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Abstract: An analysis of the system identification methods have been carried out and a new alternative 
approach is proposed in order to estimate models for heave, pitch and roll dynamics of a high speed craft. 
As starting point, a first approach resolves the identification subject as an optimization problem to fit the 
best model, and uses genetic algorithms and nonlinear least squares with constraints methods applied in the 
frequency domain. The second and definitive one suggests a new parameterization which facilitates 
obtaining high quality starting values and avoids non-quadratic functions in the cost function. At last it is 
shown an example in which the two approximations are applied and compared. 

 

1. INTRODUCTION 

One of the most important steps in the control of process is 
the identification of an adequate model of a continuous linear 
system. The suitability depends strongly on the particular 
application of the system. 

The response of a ship advancing in a seaway is a 
complicated phenomenon involving the interactions between 
the vessel dynamics and several distinct hydrodynamic 
forces. The study is focused on a fast ship advancing at 
constant mean forward speed with arbitrary heading in a train 
of regular sinusoidal waves. All ship responses are non linear 
to some extent, but experimental and theoretical 
investigations have shown that a linear analysis will yield 
good predictions over a wide variety of sea conditions. 

The past decade has seen a growing interest on high speed 
crafts for both cargo and passenger transportation. Different 
designs have been considered, and a significant attention has 
been focused on fast mono-hull displacement ships. One of 
the objectives in the design is passenger comfort and vehicle 
safety. Vertical accelerations associated with roll, pitch and 
heave motions are the main cause of motion sickness. For 
that reason, a first goal is to damp these three movements. 

Therefore, it is necessary to build mathematical models of the 
dynamical system for the design of a controller which 
achieves the reduction of the heave, pitch and roll motions, 
and consequently reduces of the motion sickness index. 

As an initial study, previous researches of the work group 
have studied the longitudinal and transversal dynamics 
separately. Firstly, heave and pitch motion for the case of 
head seas (angle of incidence μ=180º) have been studied 
(Aranda et al., 2004a), then actuators are modeled and 
different controllers are designed (Aranda et al., 2002a, 

2002b, 2005; Cruz et a., 2004) in order to achieve heave and 
pitch damping and with successful results. Secondly, in the 
same way, the rolling response has been modeled, with the 
design of actuators and controllers for the case of lateral 
waves (μ=90º) (Aranda et al., 2003, 2004b). 

In the present work the study has been extended to the 
analysis of heave, pitch and roll dynamics with different 
incidence angles between 180 degrees and 90 degrees. 

There are many publications related to the ships modelling 
(Fossen, 2002; Lewis, 1989). In this work modeling is 
obtained from system identification method (Söderström and 
Stoica, 1989; Pintelon and Schoukens, 2001), which is based 
on the observed input-output data. 

As a starting point, the ideas set out in (Aranda et al., 2004a) 
to identify continuous transfer functions of heave and pitch 
modes of a high speed craft with μ=180º are followed, in 
which the problem is set out as a nonlinear optimization 
problem with nonlinear constraints. There, the solution is 
described with a hybrid optimization method (genetic 
algorithms + nonlinear optimization with constraints from the 
Matlab toolbox). However, when this technique extends to 
identification of dynamics with incidence angles different 
from 180º, the obtained models are not too accurate. In 
addition, it is shown that the method does not guarantee the 
best linear approximation, because the non-quadratic 
functions add computational charge. 

Thus, from this first approach, some questions and 
modifications are raised (following the suggestions of 
Pintelon and Schoukens (2001)), in order to obtain models 
more efficiently. There, these new improvements and their 
application are depicted. 

This paper is organized as follows. Firstly it is presented a 
first approach in system identification method, where the 
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criterion of fitness is developed. Secondly, it is seen the 
discussion on identification and the new solution of the 
problem. Finally, an example is shown in order to prove the 
improvement of the new approach. 

2. FIRST APPROACH TO SYSTEM IDENTIFICATION 

The system identification problem is to estimate a model of a 
system based on observed input-output data. This procedure 
involves three basic steps: the input-output data, a set of 
candidate models (the model structure), and a criterion to 
select a particular model in the set, based on the information 
in the data (the identification method). 

2.1 The input-output data 

Experiments in CEHIPAR (El Pardo Model Basin, Spain) are 
made with scaled down replicas (1:25 and 1:40) of the TF120 
ferry. Tests with diverse types of waves, ship speeds and 
different angles of incidence have been made. Also 
CEHIPAR has a simulation program PRECAL, which 
reproduces specified conditions and uses a geometrical model 
of the craft to predict its dynamic behavior. PRECAL solves 
the physical equations of the dynamic of a ship by using the 
Band Theory (Fossen, 2002). The program gives amplitude 
and phase data at different frequencies, and these are the 
experimental input-output data used for the identification. 
Simulations are tried with regular waves, with the following 
characteristics: 

- Natural frequency between the rank [0.393, 1.147] rad/s, 
- Incidence angle μ= 90º, 105º, 120º, 135º, 150º, 165º, 180º, 
- Ship speed 20, 30 and 40 knots. 

Tests consist of excitation of the ship system by the sea wave 
(the input is the wave height (m)). For each type of wave 
(wave frequency and incidence angle), the ship responses are 
measured. In this case, the study is focused on heave, pitch 
and roll modes. Thus, the given outputs are the following 
(BAZAN, 1995): amplitude and phase of the total force of 
heave excitation, amplitude and phase of the total moments 
of pitch and roll excitation, amplitude and phase of the heave 
motion response, and amplitude and phase of the pitch and 
roll motion responses. The block diagram of the system to 
identify is depicted in Figure 1.  
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Fig.1. Block diagram of the system. 

The transfer functions to be modelled are: G1H(s) from wave 
height to heave force, G2H(s) from heave force to heave 
motion, G1P(s) from wave height to pitch moment, G2P(s) 

from pitch moment to pitch motion, G1R(s) from wave height 
to roll moment, and G2R(s) from roll moment to roll motion. 

Based on the principle of linear superposition, it yields that 

}:,:,:{);()·()( 21 RollRPitchPHeaveHZsGsGsG ZZZ == (1) 

Therefore, the given input-output data are used to identify 
directly the transfer functions GZ(s) whose input is the wave 
height and the outputs are the heave, pitch or roll motions; 
and similarly the transfer functions G1Z(s), whose input is the 
wave height, and the outputs are heave force, pitch moment, 
or roll moment. The identification of the transfer functions 
G2Z(s) are made indirectly, by using (1). 

2.2 The criterion of fit 

Once the experiments with the system to model are designed, 
and the obtained input-output data are examined, next step is 
to select and define a model structure and give a criterion of 
fit so that the best model which reproduces the dynamic of 
the ship system more suitably is computed. 

The system identification gives the mathematical model in 
the form of transfer function. Data given by the simulator 
PRECAL are in the frequency domain. Therefore, a 
parametric estimation of the transfer functions in the 
frequency domain will be carried out. 

In this way, consider the general parameterized transfer 
function (2). The estimation of the model consists of the 
fitness of the frequency response or Bode diagram of a 
transfer function with a fixed number of poles and zeros 
(model structure) to the actual measured data. 
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For the identification of the model it is employed a 
parametric method, characterized by the adjustment of the 
collected data to an estimated parameter vector θ, 

),...,,,....,,,( 11111 aaabbbb nnmmm −−+=θ  (3) 

The parameter vector θ is determined as the vector that 
minimizes the sum of squared equation errors. Thus, it is 
defined the cost function J(θ): 

∑ −=
=

N

i
ii jGjGJ

1

2),()()( θωωθ   (4) 

Thus, the parameter vector is obtained such 

( )θθ
θ

Jminargˆ =     (5) 

In order to solve the minimization problem, and consequently 
estimate a transfer function model, the following factors must 
be considered: 

i) A physical insight of the dynamic of the system states that 
at low frequencies roll and pitch responses amplitudes must 
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tend to zero, while the heave response amplitude must tend to 
one. That is 

- Heave: 1)(),( 021 ⎯⎯ →⎯ →ωωω jGjG HH  
- Pitch: 0)( 01 ⎯⎯ →⎯ →ωωjG P            (6) 
- Roll 0)( 01 ⎯⎯ →⎯ →ωωjG R  

that it is translated for the parameter vector θ: 

- 112H1H )(G , (s)G bas =→  

- 0)(G 11P =→ bs             (7) 

- 0)(G 11R =→ bs  

ii) The system must be stable. Thus, to ensure the stability of 
the estimated models the transfer functions are re-
parameterized as 
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with n = nps + npc and 
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Then, the parameters x are obtained by minimizing 

∑ −
=

N

i
ii xjGjG

1

2),()( ωω  subject to (7) and (9) (10) 

Starting values are obtained via a genetic algorithm 
(Michalewicz, 1999) or generated at random. The solution of 
(10) is used as initial guess for a multistep procedure, also 
called alternating variables method (Fletcher, 1991). 

The multistep procedure is motivated by the fact that direct 
measurements of the heave force to heave motion, pitch 
moment to pitch motion, and roll moment to roll motion 
dynamics are not available. Therefore, transfer functions 
G1Z(s) and GZ(s) are directly estimated by minimizing (10). 
The solution given is used to identify the transfer function 
G2Z(s) (Z = H, P or R) by minimizing  

∑ −
=

N

i
biZaiZiZ xjGxjGjG

1

2

21 ),(),()( ωωω   (11) 

subject to (7) and (9). Successively xa is determined for fixed 
xb, and xb is determined for fixed xa, with GZ(jωi) the 
simulated data and Z = H, P or R. 

3. DISCUSSION ON THE IDENTIFICATION METHOD 

In this section some suggestions (Pintelon and Schoukens, 
2004) are made about the method described in the previous 
section, which will give out a new improved approach for the 
identification method. The fundamental questions are raised 
about: the excitation signal and model structure, the 
parameterization of the transfer functions, the choice of the 
starting values, and the multistep procedure. 

3.1 Choice of the excitation signal and the model structure 

Since the heave, pitch and roll dynamics of a ship are 
described by nonlinear differential equations (Kenevissi, 
2003), it is important the choice of the excitation signal. It is 
shown that the frequency response of a system depends on 
the class of excitation signal used. 

It is important that the type and power of the waves used for 
the linear identification experiment (linear approximation of 
the true nonlinear behaviour) coincides with the type and the 
power of the waves that the controller or actuators elements 
should compensate for in real life. 

In this particular case the identification and validation are 
performed with respectively regular (single sines) and 
irregular (broadband signal) waves. The frequency rank and 
height of the sinusoidal signal used belong to the frequency 
spectral and amplitudes of the irregular waves, which are 
those that the real system could find. 

In system identification the determination of model structure 
is an important aspect, so it is necessary to employ methods 
to find an appropriate plant model. In practise identification 
often is performed for an increasing set of model orders. 
Then one must know when the model order is appropriate. 
Concerning this problem of choosing the model structure, the 
following question is raised: In the comparison between the 
frequency response or Bode diagram of the modelled transfer 
functions and the data, it is observed that there is a 
discrepancy in the high frequency range. Thus one can 
wonder whether these differences are due to the intrinsic 
nonlinear behaviour of the heave, pitch and roll motions, or 
to a deliberate simplification of the linear dynamics. 

For that reason, it is proposed that one way of guaranteeing 
that the best (in least square sense) linear approximation has 
been obtained, and therefore, that all the remaining errors are 
then due to nonlinear effects, is the utilization of classical 
model selection criteria such as the Akaike Information 
Criterion (AIC), and the whiteness test of the residual applied 
to the identification data (Ljung, 1999; Söderström and 
Stoica., 1989). 

Therefore, in the new approach of the identification method, 
these criterions are applied in order to ensure the best model 
structure and thus the best linearization. 

3.2 Parameterization issues and starting values 

Originally, in order to ensure the system stability, a re-
parameterization of the transfer functions is carried out (8). 
Consequently the constraint (7) results in a cost function (10) 
that is strongly non-quadratic function of the model 
parameters (for example, the constraint |a1| = |b1| is a strongly 
nonlinear function of x). As a consequence of this 
parameterization, several disadvantages appear: 

- Because of the nonlinear minimization and nonlinear 
constraints, the generation of starting values is non-trivial, 
especially for high order systems. 

- The selection of the model is more complicated since the 
number of real nps and complex conjugate npc poles should 
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be estimated. However, parameterization (2) only needs the 
number of total poles n. 

- The classical derivative based nonlinear optimizers 
(Fletcher, 1991) will degenerate for multiplicities higher than 
one. On the other hand, parameterization (2) does not impose 
nor exclude particular pole positions and pole multiplicities. 

These problems can be avoided as follows: 

- Using parameterization (2), cost function can be written as 
2

1 ),(
),(

)(∑ −
=

N

i
i

i
i jA

jB
jG

θω
θω

ω  subject to (7) and (9) (12) 

Thus, the nonlinear constraint |a1| = |b1| can easily be satisfied 
by minimizing the cost function two times: first subject to 
a1=b1, next subject to a1=-b1, and finally selecting the solution 
with the smallest cost function. 

- Applying the same trick, high quality starting values for 
(12) can be obtained via the linear least squares estimate: 

∑ −
=

N

i
iii jBjGjA

1

2),()(),( θωωθω  subject to (7) (13) 

- Concerning the stability constraint, one possible approach 
for imposing it is during the minimization, as proposed in the 
previous method and in Van Gestel et al. (2001). 

3.3 The multistep procedure 

The multistep procedure proposed in previous section to 
minimize (11) is usually inefficient and is not guaranteed to 
converge to a stationary point. Hence, another proposed 
approach is to minimize simultaneously xa and xb. If 
parameterization (2) is used, this scheme will be easier since 
high quality starting values are available via (13).  

4. THE ALTERNATIVE APPROACH TO THE 
IDENTIFICATION PROBLEM 

In this section it is described the alternative procedure 
developed for the identification of the models, considering all 
the suggestions raised in previous sections. 

4.1. Collecting input-output data 

For each particular case of force, moment or motion of heave, 
pitch and roll responses, initially there are a set of N 
experimental points of amplitude |G(jωi)| and phase 
arg(G(jωi)), for each type of wave, characterized by the 
natural frequency ω0i, with i = 1..N. 

It must be considered that the frequency of oscillation of a 
ship response when a wave with natural frequency ω0 reach 
the ship with an angle μ, is the frequency of encounter ωe, 
which is determined by μωωω cos)/( 0

2
00 Uge −= . 

According to this, the starting point are the experimental data, 
G(jωei), i=1…N, that expressed in binomial form are: 

( ) ( ) ( )( )( ) ( ) ( )( )( )eieieieiei jGjGjjGjGjG ωωωωω arg·sin·arg·cos += (14) 

4.2. Criterion of fit 

As commented, the identification problem is solved as an 
optimization problem. The transfer function to be estimated, 
with m zeros and n poles is (2), where the parameter vector θ 
is given by (3). 

In order to facilitate calculations in the resolution of the 
optimization problem, the parameter vector is redefined in 
terms of the x variable: 

( )mnnn xxxxxx ++= ,....,,,....,, 121   (15) 

Thus, the transfer function is: 
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and then the cost function J(x) is 

∑ −=
=

N

i
ii xjGjGxJ

1

2),()()( ωω   (17) 

The problem is solved with the Matlab optimization toolbox. 

4.3. Constraints 

The constraints of the problem are 

i) |b1| = |a1| for G1H(jωe), G2H(jωe).This condition is translated 
for the parameters vector x into: 

11 xxn =+    (18a) 

ii) |b1| = 0 for G1P(jωe). In order to ensure that this constraint 
is satisfied, it is imposed in the parameter vector x that 

01 =+nx     (18b) 

iii) System stability. This constraint forces the real part of the 
poles to be negative. 

4.4. Starting values 

High quality starting values, i.e., near to the global optimum, 
are basic to reach the convergence point. In the first 
approach, starting values are obtained via a genetic algorithm 
or generated at random. The trouble met in the identification 
of new models with different angles of incidence is that in 
many occasions, due that starting values were not adequate or 
distant from the minimum, the procedure of minimization 
was long and costly. This was intensified when genetic 
algorithms were used, since it is a method based on the 
heuristic that did not give good results in many cases. For 
that reason, it is developed a new method to obtain the 
starting values x0. This method consists of a linear least 
square estimation. From the cost function J(x) expression: 
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Therefore, a problem of least squares is set out. For each 
frequency value ωei, the denominator A(jωei,x) and numerator 
B(jωei,x) are only function of the vector x, and G(jωei) is a 
complex value. Hence, rewriting the above expression leads 
to an equation of the type of a least squares problem: 

0=−⋅ dxC    (21) 

where x is the parameters vector (the starting values) to 
estimate, C is a matrix with N files and n+m columns, and d 
is a column vector with n+m size. 

4.5. Multistep procedure. Identification of the transfer 
functions G2Z(s) 

As commented, an alternative suggested to the multistep 
procedure in the original approach is to solve simultaneously 
both transfer functions G1Z(s,xa) and G2Z(s,xb), and estimate 
the parameters vector xa and xb at the same time. 

Another approach for estimating G2Z(s) is to make a previous 
hypothesis of linearity and determine the points to fit the 
transfer function from the linear superposition principle. 
Thus, for each frequency of encounter of wave ωei, i =1..N: 
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5. AN ILLUSTRATIVE EXAMPLE 

The whole work tries to identify a continuous linear model of 
heaving, pitching and rolling dynamics. Models of G1H, G2H, 
G1P, G2P, G1R, and G2R are identified for incidence waves 
between 90 and 180 degrees. Each plant models set have the 
same number of poles and zeros.  

In this section it is shown a practical case of application and 
comparison of the two approaches commented. Specifically, 
it is presented the identification of the model corresponding 
to the wave to heave force plant G1H(s), for the incident angle 
135º and ship speed 40 knots. Thus, for each case, the 
transfer function identified and the Bode diagram in which it 
is compared with the true data are presented. 

Firstly the results from the original approximation are shown. 
As it has been noted in previous sections, first step is to select 
a set of candidate model structures. Table 1 shows two of 
these considered model structures (m,n,nps), and the value of 
the cost function J. Here, m is the number of zeros, n is the 
total number of poles, and nps is the number of simple poles. 
The parameter vector θ and transfer function are determined 
for each model structure. These all models give very similar 

Bode plots in the frequency range of interest, so this is a 
proof that these must reflect features of the true system. 
Structure with minimum J is selected as the best model. 

Table 1. Model structures, cost function J  

Model structure (m,n,nps) Cost function J 

(3,4,2) 0.51 

(3,3,1) 0.79 

Finally, structure (3,4,2) is chosen, and the estimated transfer 
function is given by (23). Figure 2 shows the Bode plots of 
the estimated transfer function and the simulated true data. It 
can be seen that the model is quite capable of describing the 
system. 
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Fig. 2. Bode plot of G1H(s) and experimental data. 
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Next, the second approach is proved. Table 2 shows two of 
the model structures (m is the number of zeros, and n the 
number of poles) that had been tried, and the respective 
values of AIC and cost function J. According to Akaike’s 
theory, those with the lower value AIC is selected. In this 
case, structure (3,4) gives the best result, so this structure is 
the chosen one. 

Table 2. Model structures, cost function J and AIC 

Model structure (m,n) AIC Cost function J 

(3,4) -63.31 0.0347 

(3,3) -54.71 0.055 

Once model structure is fixed, the identification procedure is 
executed and the following transfer function is estimated: 
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9.09.16013.2202.269333)(
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Figure 3 shows the comparison between the Bode diagram of 
the transfer function identified and the actual data. It is shown 
that the model fits the data quiet good. 
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Fig. 3. Bode plot of G1H(s) and data. 

Evaluating the results of the two implementations, it is seen 
in numerical results and graphics that the final approach 
estimates a transfer function model that fits the data more 
accurately. In addition, in the Bode diagram of the first 
G1H(s) it is observed that the amplitudes at high frequencies 
are too much large, which is translated into a very oscillatory 
and not proper behaviour in the temporal response. 

6. CONCLUSIONS 

In this paper an analysis of the system identification methods 
have been carried out, and a new alternative approach is 
proposed in order to estimate models for heave, pitch and roll 
dynamics of a high speed craft. 

As a beginning, a first approach uses genetic algorithms and 
non linear least squares with constraints methods applied in 
the frequency domain as a criterion of fit to compute the best 
model. This method has been employed to model the vertical 
dynamic (heave and pitch modes) for the particular case of 
waves from directly ahead. However, when the study is 
extended to the horizontal dynamic (roll mode) and in 
addition other angles of incidence, it is not obtained such 
good models. Furthermore, it is observed that the technique 
does not guarantee the best linear approximation, and 
involves a lot of computational load due to non-quadratic 
functions. 

For that reason another procedure is suggested. The second 
approach changes the type of parameterization, in order to 
facilitate the model selection and avoid non-quadratic 
functions in the cost function. Moreover and most important, 
this new parameterization promotes obtaining high quality 
starting values via a linear least squares estimate. 

The paper is concluded with an example in which the two 
approximations are applied. Finally, it is shown that the 
second approach obtains more accurate models than the first 
one. 
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