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Abstract: In this paper, a modified local optimal control approach is proposed for multivariable systems. 

As for unknown plant dynamics, system identification must be performed to obtain a model based on 

which the local optimal controller is designed and implemented. The proposed method guarantee closed 

loop stability characteristic when dealing with non-minimum phase plant which is a considerable 

advantage over the original local optimal controller. In addition to computational efficiency and structure 

simplicity, experimental results on a lab-based test rig confirm the effectiveness and robustness of the 

proposed local optimal controller over a conventional genetically tuned PID. Copyright © 2008 IFAC. 
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�
1.  INTRODUCTION 

 

Due to the increasing complexity of process control systems, 

multivariable process control has been of considerable 

attention over the past decades and numerous theoretical and 

practical works have been proposed in this area of research 

(Skogestad, and Postlethwaite, 2005). Among the existing 

methods of multivariable control, the Local Optimal Control 

(LOC) is a new method which was first introduced by 

Lyantsev, et al. (2004). However, existing LOC approach is 

incapable of dealing with non-minimum phase systems.  

In this paper, a modification has been made for controlling 

non-minimum phase systems using LOC approach. The 

controller has been designed and implemented on a 

laboratory based multivariable process control test rig. The 

results of the proposed controller are compared with a 

conventional PID controller tuned by Genetic Algorithm 

(GA). Since the multivariable plant is unknown, system 

identification should be incorporated to provide the LOC 

with the system’s model. Therefore, different open loop 

Multi-Input Multi-Output (MIMO) system identification 

techniques are used to obtain the required model (Ljung, 

1999; Simani, 2005).  This paper is organised as follows: 

Section 2 is a brief description of the system rig to be 

controlled. Section 3 introduces and compares two different 

techniques of open loop MIMO system identification 

employed.  In section 4 the details of the modified local 

optimal controller design are proposed and compared with 

GA-based PID controller. Concluding remarks are made in 

section 5. 

 

2.  THE TEST RIG PROCESS DESCRIPTION 

 

The system rig is Bytronic Process Control Unit (PCU) 

which is based around a fluid flow process, where flow and 

temperature can be controlled. This reflects a typical process 

control situation such as in the food and drink manufacturing 

and petrochemical industry (Bytronic ltd, 1998). 

In this system a fluid is pumped in a closed path from a sump 

through a cooling fan to a process tank where the fluid is 

heated and then is drained back to the sump. The scheme of 

PCU is shown in figure 1. 
 

 
Fig. 1. Bytronic process control unit. 

 

As shown in fig. 1, the PCU consists of a sump (liquid 

reservoir), a pump, flow meter, cooler, and a process tank 

containing an electrical heating element, temperature sensor, 

stirrer, and a high-level switch for safety. The system is 

connected to a power supply unit that provides the input 

power to all the system elements. Also the process inputs and 

outputs are connected to a computer control module that 

works as an interface between the PCU and PC-based 

controller. The system was modified by replacing the existing 

I/O interface module with a NI PCI-DIO-96 digital I/O to 

enable working in Matlab environment. The overall block 

diagram of the I/O interface system is illustrated in fig. 2. 
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Fig. 2. Overall block diagram of the I/O interface system  

 

The system is considered as a two-input, two output system. 

The inputs are the input DC voltage to the pump, and heater 

power. The outputs are the fluid flow rate, and the fluid 

temperature.  

The input power to the heater element is computer-controlled 

using Pulse Width Modulation (PWM) technique. In fact the 

corresponding control signal manipulates the mark/ space 

ratio of PWM signal which in turn controls the average 

current applied to the heating element. 

 

3. OPEN LOOP SYSTEM IDENTIFICATION 

 

From fluid dynamics, the fluid flow rate depends on the 

pump speed, meaning that the input power to the heater has 

no effect on the fluid flow rate. However, the fluid 

temperature varies with both pump speed and the heating 

power. In addition, the cooling fan has an additional effect on 

temperature. Therefore, the process is complicated in terms 

of the non-symmetrical effect of inputs on the output signals. 

As such, there are two different approaches available for the 

purpose of system identification. In the first option, namely 

approach#1, the plant is considered as two sub-systems 

according to number of outputs, one of which is a Single-

Input Single-Output (SISO) system and the other is a two 

input single output system. Then, each sub-system is 

identified separately and both are combined into one system 

equivalent to the original system (Simani, 2005). In 

approach#2, the plant is identified as a MIMO system (two 

inputs two outputs). Both approaches have been considered 

and compared in this paper.  

 

3.1 Approach# 1 to System Identification 
 

In this section, each subsystem in approach#1 is introduced 

and identified then these subsystem models are merged into 

an equivalent multivariable model.  
 

Approach#1, Subsystem#1. 

For this subsystem the input is the DC voltage to the pump 

and the output is the fluid flow rate.  

Prior to the system identification several initial open loop 

tests must be performed to determine the characteristics of 

the system and design the excitation signal (Ljung, 1999), 

based on which the system’s time constant is 700 ms and its 

cut-off frequency is 6 rad/sec. As such, the sampling time is 

chosen as 125 ms and the frequency band for the excitation 

signal is chosen accordingly. 

The input to the pump can vary between 0 and 12 V. The 

Input-Output (I/O) curve for this subsystem shows that the 

system can be considered as linear when working between 3 

and 9 V. 

According to the previous tests discussed, the excitation 

signal must vary between 3-9 V in amplitude and its power 

spectrum must be flat for frequencies from 0-6 rad/sec. Chirp 

and multi-sine signals can be considered as the excitation 

signals satisfying mentioned requirements (Ljung, 1999).  

 

Identification using Chirp input (experiment1).  

Chirp signal is a sinusoidal signal with a continuously 

changing frequency over interval 1: 2Z Z Z: d d  within time 

period 0 t Md d . It is represented as in (1) (Ljung, 1999). 

2( ) cos( ( ) /(2 ))
1 2 1

u t A t t MZ Z Z � �                        (1) 

where A is the amplitude of the signal. 

In the case studied a Chirp input voltage with linear swept-

frequency from 0 to 6 rad/sec over a time period of 100 

seconds is applied as the excitation signal. Using the input-

output data, the system is modeled using Output Error (OE) 

method (Ljung, 1999) and a second order model (m1) is 

obtained as in (2). Estimated parameters are in table 1. 

1 2 1 2( ) ( 1) ( 2) ( 1) ( 2)y i a y i a y i b u i b u i � � � � � � � �      (2) 

 

Identification using multi-sine input (experiment2)  

In this case the excitation signal considered is a sum of 

sinusoids as in the following equation. 

1

( ) c o s ( )
d

k k
k

u t a t kZ I
 

 �¦                         (3) 

where kI  is chosen by Schroeder phase choice (Ljung, 

1999). 

The excitation signal is applied for 600 s to the system under 

consideration. Similar to Chirp session, OE method is 

considered with the I/O data from 300-400 s and a second 

order model (m2) is obtained as in (2). The model parameters 

are given in table 1. 
 

Table 1 model parameters for each experiment 

model a1 a2 b1 b2

 m1
-0.9078 

(±0.04621)

0.1557 

(±0.03499) 

0.0136 

(±0.001813)

0.0336 

(±0.003953)

m2
-0.8323 

(±0.04477)

0.1378 

(±0.03306) 

0.0167 

(±0.002262)

0.0472 

(±0.004665)

 

Subsystem#1 Model Validation 

The two sets of output data generated by each experiment 

mentioned above are used to validate the two models 

obtained. The Mean Square Error (MSE) and models fit for 

each set of output data are listed in table 2. 
 

Table 2. MSE and fitness for each model with each output 

data 

Experiment1  Experiment 2 
 

MSE Fitness MSE Fitness 

m1 0.00054 91.89%  79.63% 

m2  72.92% 0.00017 90.13% 

 

As in table 2, the two subsystems are subjected to a cross 

validation, i.e., to validate the model generated using I/O data 

of certain experiment with the data generated from the other 
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experiment. Fig. 3 and 4 show the error signals for cross 

validation between the measured output and the simulated 

output of each model. Results confirm that m1 can be 

regarded as the final model in approach#1. 
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Fig. 3. Cross validation error for model m1  
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Fig. 4. Cross validation error for model m2

 

Approach#1, Subsystem#2 

The second subsystem will be formed by DC voltage to the 

pump ( ) and the power to the heater ( )as inputs and the 

fluid temperature as the output. It must be noted that while 

such inputs can directly contribute to increase the 

temperature, decreasing temperature will be associated with 

the temperature difference between the fluid and the air 

surrounding, and conductivity of the cavity. Therefore, to 

identify this subsystem two models must be taken in account; 

one for increasing temperature, and the other for decreasing 

temperature. In this paper the first model will be considered. 

Open loop tests result in time constant about 300 s which is 

higher than subsystem#1 (700 ms). The sampling time will be 

the same as subsystem#1, i.e., 125 ms. 

1u 2u

 

Subsystem#2 identification 

The excitation signals are chosen to be multi step signals as 

follows.  

1

3.765 0 400

6.118 400 800

8.455 800 1200

t

u t

t

d �
°

 d®
° d �¯

�                       (4-a) 

2
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t

t
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d �
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 ®
d �°

° d �¯

                                  (4-b) 

The output of subsystem#2 subjected to (4-a,b) is shown in 

fig. 5. 
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Fig. 5. Output fluid temperature of the system 

According to this experiment the OE model of this subsystem 

is obtained as follows. 
4 4 4

1 1 2 2

1 1 1

( ) ( ) ( ) ( )n m k

n m k

y i a y i n b u i m b u i k
   

 � � � � � �¦ ¦ ¦          (5) 

where the MSE of that model is 0.016 and: 

a1=-1.558,   a2=-0.4417,   a3=1.558,   a4=- 0.5584 

b11=-0.0346, b12=0.0345, b13= 0.0346, b14=-0.0345 

b21=0.0046, b22=-0.0114, b23= 0.0091, b24=-0.0023 

 

Subsystem#2 Model Validation 

Two sets of output data are used to validate the model, one 

using the same output data used to produce the model 

(experiment3), and the other using fresh data from another 

new experiment (experiment4). For this new experiment; the 

first excitation input is as in (4-a), while the second 

excitation input is shown in (6).  

1u

2u

2

0 0 200

7.843 200 600

23.53 600 1000

39.215 1000 1200

t

t
u

t

t

d �
° d �°

 ®
d �°

° d �¯

                         (6) 

The resulting error signal between the measured output and 

the model simulated output associated with the above 

mentioned experiments are illustrated fig. 6 and 7. The model 

validation gives 95.52% fitness for experiment3, and 96.38% 

for fresh data of experiment4, confirming the validation of 

experiment4 (see fig.7). 

0 200 400 600 800 1000 1200
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time(s)

E
rr

or

 
Fig. 6. The model error signal with output data from 

experiment3  
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Fig. 7. The model error signal with output data from 

experiment4 
 

3.2 Approach# 2 Identification of Multivariable model 
 

In this section, the plant is regarded as a MIMO system and 

results for the identification are investigated. In this case, the 

excitation signals are chosen as (4-a) and (6) and two models 

are obtained using system identification toolbox of Matlab , 

namely a multivariable ARX model (M1) of 16 free 

parameters, and a state space model (M2) of 4 states and 44 

free parameters (see (Ljung, 2007) for model structure).  

 

Multivariable Model Validation 

To validate the multivariable models obtained directly in 

section 3.2 (M1, M2) and the multivariable model obtained by 
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merging the subsystem models obtained in section3.1 in one 

model equivalent to the multivariable model (M3), the output 

data used in section 3.2 to produce models M1, M2 is 

employed to validate the MIMO models M1, M2,M3.    Fig. 8 

and 9 show the output responses as measured from the 

experiment and the simulated output responses of each model 

(with mean removed from each).  

0 200 400 600 800 1000 1200
−1.5

−1

−0.5

0

0.5

1

Time (s)

F
lo

w
 R

a
te

 (
l/
m

in
)

 

 

state space model (78.49%)

ARX model (78.19%)

measured output data

moodel comined from sub−models (73.98%)

 
Fig. 8. Flow rate (output 1) validation. 
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Fig. 9. Fluid temperature (output 2) validation  

 

Although the output data used are fresh data for M3 and not 

fresh for M1 and M2, figures show that the model M3 is the 

best model obtained in terms of output tracking. In addition, 

the fitting table 3 confirms the effectiveness of M3 model. 

 

Table 3. Fits for different models 

Fits 
model 

Flow rate (Output1) Fluid temperature (Output2) 

M1 78.19% 72.5% 

M2 78.49% 75.92% 

M3 73.98% 94.38% 

 

4. SYSTEM CONTROL 
 

The main purpose of this section is to design a local optimal 

controller for the PCU (Lyantsev, et al., 2004) and to 

compare it with a genetically tuned PID controller. For 

simplicity, the pump subsystem is considered first. 

 

4.1 Pump control 

 

Fig. 10 shows the closed loop system step response.  
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Fig. 10. The reference input and the closed loop response of 

the pump  
 

From this figure it is clear that the system needs to be 

controlled using PI controller. 

 

Genetically tuned PI controller 

GA is used for tuning the controller parameters ( ,P IK K ) 

(Fleming and Purshouse, 2002; Kwok and Wang, 1994). The 

multi-objective function is used to minimize the MSE of the 

tracking error and eliminate the overshoot. Fig. 11 shows the 

response of the pump controlled by PI controller when the 

reference input is changed from 0.8 l/min to 1.2 l/min. Two 

curves illustrated are obtained from simulated model, and the 

real PCU system. 
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Fig. 11. The pump response with PI controller (simulation, 

PCU) 

 

The difference observed between the simulated model and 

the real system is because modeling error and uncertainty are 

involved in the controller parameters tuning made by GA. As 

such, the controller does not show a robust performance. 

Some fine tuning to reduce the IK  parameter leads to the 

following change in PCU response as in fig. 12.  
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Fig. 12. The output response after fine tuning of IK  

 

The Local Optimal Controller (LOC) Design 

The local optimal controller is designed and implemented as 

proposed in (Lyantsev, et al., 2004). For the pump model 

(SISO case) two states ,  are considered 

and the following equation is driven from the model in (2). 

1x =y(i-1) 2x =y(i-2)

1 2 1 2( 1) ( ) [ ( ) ( 1) ( ) ( 1)]y i y i h y i y i u i u iDG DG EG EG� �  � � � � �      (7) 

where h is a weighting coefficient indicating the level of 

uncertainty involved in the plant dynamics (Lyantsev, et al., 

2004).  

From (7), u(i) can be obtained as a summation of the system 

input and output with different time delays and different 

coefficients. Fig. 13 shows the block diagram of the system 

with local optimal controller as in (Lyantsev, et al., 2004). 

The existing LOC approach as in fig. 13 is not well-suited for 

non-minimum phase systems as it leads to closed loop 

instability.  
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Fig. 13. Block diagram of the local optimal controller. 

 

As such, modification is made to this method by using 

decremented difference ( )u iG  and integrating it by a discrete 

time integrator to obtain u(i). Fig. 14 illustrates the 

modification made in this paper. 

 

 
Figure 14. Modified block diagram of the local optimal 

controller. 
 

Fig. 15 shows the response of the model with the proposed 

modified LOC using Simulink for different values of the 

controller parameter, namely h (h=2, 3, 4, and 5). Obviously, 

increasing h result in a better tracking performance of the 

model under control and less overshoot can be observed but 

longer rise time obtained. 

15 20 25 30
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Time (s)

F
lo

w
 r

a
te

 (
l/
m

in
)

 

 

h=2

h=3

h=4

h=5

 
Fig. 15. Simulated output response for different h 

 

For h=5 the controller is designed for PCU system and figure 

16 shows the output response for both real and simulated 

system. From this figure it is clear that the real and simulated 

outputs are approximately identical. 
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Fig. 16 The output response for both real and simulated 

system at h=5 

 

Comparison of PI and the modified LOC 

A frequency domain comparison between GA-based PI and 

the modified LOC is made as shown in fig. 17. The gain 

margin and phase margin for each controller is shown in table 

4. 
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Fig. 17. Bode plot of the pump with PI and local optimal 

controllers. 

 

Table 4. Phase and gain margin of each controller 

Controller type Gain margin Phase margin 

h=2 1.3731 46.6198 

h=3 2.0596 63.9724 

h=4 2.7461 71.0365 

h=5 3.4326 75.0118 

 

Local 

optimal 

control 
h=10 6.8653 82.6261 

GA based PI controller 6.6417 91.2797 

 

4.2 Multivariable system control 

 

In this section the LOC and the genetically tuned PID will be 

designed, implemented, and compared in terms of 

performance on PCU system. 

 

Genetically tuned PID Controller 

To design PID controller for the multivariable system under 

consideration, two techniques were considered.  

1) To design a compensator (decoupler) so that the 

multivariable system is became as two SISO systems then a 

diagonal matrix of PID controllers is designed (Skogestad, 

and Postlethwaite, 2005; Miklosovic and Gao, 2005). 

However, the decoupler increases the order of the system so 

this technique will not be used here. 

2) To design a full matrix of digital PID controllers without a 

decoupler as expressed in Z-domain in (8). 

1 111 12

11 11 12 121 1

1 121 22

21 21 22 221 1

(1 ) (1 )
1 1

( )

(1 ) (1 )
1 1

I I

P D P D

I I

P D P D

K K
K K Z K K

Z Z
C s

K K
K K Z K K

Z Z

� �
� �

� �
� �

Z

Z

ª º
� � � � � �« »� � « »

« »� � � � � �« »¬ � � ¼

             (8) 

A GA program is used to tune the twelve controller 

parameters represented in (8) using multi-objective function 

to minimize MSE between the reference input and the 

system’s output and to have no over shoot (Fleming and 

Purshouse , 2002; Kwok and Wang, 1994).  

 

The modified LOC 

The local optimal controller is designed according to 

(Lyantsev, et al., 2004) for the models obtained for each 
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output in (2) and (5). Therefore, the (9), (10) can be obtained 

for the local optimal controller of this multivariable system. 

1 1 1 11 1 21 1 11 1 21 1( 1) ( ) [ ( ) ( 1) ( ) ( 1)]y i y i h y i y i u i u iD G D G E G E G� �  � � � � �      (9) 

3 3 3

2 2 2 2 2 2 1 2 2

0 0 0

( 1) ( ) [ ( ) ( ) ( )]n m k

n m k

y i y i h y i n u i m u i kD G E G J G
   

� �  � � � � �¦ ¦ ¦     (10) 

By solving these two equations for 1( )u iG and 2 ( )u iG  the 

LOC can be constructed as in fig. 14. 

 

Multivariable control results 

Fig. 18 and 19 show the two output responses for the real 

system using genetically tuned PID controller and local 

optimal controller respectively, where the reference input for 

the flow rate is changed from 0.8 to 1.2 l/min at t=500 s and 

the reference input for the fluid temperature is changed from 

room temperature to 60 degree at t=20 s.  
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Fig. 18. Multivariable outputs for the PID controlled system 

(12 parameters tuned genetically) 
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Fig. 19. Multivariable outputs for the local optimal controlled 

system (h1=5, h2=10) 

 

It is clear from these two figures that approximately the same 

results are obtained. However, from design simplicity point 

of view, the local optimal controller is simpler and it has only 

two integer scalar parameters (h1, h2) to be tuned (Lyantsev, 

et al., 2004). Because of its simplicity LOC can easily be 

designed or adjusted in automatic mode. 

The oscillations for the output temperature in both types of 

controllers (60±1) are due to the sensor sensitivity. 

 

5. CONCLUSION 
 

A modified LOC associated with system identification has 

been proposed. The best system identification results are 

obtained by approach#1 where two subsystems are formed 

and merged into a MIMO model. The proposed modified 

LOC performs significantly more efficient than genetically 

tuned PID in terms of robust performance. In addition, 

compared to a genetically tuned PID, the modified LOC 

scheme proposed is considerably easier in design due to less 

numerical computations and parameters to be tuned. 

Furthermore, when non-minimum phase systems are 

concerned, the proposed modified LOC seems to be the most 

appropriate substitute for existing LOC approach. The 

method has been verified and confirmed by a considerable 

amount of systems simulation and implementations on 

practical PCU systems. 
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