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Abstract: In this paper, a sensor model-based fault diagnosis method for a particular class of nonlinear 

systems is developed. A polynomial matrices representation is considered for modeling the dynamic 

behavior of a class of nonlinear systems. According to nonlinear representation via a polytopic 

transformation, the nonlinear faulty system can be considered as a nonlinear system with the presence of 

additive unknown inputs. Under fault isolation conditions, the main contribution of the paper relies on the 

use of an accurate observer that performs fault detection and isolation over the whole operating range of 

the nonlinear system. The effectiveness and performance of the proposed method are illustrated via real 

tests on a winding machine subject to sensor faults. 

 

1. INTRODUCTION 

Process monitoring is necessary to ensure effectiveness of process 

control and consequently a safe and a profitable plant operation. 

Sensor or actuator failure, equipment fouling, feedstock variations, 

product changes and seasonal influences may affect controller 

performance and as many as 60% of industrial controllers problems 

(T.J. Harris et al., 1999). Fault Detection and Isolation (FDI) refers 

to the task of inferring the occurrence of faults in a process and 

finding the root causes of the faults with various strategies according 

to the knowledge on the system: quantitative models 

(Venkatasubramanian et al., 2003a), qualitative models 

(Venkatasubramanian et al., 2003b), historical data 

(Venkatasubramanian et al., 2003c). Among quantitative models, 

fault diagnosis based on analytical models is developed for exact 

and uncertain linear mathematical description of the system, several 

books are dedicated to these topics such as (Gertler, 1998), and 

(Chen and Patton, 1999). FDI for nonlinear systems remains a 

challenge due to the problem of discriminating between disturbances 

and faults through a wide range of operating conditions. Different 

techniques based on an exact knowledge of the nonlinear system 

allow to generate residuals insensitive to fault by specific 

decoupling methods (Alcorta-Garcia and Frank, 1997), (Kinnaert, 

1999) or geometric approach (De Persis and Isidori, 2001), 

(Hammouri et al., 2001). 

The aim of this paper is to develop a sensor fault diagnosis method 

for nonlinear system with polynomial matrices state space 

representation. In order to achieve this objective, it should be 

emphasized that the approach presented in this paper relies on a 

recent method presented in (Rodrigues, 2006). Thus, this paper 

addresses an original contribution that could allow to detect and 

isolate sensor fault in nonlinear systems based on a polynomial to 

polytopic transformation. According to the associated faulty 

polytopic state space representation, Polytopic Unknown Input 

Observers is designed to generate residuals decoupled to sensor 

faults. 

Based on appropriate observers, the developed technique enables to 

supervise nonlinear systems under polynomial matrices state space 

representation through an accurate bank of residuals within a 

Generalized Observer Scheme (GOS). The effectiveness and 

performances of the technique are illustrated on a winding machine 

example. 

The paper is organized as follows. In section 2, we state the problem 

under consideration. Section 3 is devoted to the design of the sensor 

fault diagnosis module. Section 4 gives some experimental results to 

illustrate the effectiveness and performance. Conclusion and further 

work are discussed in the last section. 

2. PROBLEM STATEMENT 

Consider the following discrete nonlinear system: 
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where the system matrix A and the control matrix B are assumed to 

be linear polynomial matrices depending on a bounded positive time 

varying parameter noted kλ  ( maxkmin λλλ <<<0 ) and 

verifying: 
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where G stands for A or B, α  defines the polynomial degree and 

[ ]α,,,i L10∈∀ , 
nn

iA
×ℜ∈  and 

pn
iB

×ℜ∈  are constant 

matrices. Matrix 
nm

C
×ℜ∈  defines the output matrix, 

n
x ℜ∈  is the 

state vector, 
p

u ℜ∈  is the control input vector and 
m

y ℜ∈  is the 

output vector 

Due to abnormal operation or material aging, sensor faults can occur 

in the system. A sensor fault can be represented by additive and/or 

multiplicative faults as follows: 
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 0jk
f
j www += β  (3) 

where jw  and 
f
jw  represent the jth normal and faulty 

measurements (i.e., kk yw = ), 0w  denotes a constant offset and 

10 ≤≤ kβ  denotes a gain degradation of the jth sensor (constant or 

variable).  

Therefore, when a sensor fault occurs, the discrete state space 

representation defined in (1) becomes as: 
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where F  represents the sensor fault distribution matrix and f  is 

the faulty vector. 

The presence of such faults may lead to performance deterioration, 

instability of the system or the loss of the process. The next section 

is dedicated to the development of an efficient model-based fault 

diagnosis method in order to provide an efficient monitoring tool in 

the operator’s decision. 

3. MODEL-BASED FAULT DIAGNOSIS DESIGN 

3.1  From polynomial to polytopic faulty representation 

As recently proposed by (Hetel et al., 2007), each polynomial 

matrice can be defined on a convex polytope with 1+α vertices 

G
j∆  calculated as follows: 
















++++=∆

=

++++=∆

++++=∆

++++=∆

+
0

0
1

1
2

21

0
0

1
1

2
23

0
0

1
1

2
22

0
0

1
1

2
21

maxmaxmaxmax
G

maxmaxmaxmin
G

maxmaxminmin
G

maxminminmin
G

GGGG

GGGG

GGGG

GGGG

λλλλ

λλλλ

λλλλ

λλλλ

α
αα

α
α

α
α

α
α

L

MM

L

L

L

 (5) 

The convex polytope formulation is achieved by the computation of 

parameter ( )λρ j  ( [ ]110 +∈∀ α,,,j L ) established following the 

recursive algorithm: 
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Therefore parameter ( )λρ j  lie in a specific convex set: 
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Whereupon, [ ]110 +∈∀ α,,,j L , 
G
j∆  defines a convex polytope 

such that: 
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Based on the previous equation, the faulty discrete state space 

representation (4) can be expressed as a polytopic system: 
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with [ ] 0110 ≥+∈∀ j,,,j ραL  ( )∑
+

=

=
1
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λρ

j

j  with 

maxkmin λλλ <<<0 . 

3.2  Residual generator synthesis: unknown input observer 

Before designing the residual generator, a preliminary work consists 

in rewriting system (8) using Park et al. approach (Park et al., 1994). 

These authors have developed a technique such that a system 

affected by a sensor fault can be written as a system represented by 

an actuator fault. Assume a new pseudo-fault input kf  such as: 

 kkk fff +=+ γ1  (9) 

where 
qq×ℜ∈γ  defined by ( )q,,diag γγγ K1=  is always satisfied 

with mq ≤<0 . 

From (8) and (9), a new faulty polytopic system representation 

including this auxiliary state can be introduced: 
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[ ]FCC =  ( 0  means the zero matrix and I the identity matrix 

of appropriate dimensions).  

In order to provide efficient fault detection and isolation, the 

synthesis of a residual decoupled to sensor fault is dealt with a 

Polytopic Unknown Input Observer as proposed by (Rodrigues, 

2006) in a multi-model framework. It should be noted that Polytopic 

Unknown Input Observer was recently proposed in (Millerioux and 

Daafouz, 2004) for communication purposes but not for fault 

diagnosis. 

Under the assumptions that the necessary conditions for the 

existence of an Unknown Input Decoupled Observer, defined by 

(Hou and Muller, 1994) in linear case, are fulfilled 

cdt i) the number of measurements is greater than the number of 

unknown inputs i.e. mq ≤ (always fulfilled with sensor faults); 

cdt ii) unknown input matrix is a full column rank i.e. equal to 

q . 

a Polytopic Unknown Input Observer associated to (10) is defined 

such that: 
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or also with notation ( )( ) ( )( )∑
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where x̂  denotes the estimated state and z  the observer state 

vector.  

The error estimation kkk x̂xe −=   between (10) and (12) is 

equivalent to: 
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By taking into account the gain decomposition ( )kK ρ  such as 

( ) ( ) ( )kkk KK ρρρ Π+= 1
, (12) leads to: 
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Consequently, the estimation error and the residual is equivalent to: 
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Thus, ( )kS ρ , ( ) ( ) ( )kkk KK ρρρ Π+= 1
, 

*H and T  matrices 

of the Polytopic Unknown Input Observer (12) are designed to be 

insensitive only to kf  such as: 
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The synthesis of the Polytopic Unknown Input Observer is realized 

through the resolution of equations (16) under the condition that 

( )kS ρ  is stable. The necessary and sufficient conditions for the 

existence of a Polytopic Unknown Input Observer are directly 

extended from the linear case presented in (Chen and Patton, 1999): 

i) mqFrankFCrank ≤== )()( ; 

ii) [ ]11 +∈ α,,j L , ),( CAT j are detectable pairs. 

If condition i) is fulfilled, then : 

 ( )+= FCFH
*

 (17) 

Condition ii) ensures that a gain ( )kK ρ1
 can be synthesized in 

order to obtain a Hurwitz matrix ( ) ( ) ( )CKATS kkk ρρρ 1−= in 

order to generate an estimation error and consequently a residual 

vector which tends asymptotically to zero in fault-free case 

otherwise in faulty case. 

If the previous conditions hold true, equation (15) becomes: 
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The definition of Polytopic Unknown Input Observer requires the 

design of a specific gain ( ) ( ) ( )kkk KK ρρρ Π+= 1
 to generate a 

residual which is decoupled from disturbances. ( )kρΠ  is 

determined as a solution of (16) whereas the gain ( )kK ρ1
 should 

be synthesized in order to obtain a Hurwitz matrix ( )kS ρ  

equivalent to: 

 ( ) ( ) ( )CKATS kkk ρρρ 1−=  (19) 

In order to achieve this objective for convex sets, a classical pole 

assignment by LMI (Oliviera et al., 1999) (Chilali and Gahinet, 

1996) is considered in this paper. Pole assignment by LMI ensures 

the polytopic observer stability and its poles will be constrained in a 

specified and appropriate region of the complex plane (Rodrigues et 

al., 2005). 

3.3  Generalized polytopic unknown input observer scheme 

While a single residual is sufficient to detect a fault, a set of 

residuals is required for fault isolation. Several methods have been 

proposed in the literature to generate structured residuals and to 

perform the fault diagnosis (Isermann and Ballé, 1996). The basic 

idea of the proposed approach is to reconstruct the state of the 

system from the subsets of measurements. The objective is to build a 

bank of observers so that each is driven by all inputs and all outputs 

except the jth measurement variable. Signal jy  is not used in the jth 

observer due to the fact that jy  is assumed to be corrupted by the 

fault and therefore does not carry the relevant information. This 

fault diagnosis scheme is similar to the well known Generalized 

Observer Structure (GOS) proposed by (Frank, 1990). According to 

the proposed approach, the bank of unknown input observers 

generates an incidence matrix as follows where each column is 

called the coherence vector associated to each fault signature: 

Table 1. Incidence matrix  

Fault  

 
0F  1F  2F  •••  

mF  

      

1y
r  0 0 1 1 1 

2y
r  0 1 0 1 1 

•••  0 1 1 0 1 

my
r  0 1 1 1 0 
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Therefore, without ( 0F ) sensor faults, the bank of decoupled 

observers generates some zero-mean residuals. Otherwise, the 

Polytopic Unknown Input Observers, insensitive to a sensor fault 

( jF ), is easily isolated based on the GOS structure. Decision 

making is then carried-out according to an elementary logic 

(Leonhardt and Ayoubi, 1997) which can be described as follows: a 

fault indicator is equal to one if the residual vector generated by the 

bank is equal to a column of the incidence matrix and is equal to 

zero otherwise. The element which is associated with the indicator 

being equal to one is then declared to be faulty. 

In the next section, an example is provided in fault-free case and 

sensor faulty case to illustrate the performance and limitations of the 

developed method. 

4. THE WINDING MACHINE 

4.1  System description 

The winding process is composed of a plastic web and three reels, 

respectively called the unwinding, pacer and rewinding reels but the 

radius are unmeasurable. Each reel is coupled with a DC-motor via 

gear reduction. The angular speed of each reel (S1, S2, S3) and both  

tensions between the reels (T1, T3) are measured by tachometers and 

tension meters. Each motor is driven by a local controller composed 

of one or two PI controllers. The first control loop adjusts the motor 

current (I1, I2, I3), and its integration time constant is about 40 ms, 

while the second loop controls the angular speed with an integration 

time constant equal to approximately 200 ms. The set-points of 

those controllers ( )*

3

*

3

*

2

*

2

*

1

*

1 /,/,/ SISISI  are computed by a 

programmable logic controller (PLC) in order to control both 

tensions and the linear velocity of the strip (300 m length, 5 cm 

broad and 0.2 mm thickness). Under specific experimental 

investigation which lasts 40 minutes, the radius of the unwinding 

reel varies from 230 to 50 mm.  A real-time development 

environment (Simulink Real-Time Workshop + dSPACE) based on 

a PC computer is used instead of the PLC to improve new control 

law for instance. System inputs and outputs are given in the interval 

[ ]%1000  corresponding to [ ]V01V10 +− . 

 

PC with  

DSPACE board 

Motor 

variator 1 

Motor 

variator 2 

Motor 

variator 3 

Traction reference 1 Traction reference 3 

Speed reference 

T1 

1 S 

T3 

2 S 

DAC3 

ADC3 

ADC1 

DAC1 

ADC4 

ADC2 DAC2 

 

Fig.1. Architecture of the winding process control. 

4.2  Nonlinear state space representation 

As proposed by (Ponsart and Theilliol, 2004), the dynamic 

behaviour of the winding process can be represented with a 

dependence on the unwinding reel radius R : 
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where ( )ek Tkxx = , with sampling period s1.0=eT , and 

[ ]TTSTxy 321== , [ ]TUUUu 321= . Each coefficient of 

matrices A and B is expressed in the following polynomial form 
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where ( )6,,0, K=σλσ
ji  are constant values of polynomial form.  

For technical reason, the radius is estimated via the following 

expression: 

 
kkk S

h
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where h is the strip thickness. 

Sensors faults can occurred only in [ ]TTSTxy 321== . 1S  

which defines the angular speed of reel 1, is assumed to be fault 

free. According to §3.1., the discrete state space representation (20) 

of the winding machine can be expressed as a polytopic system: 

 
( )( )










+=

+=∑
=

+

kkk

j

kjkjkjk

Ffxy

uBxARx

7

1

1 ρ
 (23) 

with [ ] 0710 ≥∈∀ j,,,j ρL  ( )∑
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j Rρ  and 

( ) ( )mmRRmmR maxkmin 210700 =<<=< . 

4.3  Control loop 

Based on the polynomial model, an input-output linearizing control 

law ((Fossard and Normand-Cyrot, 1995), (Isidori, 1995)) has been 

used to control this unstable process in open loop. This method is 

straightforward to apply to winding machine and ensures a suitable 

control of traction and speed. The controller design in the classical 

input-output linearizing form is composed of two main parts:  

- a linearizing state feedback which linearizes polynomial model 

and decouples MIMO system into several SISO sub-systems, 

- a stabilized state feedback. 

Therefore, each decoupled sub-system is equivalent to an exact 

delay such as: 

 1,, −= kiki vy  (24) 

where [ ]3,,1 K∈i  represents the number of the output and of the 

new input v. 

To ensure closed loop stability, a proportional output feedback is 

applied to each decoupled sub-system. Then, the discrete input-

output transfer is expressed as: 
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where the gain stabilisation dynamic is adjusted by Ki and the 

reference input is 
refiy , . 

For illustration purposes, different scenarios have been conducted 

under simulated environments and are presented in the next 

paragraph. 

4.4  Results and comments 

For the winding machine, the conditions considered in §3.2 are 

fulfilled, and a generalized polytopic unknown input observer 

scheme is tested in the fault-free and the faulty cases. Various tests 
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are presented in this section for different values of radius R in order 

to illustrate the effectiveness and performance of the FDI method. 

First, the fault free case is considered for the real process. The 

output responses to reference variations are illustrated in Fig 2 

where step responses are considered for a range of 150s with 10% of 

their corresponding operating values. The dynamic behavior of the 

outputs demonstrates that the disturbances rejection is synthesized 

correctly. Indeed, it can be verified that the static errors are 

cancelled. Moreover, the outputs are decoupled. 

 

60 80 100 120 140 160 180 200 220

0.4

0.6

60 80 100 120 140 160 180 200 220

0.4

0.6

60 80 100 120 160 180 200 220

0.4

0.6

a

b

radius

c

 
Fig.2. Fault free case: Responses (a-T1, b-S2, c- T3) to reference 

change versus radius kR  

These results are similar whatever the value of the radius. It can be 

noted that the residual norm vector issued from the bank of 

Polytopic Unknown Input Observer insensitive to a specific sensor 

fault are close to zero. 

60 80 100 120 140 160 180 200 220
0

0.02

0.04

60 80 100 120 140 160 180 200 220
0

0.02

0.04

60 80 100 120 radius 160 180 200 220
0

0.02

0.04

1T
r

2S
r

3T
r

 
Fig.3. Residual vector norms in Fault free case 

A sensor fault on the tension 1T  is supposed to occur and disappear 

at different times. As defined in (2), a constant gain on the tension 

1T   is created and added with 0=β  and 050.0 =β . This bias can 

be observed in Fig 4. The control law tries to cancel the static error 

created by the corrupted output. Consequently, the real output is 

different from the reference input as illustrated in Fig 4.  

60 80 100 120 140 160 180 200 220

0.4

0.6

60 80 100 120 140 160 180 200 220

0.4

0.6

60 80 100 120 160 180 200 220

0.4

0.6

a

b

radius  
Fig.4.a. Sensor faulty case: Responses (a-measured T1 and realT1,  

b-S2, c- T3) to reference change versus radius kR . 

 
Fig.4.b. Sensor faulty case: Response (a-T1) to reference change 

versus radius kR  (Zoom around )mmR 100≈  

According to the incidence matrix defined in the previous section, 

only the Polytopic Unknown Input Observer synthesized in order to 

be insensitive to fault on the tension provides a residual vector equal 

to zero means as presented in Fig 5. 

 
Fig.5. Residual vector norms in Faulty case 
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The results show that the bank of generalized polytopic unknown 

input observer is very effective in detecting and isolating the fault 

for the whole operating conditions. The residual norm vector should 

be evaluated through a classical statistical threshold test in order to 

generate alarms for the operating system. 

The generalized polytopic unknown input observer scheme is able to 

indicate which sensor is faulty and represents an efficient tool in the 

operator’s decision winding process. 

5. CONCLUSION 

In this paper, a sensor model-based fault diagnosis method for a 

particular class of nonlinear systems has been developed. Using a 

polynomial to polytopic transformation, Polytopic Unknown Input 

Observers that provide decoupled residuals have been synthesized 

and designed through an appropriate bank in order to detect and 

isolate sensor faults over the whole operating conditions. Moreover, 

the experimental results dedicated to web transport process clearly 

show that sensor faults are detected, isolated thanks to the accurate 

fault diagnosis module. Based on fault diagnosis module, human 

operator can access information on the health of the process in order 

to recognize an abnormal behavior and to keep it safe.  
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