calculated as

f̂ = β · min
{

f̄essential

}

(16)

where β(0 6 β 6 1) is termed the critical flux factor.

In this simplification method, only those reactions that
have both low sensitivities (‘non-essential’) and low flux
measures can be removed from the ODE model. For the
‘non-essential’ reactions, if its average reaction flux is

smaller than the critical flux factor f̂ , it can be considered
to be eliminated from the biological model due to its
relative little influence on the system output. If, on the

contrary, the average reaction flux is larger than f̂ , then
the reaction should be retained in the model even though
it’s identified as ‘non-essential’.

The implementation of this hybrid inference strategy is
summarized as follows.
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(1) Decompose the system model into ODEs for indepen-
dent variables and AEs for dependent variables through
conservation analysis. The dimension of the dynamic
model is reduced if there are structural conservations in
the network.

(2) Perform LSA for the model with independent variables,
which shows the relative importance of the impact of each
reaction on the system output.

(3) By selecting the appropriate critical reaction factor
α, classify the reactions into ‘essential’ and ‘non-essential’
groups through PCA of the LSA results.

(4) Implement flux analysis to all reactions and set the
threshold flux value from the ‘essential’ reactions. Among
those ‘non-essential’ reactions, further check if any of
them has an average reaction flux that is lower than the
threshold value. If this is the case, the reaction can be
eliminated from the model.

3. CASE STUDY: MODEL SIMPLIFICATION OF A
SIGNAL PATHWAY MODEL

The IκB-NF-κB model for study has 24 time-varying
reaction species and 64 reactions (Hoffmann et al., 2002).
The 24 states are defined as follows: IKK (x1), IKKIκBα
(x2), IKKIκBβ (x3), IKKIκBε (x4), IKKIκBα-NF-κB
(x5), IKKIκBβ-NF-κB (x6), IKKIκBε-NF-κB (x7), NF-
κB (x8), NF-κBn (x9), IκBα (x10), IκBβ (x11), IκBε (x12),
IκBαn (x13), IκBβn (x14), IκBεn (x15), IκBα-t (x16),
IκBβ-t (x17), IκBε-t (x18), IκBα-NF-κB (x19), IκBβ-
NF-κB (x20), IκBε-NF-κB (x21), IκBαn-NF-κBn (x22),
IκBβn-NF-κBn (x23), IκBεn-NF-κBn (x24). Subscript n
means the protein is in the nucleus.

For this model, the row rank of the stoichiometry matrix N
is calculated to be 23. Then, the matrix N can be written
as N = LNR, L ∈ R

24×23, NR ∈ R
23×64. As a result, the

states vector X is decomposed into the independent vector

X̃ = [ x1 x2 · · · x23 ]
T

and the dependent vector X̂ = x24.
The system model can be rewritten in the form of (6) for
the independent variables, and

X̂(t) = x24(t) = L0X̃ + T = −x5 − x6 − x7 − x8

−x9 − x19 − x20 − x21 − x22 − x23 + T
(17)

for the dependent variable.

In the next stage, LSA was undertaken for the independent
states model. Here the concentration of the NF-κB in the
nucleus (x9) was selected as the output of interest because
it is an important protein in interpreting the behaviour
of this signal pathway network (Hoffmann et al., 2002).
The initial conditions of the states were taken from the
equilibrium with x1 = 0.1µM as an activation input
(IKK). The initial conditions of the dynamic sensitivities
are set to be zeros. The simulation time is taken to be
400 minutes and the sample frequency is 1 per minute
during calculation. Once the sensitivity column vector S̄9

is obtained, taking principle component analysis by (12)
and (13), the PCA parameters ej (j = 1, 2, · · · 64) can be
obtained. The results of the sensitivity rankings and the
PCA parameters are omitted here due to page limit.

To separate the 64 reactions into ‘essential’ and ‘non-
essential’ groups, the critical reduction factor α was taken
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Fig. 1. Classify reactions by PCA: circle means ‘essential’,
dot means ‘non-essential’

to be 0.1. The results are shown in Fig. 1, in which there
are 11 ‘essential’ reactions and 53 ‘non-essential’ reactions.

In the next flux analysis, the average reaction flux of all
reactions were calculated by (15). Taking the critical flux
factor β to be 0.1, the threshold flux value was calculated
by (16). It is identified that out of the 53 ‘non-essential’
reactions, the following 15 reactions have flux values less
than the threshold value:

v10: IKKIκBβ+ NF-κB → IKKIκBβ-NF-κB
v11: IKKIκBβ-NF-κB→ NF-κB +IKKIκBβ
v13: IKKIκBε + NF-κB → IKKIκBε-NF-κB
v14: IKKIκBε-NF-κB → IKKIκBε + NF-κB
v17: IκBβ-NF-κB → NF-κB
v18: IκBε-NF-κB → NF-κB
v24: IκBβn-NF-κBn → IκBβn+NF-κBn

v26: IκBεn-NF-κBn → IκBεn+NF-κBn

v30: source → IκBβ-t
v31: IκBβ-t → sink
v32: source → IκBε-t
v33: IκBε-t → sink
v45: IκBβn → IκBβ(Export)
v47: IKKIκBε → IKK+IκBε
v51: IκBεn → IκBε(Export)

All these reactions relate to IκBβ and IκBε. This agrees
with the biophysical mechanisms in the model since it
focuses on the negative feedback mediated by IκBα. By
removing the above 15 reactions, 2 states, x17 (IκBβ-t)
and x18 (IκBε-t), were consequently eliminated from the
model. The simplified model therefore includes 49 reac-
tions and 22 states. The time courses of several important
variables of the original model and the reduced model are
compared in Fig. 2. It can be seen that the simplified
model matches well with the complete model. In all the
species relating to IκBα, the difference can hardly be
noticed via visual inspection, while only in the concen-
trations of IKKIκBβ and IKKIκBε, the small difference
can be observed. This result shows that by eliminating
certain reactions through the proposed hybrid inference
algorithm, the major characteristics of the NF-κB model
are well-preserved.

In this hybrid inference simplification strategy, the factor α
corresponds to the PCA classification based on sensitivity
analysis, and β corresponds to the selection based on
flux analysis. From the threshold definitions in (14) and
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Fig. 2. Selected concentration profiles in the full-scale and
simplified models

(16), both α and β are set to the [0,1] interval. Within
this range, increasing α will increase the number of ‘non-
essential’ reactions. Under the same value of α, when β is
increased, the threshold range to remove low-flux reactions
is enlarged and the number of the reduced reactions is
likely to be increased. The effects of α and β on the model
reduction can be illustrated by the change of NF-κBn in
Fig. 3. Some numerical calculation results are listed in
Table 1, in which NER and NNER are the number of
‘essential’ and ‘non-essential’ reactions, NRR stands for
the number of reduced reactions, NRV is the number of
reduced variables, and Res is the residual error calculated
by

Res =

tp
∫

t0

(xorig
9 (t) − xredu

9 (t))2dt (18)

where xorig
9 (t) and xredu

9 (t) denote the original and the
reduced model output at sample time t.
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Fig. 3. Oscillations of NF-κB in the nucleus with different
values of α and β

Table 1. Model reduction results

α β NER NNER NRR NRV Res

0.1 0.1 11 53 15 2 2.1638e−5

0.1 0.5 11 53 32 5 4.3761e−4

0.1 0.9 11 53 40 10 5.7319e−4

0.6 0.1 5 59 37 8 2.1627e−4

0.6 0.5 5 59 47 13 1.1077e−3

0.6 0.9 5 59 49 13 1.1012e−3

It can be seen from the simulation analysis that both α
and β have impacts on the model reduction results, which
means that each analysis effort in the hybrid inference
strategy plays its role in assuring the quality of model
simplification. It should be noted that in the current
method, the selection of α and β is still heuristic.

4. CONCLUSIONS

A hybrid inference method has been proposed to simplify
signal transduction pathway models that include a large
number of reactions and reaction species. When applying
this algorithm to an IκB-NF-κB signal pathway model, it
is found that when the critical reaction factor α and the
critical flux factor β are properly designed, the temporal
output of the simplified model highly agrees with that
of the complete model. To simplify a complex biological
system model, a good understanding of the biophysical
mechanisms is crucial, and sometimes, may be more effi-
cient. Taking this signal pathway as an example, without
using such an algorithm, a reduced model constructed from
physiological analysis contains only a few variables but can
still retain important characteristics of the complex model
(Krishna et al., 2006). However, a systematic method will
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always be helpful for model reduction not only in dealing
with systems in a systematic way, but also in uncovering
properties that may be ignored by experimental studies.

Cellular networks are well recognized to have inherent
robustness. For the IκB-NF-κB signal pathway model,
previous sensitivity analyses show that out of all the
parameters (more than 60), only a small number of them
(less than 10) have significant impacts on the oscillation
behaviour of the NF-κBn concentration (Ihekwaba et al.,
2004; Yue et al., 2006, 2007), which suggests that this
system is robust to the variation of a large number of
parameters (Jia et al., 2007). The work in this paper
further shows that the system is also very robust in model
structure. The degree of robustness should be measured
with respect to maintenance of steady state and this can be
quantitatively investigated by system theory in the future
work.
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