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Abstract: This paper studies quantized and delayed state-feedback control of linear systems.
We consider two types of quantization: quantized feedback and quantized state. The quantizer
may be either unconstrained or saturated with a given quantization error bound. The delay
is supposed to be time-varying and bounded. The controller is designed with the following
property: all the states of the closed-loop system (starting from a neighborhood of the origin
in the saturated case) exponentially converge to some bounded region in Rn. The design
procedure is given in terms of Linear Matrix Inequalities (LMIs), derived via Lyapunov-
Krasovskii functional and the comparison principle.

1. INTRODUCTION

Quantization in control systems has recently become an
active research topic. The need for quantization arises
when digital networks are part of the feedback loop. In this
paper we study linear control systems with either quan-
tized state or quantized control input. See e.g. Brocket and
Liberzon [2000], Ishii and Francis [2003], Liberzon [2003],
Bullo and Liberzon [2006] and the references therein for
control under different types of quantization (in both,
linear and nonlinear cases).

Time-delay often appears in control systems and, in many
cases, delay is a source of instability [Hale and Verduyn-
Lunel, 1993]. During the last decade, a considerable
amount of attention has been paid to control of systems
with uncertain constant or time-varying delays (see e.g.
Boyd et al. [1994], Kolmanovskii and Myshkis [1999],
Niculescu [2001], Fridman [2001], Gu et al. [2003], Fridman
et al. [2004], He et al. [2007]). Delays often appears in
networked control systems.

Delayed quantized control was recently studied in Liberzon
[2006] by applying Input-To-State Stability (ISS) analysis
(see Sontag and Wang [1995]). Sufficient conditions for
ISS systems with time-varying delays were derived via
Razumikhin approach in Teel [1998]. For systems with
constant delays, ISS sufficient conditions were recently
derived in terms of Lyapunov-Krasovskii functionals in
Pepe and Jiang [2006]. For systems with time-varying
delays ISS sufficient stability conditions via Krasovskii
method were obtained in Fridman et al. [2007] in terms
of matrix inequalities.

In the existing literature it is usually assumed that the
stabilization problem in the absence of quantization and
delay has been solved, i.e. a state-feedback that globally
asymptotically stabilizes the system is known. Then the
same feedback is applied in the presence of quantization
and delay, and some ultimate bounds on the solutions

are obtained. In Fridman et al. [2007], for the first time,
LMI conditions have been derived directly for design of
quantized and delayed control of linear systems.

It is the objective of the present paper to derive LMI
conditions for state-feedback design in the cases of quan-
tized control input or quantized state, in the presence of
saturation and time-varying delay. We represent saturated
quantizer as a quantizer that acts on the saturated input
or state. Thus the problem is reduced to ISS analysis and
design of systems with saturated input or state. In the case
of saturated control input we employ a linear system rep-
resentation with polytopic type uncertainty [Tarbouriech
and Gomes da Silva, 2000, Cao et al., 2002]. The presented
delay-dependent LMI conditions for ISS are based on
improved Lyapunov-Krasovskii technique and, generally,
lead to less restrictive conditions than in Fridman et al.
[2007]. We note that recently exponential convergence of
linear state-delay systems with bounded control and dis-
turbances was studied in Oucheriah [2006], where delay-
independent conditions were derived.

Notation: Throughout the paper the superscript ‘T ’
stands for matrix transposition, Rn denotes the n dimen-
sional Euclidean space with norm |·|, Rn×m is the set of all
n×m real matrices, and the notation P >0, for P ∈ Rn×n

means that P is symmetric and positive definite. In sym-
metric block matrices we use ∗ as an ellipsis for terms
that are induced by symmetry. λ̄(G) and λ(G) denote the
largest and the smallest eigenvalues of the matrix G ≥ 0.

We also denote xt(θ) = x(t + θ) (θ ∈ [−h, 0]). For
measurable function w : [t0, t] → R we denote by |w[t0,t]|∞
the essential supremum of |w(s)| for s ∈ [t0, t].

Given q̄ = [q̄1, ..., q̄k]T , 0 < q̄i, i = 1, ...,m, for any
z = [z1, ..., zk]T we denote by sat(z, q̄) the vector with
coordinates sign(zi) min(|zi|, q̄i).
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2. PROBLEM FORMULATION

We consider the linear system

ẋ(t) = Ax(t) + Bu(t − τ(t)), (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input
and τ(t) is an unknown piecewise-continuous delay that
satisfies 0 ≤ τ(t) ≤ h. For example sampled-data control
law may be represented as control input with time-varying
delay, where h is the maximum sampling period [Fridman
et al., 2004].

A saturated quantizer is a piecewise constant function
q = [q1, ..., qk]T with qi : R → Qi, i = 1, ..., k, where
Qi is a finite subset in R. We will consider k = m in
the case of quantized control input or k = n in the case
of quantized state measurements. Similar to Brocket and
Liberzon [2000], we assume that there exist real numbers
q̄i > ∆ > 0 such that the following two conditions hold:

|z| ≤ q̄i ⇒ |qi(z) − z| ≤ ∆, i = 1, ..., k,
|z| > q̄i ⇒ |qi(z)| > q̄i − ∆.

(2)

We will design either a quantized control law

u(t) = q(sat(Kx(t), q̄)), q̄ = [q̄1, ..., q̄m], (3)

or a control law with quantized state

u(t) = Kq(sat(x(t), q̄)), q̄ = [q̄1, ..., q̄n]. (4)

The problem of interest is to design a controller of the form
(3) or (4) to achieve the following property: there exist a
region R0 ⊂ Rn of initial conditions x(t0) such that all
the states starting from this region exponentially converge
to another (attractive) region Ra ⊂ Rn. We note that in
the unsaturated case (q̄i = ∞, i = 1, ..., k) the region R0

coincides with Rn.

We represent the closed-loop systems (1)-(3) and (1)-(4)
in the following forms

ẋ(t) = Ax(t) + Bsat(Kx(t − τ(t)), q̄)) + Bw(t),
w(t) = q(sat(Kx(t − τ(t)), q̄)) − sat(Kx(t − τ(t)), q̄)

(5)
and

ẋ(t) = Ax(t) + BKsat(x(t − τ(t)), q̄)) + BKw(t),
w(t) = q(sat(x(t − τ(t)), q̄)) − sat(x(t − τ(t)), q̄)

(6)

respectively. In both cases |w[t0,t]|∞ ≤
√

k∆. Since

u(t − τ(t)) = 0, t − τ(t) < t0,

the initial condition for the closed-loop systems is given
by

x(t0) = x0, x(s) = 0, s < t0. (7)

Following Brocket and Liberzon [2000], we characterize the
desired property by an ISS property [Sontag and Wang,
1995] and derive LMI conditions by using Lyapunov-
Krasovskii approach started in Fridman et al. [2007].

Moreover, we will derive an ellipsoidal lower bound X0 ⊂
R0 on this region of initial conditions (and we are inter-
ested to “enlarge” this ellipsoid). We will also derive an
ellipsoidal (upper) bound X∞ on the attractive region Ra

(trying to “minimize” the latter ellipsoid). We note that,
in the unsaturated case, we show that the latter ellipsoid is
attractive from Rn. Given time T > t0, we will find also a
reachable ellipsoid XT , in which all solutions starting from
X0 will enter in time t = T and will not leave it.

3. BOUNDS ON THE SOLUTIONS OF SYSTEMS
WITH TIME-VARYING DELAYS

3.1 Main result

We first consider an auxiliary linear system without satu-
ration

ẋ(t) = Ax(t) + A1x(t − τ(t)) + B1w(t), (8)

with initial condition given by (7), where x(t) ∈ Rn,
w(t) ∈ Rk and 0 ≤ τ(t) ≤ h.

We will derive the conditions that guarantee the following:
the solutions of (8) satisfy the following bound

|x(t)|2 ≤ ce−a(t−t0)|x0|2 + γ2|w[t0,t]|2∞ (9)

for some constants c ≥ 1, a > 0 and γ (thus the resulting
closed-loop system is ISS). More precisely, given a > 0, we
will derive LMI conditions that guarantee the bound (9)
for the solution of (8) and we will find c and γ.

Consider a Lyapunov-Krasovskii functional (applied in
Fridman and Orlov [2008] to exponential stability anal-
ysis):

V (xt,ẋt) = xT (t)Px(t) +

∫ t

t−h

ea(s−t)xT (s)Sx(s)ds

+h

∫ 0

−h

∫ t

t+θ

ea(s−t)ẋT (s)Rẋ(s)dsdθ

(10)
where P > 0 and R,S ≥ 0. Similar to Fridman et al. [2007]
we obtain the following result.

Proposition 1. If there exist a > 0, b > 0 and n × n-
matrices P > 0, S > 0 and R > 0 such that the Lyapunov-
Krasovskii functional (10) satisfies the condition

W
∆
= V̇ + aV − b|w|2 < 0, (11)

then the solution of (8), (7) satisfies the following inequal-
ity

xT (t)Px(t) < e−a(t−t0)xT
0 Px0 +

b

a
|w[t0,t]|2∞ (12)

for t ≥ t0 and |x0|2 + |w[t0,t]|2∞ > 0, i.e. the ellipsoid

xT (t)Px(t) <
b

a
|w[t0,t]|2∞

is (exponentially) attractive for all x0 ∈ Rn.

Proof. By applying the comparison principle [Laksh-
mikantham and Leela, 1969], we have

xT (t)Px(t) ≤ V (xt) < e−a(t−t0)V (xt0)

+

∫ t

t0

e−a(t−s)b|w(s)|2ds,

that implies (12). 2

Since
V (xt, ẋt) ≥ xT (t)Px(t) ≥ λ(P )|x(t)|2,

the inequality (12) yields the following value of γ2 in (9):

γ2 =
b

aλ(P )
. (13)

We will derive now LMI conditions that guarantee that
W < 0. Differentiating V , and applying standard argu-
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ments (see e.g. Fridman and Orlov [2008] and the refer-
ences therein), we obtain that

W ≤ ηT (t)Φη(t) ≤ 0,
η(t) = col{x(t), ẋ(t), x(t − h), x(t − τ(t)), w(t)}, (14)

if the LMI
Φ =








Φ11 Φ12 0 P
T
2

A1 + Re
−ah

P
T
2

B1

∗ Φ22 0 P
T
3

A1 P
T
3

B1

∗ ∗ −(S + R)e
−ah

Re
−ah

0

∗ ∗ ∗ −2Re
−ah

0

∗ ∗ ∗ ∗ −bI









< 0
(15)

is feasible, where

Φ11 = AT P2 + PT
2 A + aP + S − Re−ah,

Φ12 = P − PT
2 + AT P3, Φ22 = −P3 − PT

3 + h2R.
(16)

Thus, the following result is obtained.

Lemma 2. Given a > 0, let there exist n × n matrices
P > 0, P2, P3, R ≥ 0, S ≥ 0 and a scalar b > 0 such that
the LMI (15) with notations given in (16) holds. Then the
solution of (8) satisfies (12) for all piecewise-continuous
delays 0 ≤ τ ≤ h. The ellipsoid X∞ defined by

xT Px ≤ b

a
k∆2 (17)

is attractive from Rn for all |w(t)|2 ≤ k∆2.

Remark 1. Since LMI (15) is affine in the system matrices
the criterion of Lemma 2 can be applied to the case where
these matrices are uncertain. In this case we denote

Ω = [ A A1 B1 ]

and assume that Ω ∈ Co{Ωj , j = 1, ...N}, namely,

Ω =
N

∑

j=1

fjΩj for some 0 ≤ fj ≤ 1,
N

∑

j=1

fj = 1 (18)

where the N vertices of the polytope are described by

Ωj =
[

A(j) A
(j)
1 B

(j)
1

]

.

In the case of time-varying uncertainty with fj = fj(t),
one has to solve the LMI (15) simultaneously for all the
N vertices, applying the same matrices P, P2, P3, S and R
for all vertices. In the case of time-invariant uncertainty,
one has to solve the LMI (15) simultaneously for all the N
vertices, applying the same matrices P2, P3 and different
matrices P (j), R(j), S(j).

4. QUANTIZED CONTROL INPUT

4.1 Unconstrained State-Feedback

We first consider unsaturated closed-loop system (5)

ẋ(t) = Ax(t) + BKx(t − τ(t)) + Bw(t), (19)

We apply conditions of Lemma 2, where A1 = BK and
B1 = B. To find the unknown gain K we choose P3 = ǫP2,
where ǫ is a tuning scalar parameter (which may be
restrictive). Then P2 is non-singular due to the fact that
the only matrix which can be negative definite in Φ22 of
(15) is −ǫ(P2 + PT

2 ). Moreover, ǫ > 0. Defining:

Q=P−1
2 , P̄ = QT PQ, R̄ = QT RQ,

S̄ = QT SQ, Y =KQ,
(20)

we multiply (15) by diag{P−1
2 , P−1

2 , P−1
2 , P−1

2 , I} and its
transpose, from the right and the left, respectively. We
obtain:

Theorem 3. Given a > 0 and ǫ > 0 let there exist n × n
matrices P̄ > 0, Q, R̄ ≥ 0, S̄ ≥ 0, a m × n-matrix Y and
a scalar b > 0 such that the following LMI holds:







Ψ11 Ψ12 0 BY + R̄e
−ah

B

∗ Ψ22 0 BY ǫB

∗ ∗ −(S̄ + R̄)e
−ah

R̄e
−ah

0

∗ ∗ ∗ −2R̄e
−ah

0

∗ ∗ ∗ ∗ −bI






< 0 (21)

where

Ψ11 = QT AT + AQ + aP̄ + S̄ − R̄e−ah,
Ψ12 = P̄ − Q + ǫQT AT , Ψ22 = −ǫQ − ǫQT + h2R̄.

(22)
Then, for all piecewise-continuous delays 0 ≤ τ ≤ h, the
solution of (19) with K = Y Q−1 satisfies (12), where
P = Q−T P̄Q−1, and the ellipsoid (17) with k = m is
attractive from Rn for all |w(t)|2 ≤ m∆2.

4.2 Saturated State-Feedback

Consider now the saturated closed-loop system (5)

ẋ(t)=Ax(t)+Bsat(Kx(t − τ(t)), q̄) + Bw(t). (23)

We seek conditions for the existence of a gain matrix
K which leads to local ISS, i.e. the bound (9) holds for
x0 from some domain including origin. Having met these
conditions, a simple procedure for finding the gain K
should be presented. Moreover, we derive an estimate X0

on this domain of initial conditions.

We solve the problem by using a linear system represen-
tation with polytopic type uncertainty introduced in Cao
et al. [2002].

Denoting the i-th row of K by ki, we define the polyhedron

L(K, q̄) = {x ∈ Rn : |kix| ≤ q̄i, i = 1, ...,m}.
If the control and the disturbance are such that x ∈
L(K, q̄) then the system (23) admits the linear represen-
tation. Following Cao et al. [2002], we denote the set of all
diagonal matrices in Rm×m with diagonal elements that
are either 1 or 0 by Υ, then there are 2m elements Di in

Υ, and for every i = 1, ..., 2m D−

i

∆
= Im − Di is also an

element in Υ.

Lemma 4. Cao et al. [2002] Given K and H in Rm×n.
Then

sat(Kx(t), q̄) ∈ Co{DiKx + D−

i Hx, i = 1, ..., 2m}
for all x ∈ L(H, q̄).

The following is obtained from Lemma 4.

Lemma 5. Let Xβ be the ellipsoid xT Px ≤ β−1 for a given
β > 0 and a n×n matrix P > 0. Assume that there exists
H in Rm×n such that Xβ ⊂ L(H, q̄). Then, for x(t) ∈ Xβ ,
the system (23) admits the following representation

ẋ(t) = Ax(t) +
2m

∑

j=1

λj(t)Ajx(t − τ(t)) + Bw(t) (24)

where

Aj = B(DjK + D−

j H) j = 1, ..., 2m,
2m

∑

j=1

λj(t) = 1, 0 ≤ λj(t), ∀ t > 0.
(25)
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We denote

Ω =
2m

∑

j=1

λjΩj for all 0 ≤ λj ≤ 1,
2m

∑

j=1

λj = 1 (26)

where the vertices of the polytope are described by Ωj =
[ Aj ] , j = 1, ..., 2m. Since LMI (15) is affine in A1

(that will be substituted by
∑2m

j=1 λj(t)Aj), the problem
becomes one of finding Xβ and a corresponding H such
that |hix| ≤ q̄i, i = 1, ...2m for all x ∈ Xβ and that the
state of the system

ẋ(t) = Ax(t) + Ajx(t−τ(t)) + Bw(t) (27)

remains in Xβ .

By modifying the derivations of Theorem 3, where BK
should be substituted by B(DjK + D−

j H), and denoting

G = HQ, b̄ = b−1, we obtain:

Theorem 6. Consider the linear system (1) with the quan-
tized constrained delayed control law (3). Given a > 0 and
ǫ ∈ R, let there exist n × n matrices P̄ > 0, Q, R̄ ≥ 0,
S̄ ≥ 0, m × n-matrices Y,G and scalars b̄ > 0, β > 0 such
that the following LMIs hold:







Ψ11 Ψ12 0 BZj + R̄e
−ah

Bb̄

∗ Ψ22 0 BZj ǫBb̄

∗ ∗ −(S̄ + R̄)e
−ah

R̄e
−ah

0

∗ ∗ ∗ −2R̄e
−ah

0

∗ ∗ ∗ ∗ −b̄I






< 0,

j = 1, ..., 2m

(28)

ab̄ − βm∆2 > 0, (29)

and
[

β gi

∗ q̄2
i P̄

]

≥ 0, i = 1, ...,m, (30)

where Ψ11,Ψ12, Ψ22 are given by (22) and Zj = DjY +
D−

j G, for j = 1, ..., 2m. Then, for all piecewise continuous

delays τ(t) ∈ [0, h], and for all initial conditions from the
ellipsoid X0 given by

xT
0 Px0 ≤ β−1 − m∆2

ab̄

∆
= δ, (31)

the solutions of the closed-loop system (5) satisfy the
inequality (12), where K = Y Q−1 and P = Q−T P̄Q−1.
Moreover, for T > t0, the solutions of (5) starting from X0

enter the reachable ellipsoid x(t) ∈ XT , t ≥ T given by

xT Px ≤ δe−a(T−t0) +
m∆2

b̄a
, (32)

and the ellipsoid (17) with b = b̄−1, k = m is attractive
from X0.

Proof. For V given by (10), conditions are sought to

ensure that W = V̇ + aV − b∆2 < 0 for any x(t) ∈ Xβ .

The inequalities (30) guarantee that the ellipsoid Xβ is

contained in the polyhedron L(H, q̄), where gi
∆
= hiQ, i =

1, ...,m and Q = P−1
2 . This result follows from the fact

that when x ∈ Xβ the following inequalities

2q̄i ≥ q̄i(1 + βxT Px) ≥ 2|hix|, i = 1, ...,m

imply that |hix| ≤ q̄i. The latter inequality, which can be
written as

[1 ± xT ]

[

q̄i hi

∗ βq̄iP

] [

1
±x

]

≥ 0

is satisfied by (30)., where gi = hiQ = hiP
−1
2 and

P̄ = P−T
2 PP−1

2 and the polytopic system representation
of (24)is thus valid.

Moreover, (28) guarantees that W < 0 along the linear
systems (27) and, thus, along (24) provided x(t) ∈ Xβ .
From W < 0 it follows that (12) holds and therefore for the
initial conditions of the form (39) the following inequalities
hold:

xT (t)Px(t) ≤ xT
0 Px0 +

m∆2

ab̄
≤ β−1. (33)

We note that δ > 0 due to LMI (29). Then for all initial
values x(0) from the ellipsoid (31), the trajectories of x(t)
remain within Xβ , and the polytopic system representation
(24) is valid. Therefore, solutions of (23) starting from
x(0) ∈ X0 satisfy the linear equation (24) and thus satisfy
the bound (12). 2

5. CONTROL UNDER QUANTIZED STATE

5.1 Unconstrained State-Feedback

As in the previous section, we first consider unsaturated
closed-loop system (6)

ẋ(t) = Ax(t) + BKx(t − τ(t)) + BKw(t), (34)

We apply conditions of Lemma 2, where A1 = BK and
B1 = BK. To find the unknown gain K we choose now
P2 = ǫ2I and P3 = ǫ3I, where ǫ2 and ǫ3 are tuning scalar
parameters (which may be more restrictive than in the
previous section). We obtain:

Theorem 7. Given a > 0, ǫ2 ∈ R and ǫ3 > 0 let there exist
n × n matrices P > 0, R ≥ 0, S ≥ 0, an m × n-matrix K
and a scalar b > 0 such that the following LMI holds:







Ξ11 Ξ12 0 ǫ2BK + Re
−ah

ǫ2BK

∗ Ξ22 0 ǫ3BK ǫ3BK

∗ ∗ −(S + R)e
−ah

Re
−ah

0

∗ ∗ ∗ −2Re
−ah

0

∗ ∗ ∗ ∗ −bI






< 0 (35)

where

Ξ11 = ǫ2(A
T + A) + aP + S − Re−ah,

Ξ12 = P − ǫ2I + ǫ3A
T , Ξ22 = −2ǫ3I + h2R.

(36)

Then the solution of (34) satisfies (12) for all piecewise-
continuous delays 0 ≤ τ ≤ h. Moreover, the ellipsoid (17)
with k = n is attractive from Rn for all |w(t)|2 ≤ n∆2.

5.2 Saturated State

Consider now the saturated closed-loop system (5)

ẋ(t)=Ax(t)+BKsat(x(t − τ(t)), q̄) + BKw(t). (37)

As in the previous section, we seek conditions for the
existence of a gain matrix K which leads to local ISS, i.e.
the bound (9) holds for x0 from some domain including
origin. Having met these conditions, a simple procedure
for finding the gain K should be presented. Moreover, we
derive an estimate X0 on this domain of initial conditions.

For x ∈ Xβ , we want to guarantee that the following
inequality holds

q̄2
i ≥ q̄2

i βxT Px ≥ x2
i , i = 1, ..., n.
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The latter inequality can be written as xT (q̄2
i βP −Ei)x ≥

0, where Ei ∈ Rn×n is a matrix with the only non-zero
term (i, i), which is equal to 1. Hence, the following LMIs

q̄2
i βP − Ei ≥ 0, i = 1, ..., n (38)

guarantee that x2
i ≤ q̄2

i if x ∈ Xβ .

Denoting β̄ = β−1, and

δ
∆
= β−1 − b

a
n∆2 > 0 (39)

we derive from (38) and (39) the following inequalities:

q̄2
i P − Eiβ̄ ≥ 0, i = 1, ..., n,

β̄ − b

a
n∆2 > 0.

(40)

We obtain

Theorem 8. Consider the linear system (1) with the quan-
tized constrained delayed control law (3). Given a > 0,
∆ > 0 and ǫ2, ǫ3 ∈ R, let there exist n×n matrices P > 0,
R ≥ 0, S ≥ 0, an m×n-matrix K, and scalars b > 0, β̄ > 0
such that the LMIs (40) and (35) with notations given in
(36) are feasible.
Then for all piecewise continuous delays τ(t) ∈ [0, h] and
for all initial conditions x0 from the ellipsoid X0 given by

xT
0 Px0 ≤ β̄ − b

a
n∆2

solutions of the closed-loop system (6) satisfy the inequal-
ity (12). Moreover, for T > t0 the solutions of (5) starting
from X0 enter the reachable ellipsoid x(t) ∈ XT , t ≥ T
given by

xT Px ≤ δe−a(T−t0) +
n∆2b

a
(41)

and the ellipsoid (17) with k = n is attractive from X0.

5.3 Example [Bullo and Liberzon, 2006]

We consider (1) with

A =

[

0 1
0.5 0.5

]

, B =

[

1
1

]

.

By applying Theorem 3, we find that the system is input-
to-state stabilizable for the maximum value of h = 0.9999.

a) We consider first the case of quantized state. In Bullo
and Liberzon [2006] the controller under quantized and
saturated state was designed with ∆ = 1 and |xi| ≤ 5
for system without delay and the following attractive ball
was found |x| ≤ 2

√
5 ≈ 4.47. By applying Theorem 4

with h = 0 and ǫ2 = 2.25, ǫ3 = 0.004, a = 0.98 we find
a smaller attractive ball |x| ≤ 2.5, where the resulting
K = [−1.2821 − 1.7791].

In order to enlarge the ellipse of initial conditions, we
denote by rm the semi-minor axis of X0, that is

rm =
β̄ − bn∆2/a

σ̄(P )

Imposing the additional LMI constraint P < αI (so
σ̄(P ) < α), we obtain the inequality

−rmα < −β̄ + bn∆2/a

Finding the minimum value of −rm satisfying the last in-
equality and the previous LMIs is a generalized eigenvalue
minimization problem (see Boyd et al. [1994]). In order to
obtain a reasonable attractive set by limiting the size of
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Fig. 1. Ellipsoids X0, X∞ (solid) and XT (dotted) in the
case of quantized state and h = 0.
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Fig. 2. Ellipsoids X0, X∞ (solid) and XT (dotted) in the
case of quantized state and h = 0.2.

X∞, we add also the LMI constraint bn∆2 < a rmaxα with
rmax = 20. We find for h = 0 and ǫ2 = 2.26, ǫ3 = 0.69,
a = 0.74 and K = [−1.0343 − 1.5345]. We depicted in
Fig. 1 the resulting ellipses of initial conditions X0 (the
outer ellipse), the attractive ellipse X∞ (the inner ellipse),
the ellipse reachable from X0 in T = 2 (the dashed one)
and some solutions for t ∈ [0, 2] (which are simulated in
the case of an uniform quantizer). We see that in fact so-
lutions reach essentially smaller region than the predicted
by Theorem 8, that illustrates the conservativeness of the
method.

For h > 0, we find that conditions of Theorem 8 are feasi-
ble for the following maximum value of h = 0.3923, where
ǫ2 = 0.1033, ǫ3 = 0.1455, a = 0.5865, K = [−0.5540 −
1.0539]. Hence, the delayed state-feedback guarantees the
attractiveness of the ball from some neighborhood of the
origin for all 0 ≤ τ(t) ≤ 0.3923. For h = 0.2 the resulting
initial, attractive and reachable in T = 2 ellipses are de-
picted on Fig.2. The solutions are simulated in the case of
an uniform quantizer and an uniform sampling t1, ..., tk, ...
with tk+1 − tk = h.

b) Consider next the case of quantized saturated feedback
with ∆ = 1 and |Kx| ≤ 5. We find that conditions of
Theorem 6 are feasible for the following maximum value
of h = 0.4745.
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Fig. 3. Ellipsoids X∞ (dotted) and X0 (solid) in the case
of input quantization and h = 0
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Fig. 4. Ellipsoids X∞ (dotted) and X0 (solid) in the case
of input quantization and h = 0.2

For h = 0, by applying Theorem 6 and taking a = 0.9 and
ǫ = 0.6, we obtain a gain K = [−1.4331 − 1.6752]. The
attractive ellipsoid X∞ is given by xT Px < 1, where

P =

[

1.2613 0.6200
0.6200 1.7668

]

The ellipsoid X∞ is 10 times bigger (defined by xT Px <
10), these results are illustrated in Fig. 3. For h = 0.2,
with a = ǫ = 0.7, we obtain the gain K = [−0.7809 −
1.3662]. The ellipsoids X∞ and X0 are defined respectively
as xT Px < 1 and xT Px < 4 with

P =

[

0.2811 0.0689
0.0689 0.5032

]

.

These results are illustrated Fig. 4.

6. CONCLUSIONS

In this paper, we have proposed a new methodology for
design of quantized delayed controller with saturation.
LMI solutions are derived via the comparison principle
and Lyapunov-Krasovskii method. A numerical example
illustrates the efficiency of the new method.
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