
Stream- and State-Based Semantics of

Hierarchy in Block Diagrams

Ben Denckla
∗

Pieter J. Mosterman
∗∗

∗ Denckla Consulting, USA (Tel: 310-275-4249; e-mail:
bdenckla@alum.mit.edu).

∗∗ The MathWorks, Inc., Natick, MA 01760 USA (e-mail:
pieter.mosterman@mathworks.com)

Abstract: Block diagrams are often used in embedded system design for modeling both plant
and controller, typically with continuous and discrete modeling, respectively. Though easy to use,
advanced users and implementers of these languages often run afoul of subtle semantic problems
these seemingly simple languages can have. Based on the stream- and state-based approaches,
this paper discusses how the specialized state-based semantics of continuous-time block diagrams
can interoperate hierarchichally with discrete-time block diagrams. The languages presented may
serve as a reference of sorts, helping to clarify some of the underlying choices in block diagram
language design, and in the process shedding light on the differences between, and limitations
of, existing block diagram languages.

1. INTRODUCTION

To manage the complexity of engineered systems three
concepts can be applied: (i) partitioning, (ii) modularity,
and (iii) hierarchy. This work adds the notion of hierarchy
to previous work by Denckla and Mosterman [2004, 2005]
and Denckla et al. [2005] on developing a precise semantics
for block diagrams. A block diagram consists of a collection
of blocks with geometric shapes that represent mathemati-
cal operations on a set of input variables to produce output
variables. Such diagrams are also referred to as causal
block diagrams by Posse et al. [2002], hierarchical signal-
flow diagrams by Karsai et al. [2003] and time-based block
diagrams by Mosterman and Ciolfi [2004].

Block diagrams are the basic language of the widely used
commercial product SimulinkR© (Simulink [2004]). Block
diagrams support continuous time as well as discrete time,
which is important to facilitate analysis of a continuous-
time plant model in combination with a discrete-time
controller model. The combination of continuous-time and
discrete-time models leads to a mathematical representa-
tion called a hybrid dynamic system.

In this context, the precise definition of how hierarchy
is implemented is critical in the context of formalizing
block diagrams. In industrial strength design products
different implementations of hierarchy are supported. For
example, in Simulink hierarchy exists in the form of virtual
and nonvirtual subsystems, libraries, referenced models,
and referenced binaries with a well-defined application
programming interface (API).

Though users desire such flexibility, it complicates a formal
analysis of the language. In particular, support for binaries
through an API is difficult to analyze as it pertains to a
language other than block diagrams. The work presented
in this paper seeks to be more precise, and, as such, it
will be more limited in its flexibility to facilitate different
implementations of hierarchy. In another sense, however,

this work is more flexible as it will analyze the use of
hierarchy in the context of both stream-based execution
as well as state-based execution.

A stream-based approach to analyzing block diagrams is
a natural fit that allows a functional perspective on the
block diagram language. As such, it supports developing
precise and unambiguous semantics, which has been ex-
ploited in work by Halbwachs et al. [1991], Halbwachs
[1998] and Halbwachs and Raymond [1999] to design a
language for safety critical systems. This language applies
to discrete-time reactive systems only, though.

This work investigates the differences between stream-
based and state-based execution and studies their use in
hierarchical hybrid dynamic system decomposition. The
state-based approach is presented as more amenable to
handling continuous-time behaviors because it requires so-
phisticated state-based numerical integration algorithms.

In other work, Caspi and Pouzet [1997] examine the dif-
ferences between stream- and state-based discrete system
models outside the block diagram context. It covers the im-
portant issue of the limited scope of the state-based model.
For example, the state-based model cannot easily describe
multirate systems, whereas the stream-based model can.

In work by Liu et al. [2004] the state-based approach is
effectively used to model hybrid dynamic systems, where
a director implements the integration algorithms. The
block diagram language is then specified by a mapping
onto an imperative programming language. Instead, this
work takes a higher level approach to language design
by using lambda calculus (Nielson and Nielson [1992]) as
a general model of computation onto which the block
diagram language is mapped. This eliminates the need
of introducing imperative concepts at an early state in
the language design, and, therefore, reasoning on the
semantics can be at a higher level and without the need
to deal with the specific execution details.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 7955 10.3182/20080706-5-KR-1001.2493

Related work by Lee and Sangiovanni-Vincentelli [1998]
uses a denotational approach as well but for the objective
of analysis, rather than providing an executable form.
The work presented here uses the declarative language
Haskell (Jones [2003]) to provide an executable represen-
tation of lambda calculus, so that, for example, reference
behaviors can be generated to compare with more effi-
cient implementations of block diagram simulators such
as Simulink. Note that Haskell has been used to define
noncausal models as well Nilsson et al. [2003].

Another approach to language design by de Lara et al.
[2004] employs meta-modeling in combination with graph
grammars. The concrete and abstract syntax with its well-
formedness constraints are modeled with class diagrams
or entity-relationship diagrams. The semantics is then
modeled in either: (i) a denotational sense, by translating a
model in the newly designed formalism to a corresponding
model in an existing formalism; or (ii) an operational
sense, by modeling how the state of the model changes.
This approach could well be complementary to the one
presented in this paper, provided that it would be adapted
to handling textual languages as well, in which case the
graph grammar may degenerate to a tree grammar.

Section 2 first presents the stream-based and state-based
forms of execution. Section 3 introduces the notion of
hierarchy, in particular in the context of block diagrams.
Section 4 uses hierarchy to support the embedding of
the state-based execution in a stream-based execution,
which supports the design of a digital controller based
on a continuous-time plant model. Section 5 presents
conclusions of this work.

2. TWO FORMS OF EXECUTION

Signal processing engineers often apply an input/output
view on a system. The system takes a stream of input data
and produces a stream of output data. Control system
engineers, on the other hand, often apply a state-based
view. In this view, the system is considered to be in a
certain state, and only the present input is applied to
compute the present output.

2.1 Two Block Diagram Semantics

These different approaches are discussed and a semantics
for each of them is developed based on the abstract
syntax of block diagrams. The semantics of two closely
related block diagram languages are discussed, Bdfun and
Bdsys that share their syntax but differ in their semantics;
Bdfun is stream-based and Bdsys is state-based.

The semantics of Bdfun and Bdsys can be given as a
relatively simple translation to any language with lazy
evaluation (i.e., expressions are only evaluated when nec-
essary) and a recursive ‘let’ construct (i.e., equations in
a system of equations may be mutally dependent). The
premier such language is Haskell (Jones [2003]).

The translation from Bdfun to Haskell proceeds generally
as follows. Give a unique identifier (ID) to each arrow tail
junction. An arrow tail junction (ATJ) is a point where
one or more arrow tails coincide. Translate each block to
a declaration of the form y = f u where

Table 1. General Haskell block diagram form

λ(i , i , . . .) →
let

(i , i , . . .) = e(i , i , . . .)
(i , i , . . .) = e(i , i , . . .)
. . .

in (i , i , . . .)

• y is a tuple of the IDs of the ATJs on the block,
• u is a (possibly empty) tuple of the IDs of the ATJs

for each arrow whose head is on the block, and
• f is the translation of the Bdfun expression inside

the block.

Translate the diagram to

• a λ expression binding a (possibly empty) tuple of the
IDs of the ATJs that are not on any block, where the
body of this λ expression is

· a let expression containing the (possibly empty)
list of declarations from the block translations,
where the body of this let expression is

a tuple of the IDs of the ATJs for each arrow
whose head is not on any block.

So, in general block diagrams translate to expressions of
the form shown in Table 1, where i is a meta-variable
ranging over the IDs of the ATJs and e is a meta-variable
ranging over the expressions that result from translating
the contents of the blocks.

Rather than presenting the general translation in detail
(see Denckla et al. [2005]), translations of Bdsys into
Haskell will be given on a case-by-case basis.

2.2 Stream-Based Execution

In Bdfun, blocks and block diagrams are functions whose
input and output are streams. In this work, a stream
consists of an infinite sequence of values. Unlike in work
by Lee and Sangiovanni-Vincentelli [1998], a tag is not
associated with each value, since the position in the
sequence is sufficient to capture the behavior of the block
diagrams considered here.

A conventional recursive definition of streams is used:
if a stream of values of type A is denoted S A, then
S A = (A, S A). Or, a stream of values of type A is a
pair of value of type A and a stream of values of type A.

A block (or a block diagram) is defined to be a function
S A → S B for some types A and B. In other words, a
block is a function taking a stream of A values as input
and returning a stream of B values as output.

To illustrate, the first-order discrete-time system in Fig. 1
is translated into a Haskell function, for which the defini-
tions of Table 2 are used. The function uncurry converts
a curried function to a function on pairs, curry f x y = f
(x, y). The operator map applies a function across a list of
values, map f (x:xs) = f x : map f xs. The operator zipWith
applies a binary function across two lists of values, zipWith
z (a:as) (b:bs) = z a b : zipWith z as bs.

Table 3 shows Fig. 1 translated into a Haskell function
using Bdfun semantics and the definitions of Table 2.
The functions adder and gain are ‘streamifications’ of

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7956

adder

gain α

delay 0
-

- -
-

�

Fig. 1. A first-order discrete-time system

Table 2. Definitions for translating Fig. 1

delay xi = (xi :)
gain α = map (α∗)
adder = uncurry (zipWith (+))

Table 3. Bdfun translation of Figure 1

let
f u = y

where
y = d

d = delay 0 a

g = gain α d

a = adder (u, g)
in f

Table 4. Definitions for translating Fig. 2

delay xi = (f, xi) where f (x, u) = (u, x)
adder = uncurry (+)
gain α = (α∗)

their scalar counterparts: For a given set of synchronous
elements in the input and output streams, the output of
the adder block is the sum of its inputs. The output of the
gain block is its input multiplied by the factor α. However,
delay has no scalar counterpart. The expression delay xi
prepends xi to its input stream. The colon can be thought
of as the ‘prepend’ operator in Haskell.

2.3 State-Based Execution

In Bdsys, a block (or a block diagram) is a pair (f, x)
where f is a function and x is an initial state.

The function f has type X ×U → Z × Y where x ∈ X , U
is the input type, Y is block’s output type, and Z is the
“implicit output” type of the block. For discrete systems,
the implicit output is the next state, so X = Z. For
continuous systems, the implicit output is the derivative
of the current state. It is a matter of preference whether
in the continuous case X is considered equal to Z. For
example it may be desirable for X to have type “meters”
and Z to have type “meters per second.”

The Semantics Defined A block in a Bdsys diagram
does not have its state input or implicit output shown
because they are always treated the same. That is why the
concrete syntax is identical to that of a Bdfun diagram.

The Bdsys semantics can be applied to the example in
Fig. 1. For clarity, the state input dx and implicit output
dz are shown in Fig. 2, though they would not normally
be shown. To translate this system into Haskell, the
definitions of Table 4 are used. Note that the delay function
takes an initial state and returns a system (df,dxi).

Table 5 shows the translation of Fig. 2 into a Haskell
function using Bdsys semantics. The functions adder and

adder

gain α

df-
- -

-

�

-dx - dz

Fig. 2. Function part of a 1st-order discrete system with
state input and implicit output

Table 5. Bdsys translation of Figure 1

let
(df , dxi) = delay 0

xi = dxi

f (dx , u) = (dz , y)
where
y = d

(dz , d) = df (dx , a)
g = gain α d

a = adder (u, g)
in (f, xi)

-u - y
-

�

streamify f

delay x

Fig. 3. Discrete execution manager core

gain are scalar, and neither take nor produce state. The
function f returned by delay is more interesting. Given
(x, u) (a current state x and an input u), it returns (u, x),
a next state of u and an output of x.

The Execution Manager The system produced by Bdsys

can only be run on a single input as opposed to a stream
of inputs. Such systems can be run on a stream with the
help of an execution manager. Given a system (f, x) and
a stream of inputs u, an execution manager applies f to
each element of u while evolving the state forward from x.
In particular, a discrete-time execution manager produces
a stream of states z and outputs y as follows:

(z1, y1) = f(x, u1)

(z2, y2) = f(z1, u2)

(z3, y3) = f(z2, u3)

· · ·

Note how the state output of one computation, e.g. z1,
feeds back as the state input of the next computation.

More formally, an execution manager is a function F ×

X → (S U → S Y) where F = X × U → Z × Y . In other
words an execution manager is a function taking an (f, x)
pair and returning a stream-transforming function.

The core work of a discrete execution manager can be
shown in a Bdfun block diagram such as Fig. 3. This
diagram shows the stream version of the system (f, x).
(It assumes a streamify function is available, which is just
the map function surrounded by appropriate conversions
between pairs of streams and streams of pairs.)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7957

Table 6. Expression that gives meaning to
Fig. 1

let
delay xi = (xi :)
adder = uncurry (zipWith (+))
gain α = map (α∗)

in d

3. HIERARCHY

Often, hierarchy in block diagrams is introduced by defin-
ing a primitive block in terms of some language with ex-
ecutable semantics and a compound block by an intercon-
nection of blocks (which can be primitive and compound).
Much like in work by Reekie [94], here compound and
primitive blocks need not be distinguished as the block
diagram language and Haskell can be used interchange-
ably.

3.1 Block Diagrams as an Extension to Haskell

In Fig. 1 and Fig. 2, the meaning of the blocks is given by
what is written inside of them. The translation assumes
that the text inside a block, e.g. adder , is a Haskell
expression. This is a significant design choice that is easy to
overlook. This section examines some of the implications
of the choice of a language for use inside blocks. The
text inside of the blocks corresponds to Haskell code,
and, therefore, can be executed. This provides a level of
hierarchy where Haskell functionality is part of the block
diagram. For example, the adder block utilizes the Haskell
adder function. All that is required is to further provide
the arguments to the Haskell functionality which can be
derived based on the input and output of the blocks.

This implementation allows for viewing Bdfun and Bdsys

not as languages in their own right but as extensions to a
general purpose ‘host’ language.

Both the host language and the block diagram languages
Bdfun and Bdsys benefit from this combination. The
host language is extended by block diagrams and, at the
same time, the block diagram language is extended by a
language that can be used inside blocks and outside block
diagrams. This provides the host language with a syntax
that succinctly expresses a generalized form of function
composition, as embodied by block diagrams. For example,
a connection from block a to block b in a block diagram
can be interpreted as the function composition b ◦ a.

To illustrate, consider the block diagram in Fig. 1. If block
diagrams are viewed as a syntactic extension of Haskell,
the expression in Table 6 gives full meaning to Fig. 1 by
resolving its external references, adder , delay , and gain .

Note that all the functions used in defining adder , delay ,
and gain are built into Haskell. Now Fig. 1 can be
executed. Assuming that the function that is expressed
by Fig. 1 is assigned to the variable dr and α = 0.5, then
dr [1, 0, 0] gives result [0.0, 1.0, 0.5, 0.25].

3.2 The Language Inside Blocks

Hierarchy is introduced by the language inside the blocks.
The simplest language inside a block just allows a block

to reference one of a predefined set of built-in functions. A
next step may be to allow a block to call one of a predefined
set of built-in function constructors, i.e., functions that re-
turn functions. For example a gain of 2 might be expressed
by the text ‘gain 2’ inside the block. Two types of hierarchy
beyond this, nesting and referencing, are discussed next.

Nesting Hierarchy If a block can be defined not just by
text inside it but also by a block diagram inside it, then
the language can be said to support nesting hierarchy or
just nesting. Nesting is analogous to introducing a local
variable and only using it once. For example,

let x = 2 ∗ 3 in x ∗ 4

could be said to hide 2 ∗ 3 underneath x in x ∗ 4 in the
same way nesting may be used to take a block diagram
and hide it underneath a block.

An example of block diagram nesting is given in Fig. 4.
Here, the language in the left-most block is the block
diagram language.

Referencing Hierarchy Another type of hierarchy allows
a block to reference a function defined outside the block
diagram. For example, a block may reference a function
f whose definition, f x = x + 3, is outside the block
diagram. If a block can reference a function defined by
a block diagram, then the language can be said to support
reference hierarchy or just reference. Reference in a block
diagram is analogous to the use of an unbound variable in
an expression, for example, x in x ∗ 4.

Conclusions Ideally, if d is a subdiagram of D, the
meaning of D is unchanged if d is replaced by a block
that nests or references d. Instead of defining ‘subdiagram’
here; it is noted that it is analogous to a subexpression,
e.g. (2 + 3) is a subexpression of (2 + 3) ∗ 5.

Endowing a language with these forms of equivalences
under substitution has long been acknowledged as a goal
of language design (Landin [1966]), yet is rarely achieved
in practice. In particular, in the case where semantics are
not precisely defined, such equivalence is easily violated.
It is the aim of this work to be formal and consistent with
commonly accepted language desiderata.

4. EMBEDDING OF STATE-BASED INTO
STREAM-BASED EXECUTION

Intricacies of continuous-time systems make state-based
execution the most suitable approach. Hierarchical decom-
position embeds a continuous-time system into a stream-
based execution.

4.1 Continuous-Time Systems

To simplify matters, the execution of a continuous-time
system is first considered where the system takes no input
or output (i.e., a system whose function part has the type
X → Z). This is called a standalone system.

Because continuous-time dynamics require integration
with respect to time to generate a behavior, a continuous-
time system can be more complex to execute than a
discrete-time system. A solver performs this integration

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7958

adder

gain α

delay 0
-

- -
-

�

gain β- - -

Fig. 4. A block diagram hierarchy

Table 7. Bdsys translation of Figure 5

let

(if , ixi) =
∫

xi = ixi

f (ix , u) = (iz , y)
where
y = i

s = sub (u, i)

g = gain 1

rc
s

(iz , i) = if (ix , g)
in (f, xi)

sub gain 1

rc

∫- +
- - -

- −

Fig. 5. A continuous-time system

by providing a block diagram with a state and operating
on the derivatives with respect to time that are output by
the block diagram.

This implies that the block diagram has to allow the state
to be input and it should output the derivatives with
respect to time of the state. Because the stream-based
approach does not allow for the explicit manipulation of
the block diagram state, it is not well suited for executing
continuous-time systems. The state-based approach is then
most suitable for executing continuous-time systems.

Because in continuous time the implicit output is inter-
preted as the derivative of the state of the system, different
symbols have been used for the types of state and implicit
output. Although Z always has the same dimensions as X ,
it has different units than X and thus may be considered
to be of a different type.

Figure 5 depicts an example of a continuous-time system,
a first-order lowpass filter with the Haskell code given in
Table 7. The expression is a system (f, xi) where three
equations hold. The first just decomposes the system
indicated by the integral sign into its function and initial
state parts (if , ixi). The second equation says that the
initial state of the overall system, xi , is just the initial
state of the integral system, ixi , since it is the only system
in the diagram that has state. The third equation says that
f is a function taking a pair (ix, u) as input and returning
a pair (iz, y) as output where four equations hold. These
four equations are as indicated by a Bdfun interpretation
of the block diagram, with state input and implicit output
added and the integral replaced by its function part, if .

Given a continuous-time system, s, and a stop time, the
solver produces a discrete-time system, σ. The system σ
is a version of s which, instead of giving the derivative
of the current state, approximates a next state at some
time not later than the stop time. Assuming well-behaved
dynamics, the execution manager then iterates σ until the

-

-

-

-

embed c 1 s1

embed c 1 s2

Fig. 6. a hybrid system

stop time is reached, producing a sequence of state/time
pairs. Note that this execution scheme accommodates
fixed-step as well as variable-step solvers. Further note
that it is straightforward to extend the execution manager
above to systems with explicit output.

4.2 Hybrid Dynamic Systems

Here, a system is considered to be hybrid if it is a discrete-
time system with one or more continuous-time systems
embedded in it. The strategy for the embedding is to
convert the continuous-time system into a discrete-time
system. This ‘discretization’ is achieved by viewing each
step of the discrete time execution manager as a full run
of the continuous-time execution manager with any input
held constant (i.e., zero-order hold, which is a common
part of digital-to-analog converters). All computed states
in between the start and stop time of a discrete interval
are discarded, except the final state as provided by the
continuous-time execution manager. The final state is used
as the initial state on the next run. The reason why the
intermediate points are computed in the continuous-time
system is to satisfy the error tolerances as set for the solver.

Note that this methodology can support multiple solvers
running at multiple and/or variable rates all under the
control of the same discrete-time system.

For example, in Fig. 6, a hybrid system embeds a
continuous-time system c into discrete time using two
different solvers, s1 and s2 . It does so via a function embed
which, given a continuous-time system, a sample period,
and a solver, gives a discretized version of that system.
A call to embed c t s returns a discrete-time version of
the continuous-time system c. This discrete-time system
is formed by running the solver s on c from 0 to time t
and then discarding all but the initial and final output.
Note that in an actual application, depending on the level
of detail that is desired, the digital-to-analog (DA) and
analog-to-digital (AD) converters may have to be modeled
in detail as well; for the sake of simplicity this is not
included and, as such, the system will exhibit considerable
imaging during DA side and aliasing during AD side.

Assuming that c is the system in Fig. 5, the result of
running this system on an impulse is shown in Fig. 7(a).
Though both outputs look the same in discrete time, the
execution of the two proceeds in a distinctly different

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7959

manner. For example, studying the output between time 5
and 6 in Fig. 7(b), it can be seen that one solver increased
its time step, while the other keeps it constant throughout
that interval. Note that the points are graphically offset
from each other in the vertical direction to make the
differences in step size clearer.

0
0.1
0.2
0.3
0.4

0 1 2 3 4 5 6 7 8

s2

3

3

3

3
33333

3
s1

+

+

+
+

+++++

+

(a) Entire interval

5 5.4 5.8

333333333333333333333333

+++++++++++++++++

(b) Detailed view

Fig. 7. Impulse response

Note that the model of time is included in the block
diagram, and, therefore, the tagged signal model is not
required at this point. A totally ordered sequence of output
suffices, while the temporal interpretation can be derived
from the included model of time. This differs in concep-
tion from work by, for example, Lee and Sangiovanni-
Vincentelli [1998] and Reekie [94] and future research
will investigate adapting the presented framework to such
tagged signal frameworks.

5. CONCLUSIONS

The flexibility of commercially successful block diagram
languages makes it difficult to formally define and analyze
the exact behavior of the entire language. This work
attempts to provide a precise definition of a block diagram
language by taking a functional approach based on lambda
calculus. The declarative language Haskell is used to
specify an executable denotational form. The denotational
nature allows for deferring details about the execution of
models and helps concentrate on the specific semantics of
the block diagram language. The view of block diagrams
as an extension to Haskell provides an array of advantages
because mechanisms such as type inferencing, hierarchy,
and dependency analysis become available through a well-
established programming language.

Using the Haskell specification, it is shown how a state-
based approach that is more amenable to handling
continuous-time system behavior can be integrated in a
stream-based context by means of hierarchical decomposi-
tion. This decomposition allows coupling a functional view
with a systems view so the desired view for both discrete-
time as well as continous-time behavior can be employed.

REFERENCES

P. Caspi and M. Pouzet. A Co-iterative Characterization
of Synchronous Stream Functions. Technical Report 07,
VERIMAG, Oct. 1997.

J. de Lara, H. Vangheluwe, and P. J. Mosterman.
Modelling and analysis of traffic networks based on
graph transformation. In Formal Methods for Automa-
tion and Safety in Railway and Automotive Systems

(FORMS/FORMAT 2004), pp. 120–127, Braunschweig,
Germany, Dec. 2004.

B. Denckla and P. J. Mosterman. An intermediate rep-
resentation and its application to the analysis of block
diagram execution. In Proc. of the 2004 Summer Com-
puter Simulation Conference, San Jose, CA, July 2004.

B. Denckla and P. J. Mosterman. Formalizing causal
block diagrams for modeling a class of hybrid dynamic
systems. In 44th IEEE Conf. on Decision and Control,
Seville, Spain, Dec. 2005.

B. Denckla, P. J. Mosterman, and H. Vangheluwe. Towards
an executable denotational semantics for causal block
diagrams. In The 5th OOPSLA Workshop on Domain-
Specific Modeling, San Diego, CA, Oct. 2005.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous dataflow programming language LUSTRE.
Proc. of the IEEE, 79(9):1305–1320, Sep. 1991.

N. Halbwachs. Synchronous programming of reactive sys-
tems, a tutorial and commented bibliography. In Tenth
International Conference on Computer-Aided Verifica-
tion, CAV’98, pp. 1–16, Vancouver B.C., June 1998.
LNCS 1427, Springer Verlag.

N. Halbwachs and P. Raymond. Validation of syn-
chronous reactive systems: from formal verification to
automatic testing. In Asian Computing Science Confer-
ence (ASIAN’99), Phuket, Thailand, Dec. 1999. LNCS
1742, Springer Verlag.

S. Peyton Jones. Haskell 98 Language and Libraries. Cam-
bridge University Press, Cambridge, UK, Apr. 2003.

G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty.
Model-integrated development of embedded software.
Proc. of the IEEE, 91(1):145–164, Jan. 2003.

P. J. Landin. The next 700 programming languages.
Commun. ACM, 9(3):157–166, 1966. ISSN 0001-0782.

E. A. Lee and A. Sangiovanni-Vincentelli. A framework
for comparing models of computation. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and
Systems, 17(12):1217–1229, Dec. 1998.

J. Liu, J. Eker, J. W. Janneck, X. Liu, and E. A. Lee.
Actor-oriented control system design: A responsible
framework perspective. IEEE Trans. on Control System
Technology, 12(2), Mar. 2004.

P. J. Mosterman and J. E. Ciolfi. Interleaved execu-
tion to resolve cyclic dependencies in time-based block
diagrams. In Proc. of the 43rd IEEE Conference on
Decision and Control (CDC’04), Bahamas, Dec. 2004.

H. Riis Nielson and F. Nielson. Semantics with Ap-
plications: A Formal Introduction. Wiley Professional
Computing, Hoboken, NJ, 1992. ISBN 0 471 92980 8.

H. Nilsson, J. Peterson, and P. Hudak. Functional hybrid
modeling. In Lecture Notes in Computer Science, vol-
ume 2562, pp. 376–390, New Orleans, LA, Jan. 2003.

E. Posse, J. de Lara, and H. Vangheluwe. Processing
causal block diagrams with graph-grammars in Atom3.
In Proceedings of the European Joint Conference on
Theory and Practice of Software (ETAPS), pages 23 –
34, Grenoble, France, Apr. 2002.

H. John Reekie. Modelling Asynchronous Streams in
Haskell. Technical Report 94.3, Key Centre for Ad-
vanced Computing Sciences, University of Technology,
Sydney, May 94.

Simulink. Using Simulink. The MathWorks, Natick, MA,
2007.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7960

