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Abstract: This paper presents an image-based camera control, mounted on a nonholonomic
mobile robot platform, traking a mobile target as reference, via task function approach. The
system stability is guaranteed by the Lyapunov theory. Due to parametric uncertainties (target
depth), actuator (acceleration and velocity) and visual constraints, the gain is generated via
LMIs (Linear Matrix Inequalities), in order to maximize the stability region associated with
the closed loop. A convex optimization package was used to obtain the feedback gain, and
simulations are presented to visualize the system behavior.

1. INTRODUCTION

Visual servoing aims at controlling robotic systems by
the information provided by one or more cameras. There
are some issues with this approach such as parametric
uncertainties and actuator saturation. Therefore, robust-
ness becomes essential in order to guarantee asymptotic
stability. As showed in Malis and Rives [2003], the depth
uncertainties of the target may reduce the stability domain
of a system. Some recent works, such as Garćıa-Aracil et al.
[2005], proposed a weighted feature task function, in order
to allow changes in the visibility of image features during
the control task. Despite this, ensuring visibility during
the motion is an important issue. Coupling path planning
in image space and image-based control, as proposed by
Mezouar and Chaumette [2002], introduces constraints,
such as object in the trajectory, assuring the convergence
for the initial configuration. Improvements in image-based
visual servoing, using image moments, were proposed by
Tahri and Chaumette [2005].

In this paper we propose a generalization of the technique
described by Gao [2006] and Gao et al. [2006]. Gao’s tech-
nique allows the tracking moving targets with the camera
perpendicular to the target. The technique described in
this paper, allows tracking moving targets with both the
camera and the robot perpendicular to the moving target.
As a consequence, the dimension of the task function is
doubled in comparison to the previous works, increasing
the complexity of the design, but allowing better behavior
of the angle between the camera and the robot platform,
as both of them must be aligned. This should be useful in
tasks such as inspection and surveillance.

This paper is organized as follows: In section 2 the math-
ematical model of the camera and the robot, divided
into robot model and kinematic screw of the camera, is
described. Section 3 presents the problem formulation, di-
vided into task function definition and problem statement.

In section 4 the control synthesis is developed, separated
into preliminaries, theoretical issues and optimization. A
quadratic Lyapunov function was used in order to guaran-
tee the system asymptotic stability, and a modified sector
condition was used in order to consider the saturation
nonlinearity, allowing to be obtained LMI conditions [Boyd
et al., 1994] for design purposes. Thus, the control gains
can be obtained by a convex optimization algorithm . The
simulation results are shown in the section 5, and the
overall paper is discussed in section 6.

2. MATHEMATICAL MODEL

2.1 Camera Model

Fig. 1. Pinhole camera model

The camera model considered here is the pinhole [Gao,
2006], as is shown by Fig. 1, where the image plan
is 1 m from the optical center. The coordinate system
RC [xc yc zc] represents the camera’s coordinate system,
and its origin is the optical center C of the camera, where
the axis Czc corresponds to the optical axis, and the axis
Cxc points vertically down. One point p is projected in
the image plan as P , as a perspective projection, and its
coordinates are xP = [x y z] with respect to RC , and its
coordinates in the image plan are done by the homogenic
metric coordinates:
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[
X Y 1

]
′

with X =
x

z
, Y =

y

z
(1)

2.2 Robot Model

Figure 2 shows the schematic diagram of the robot and
the camera.

Fig. 2. Robot Model

R(0, x, y, z) is the referential linked to the origin 0, there-
fore, to the environment; RC(C, xC , yC , zC) is the ref-
erential linked to the camera, having as optical cen-
ter the point C, zC coincident with the optical axis;
RM (M,xM , yM , zM ) is the referential linked to the mobile
robot base; the angle θp is the orientation angle of the

axis zC related to the axis xM ; the vector [x y θ]
′

∈ ℜ3

gives the configuration of the mobile robot related to the
referential R, as the pair (x, y) gives the coordinates of M
related to R, and the angle θ is the orientation angle of
xM related to the vector x of R.

The kinematic model of the mobile robot and the relations
between the camera and the robot, via kinematic screw,
are now presented (for details, the reader can consult Gao
[2006]).

Kinematic model of the robot: By considering the robot
base configuration [x y θ] related to the reference R, the
mobile robot model is:

[
ẋ

ẏ

θ̇

]

=

[
cos(θ) 0

sin(θ) 0

0 1

][
v

θ̇

]

(2)

where v and θ̇ are the linear and angular velocities of the
robot related to R. The robot’s kinematic screw TR

RM /R

related to R is:

T
R
RM /R =

[
V

R
RM /R Ω

R
RM /R

]
′

given by

{
V

R
RM /R =

[
ẋ ẏ θ̇

]
′

=
[
v cos(θ) v sin(θ) 0

]
′

Ω
R
RM /R =

[
0 0 θ̇

]
′ (3)

.

Kinematic screw of the camera: The reduced screw,
related to RM , is described by the following relation:

T
RC
red

= Jredq̇ (4)

where Jred is given by:

Jred =

[
− sin(θp) Dx cos θp 0

cos θp Dx sin θp 0

0 −1 −1

]

(5)

with q̇ =
[

v θ̇ θ̇p

]
.

3. PROBLEM FORMULATION

3.1 Definition of a Task Function

The target model is presented in the Fig. 3. This target
consists of three aligned points Ei, i = 1, 2, 3 with the
same distance l between them. In this case, l = 0.5 m. α
denotes the angle between E1E3 and the optical axis zC of
the camera. η is the angle between the optic axis zC and
CE2. The distance d2 = CE2 is the distance between the
camera and the point E2 of the target. The depth of the
target points is done by zi, i = 1, 2, 3.

Fig. 3. Target model and its parameters

The position task function is defined as follows:

e(t) =







e(1)

e(2)

e(3)

e(4)

e(5)

e(6)







=







Syc

Szc − v
∗
t

Y2 − Y
∗

2

Y1 − Y
∗

1

Y2 − Y
∗

2

Y3 − Y
∗

3







∈ ℜ
6

(6)

where Syc and Szc are respectively the curvilinear abscissas
of the camera in the directions of yC and zC ; Yi and Y ∗

i
are the visual index and the reference visual index, defined
in (1) and v∗ is the constant reference robot velocity.

The control objective is the regulation of this function to
zero.

To find the derivate of e(t), we follow the technique
introduced in Samson et al. [1991]:

e(r(t), t) = s(r(t), t) − s
∗

(7)

where s(t) is a vector containing visual information, and
r(t) is a function that links the camera to the reference R.
The derivate becomes:

ė(r(t), t) = ṡ(r(t), t) =
∂s

∂r
+

∂s

∂t
=

[
Ẏ1

Ẏ2

Ẏ3

]

+

[
ẎE1

ẎE2

ẎE3

]

(8)
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where ẎEi, ∀ i = 1, 2, 3, is the variation of s related to
the target movement with respect to the referential R as
proposed by Gao [2006].

So, as given by Chaumette [1990]:

ṡ(t) =

[
Ẋ

Ẏ

]

= LsTRc/R =

[

−
1

z
1 + Y

2
−XY

]

TRc/R (9)

where Ls is called Interaction Matrix [Chaumette et al.,
1991] and [Chaumette, 1990]. The partial derivatives ∂s

∂r

and ∂s
∂t are described by:

∂s

∂r
= B̃1T + B̃2v

∗
;

∂s

∂t
= B̃3ω

where ω(t) is defined as:

ω(t) =





−vE cos(α)

−vE sin(α)

−lωE cos(α)

−lωE sin(α)



 ∈ ℜ
4

with vE and ωE begin the linear and angular velocities of
the moving target, and B̃1, B̃2 and B̃3 are obtained from
(1) and (9):

B̃1 =








1 0 0

0 1 0

−1/z2 (e(3) + Y
∗

2 )/z2 1 + (e(3) + Y
∗

2 )
2

−1/z1 (e(4) + Y
∗

1 )/z2 1 + (e(4) + Y
∗

1 )
2

−1/z2 (e(5) + Y
∗

2 )/z2 1 + (e(5) + Y
∗

2 )
2

−1/z3 (e(6) + Y
∗

3 )/z2 1 + (e(6) + Y
∗

3 )
2








; B̃2 =







0

−1

0

0

0

0







B̃3 =







0 0 0 0

0 0 0 0

0 0 0 0

1/z1 −(e(4) + Y
∗

1 )/z1 1/z1 −(e(4) + Y
∗

1 )/z1

1/z2 −(e(5) + Y
∗

2 )/z2 0 0

1/z3 −(e(6) + Y
∗

3 )/z3 −1/z3 (e(6) + Y
∗

3 )/z3







The objective is to find a control law and a stability region
associated with the task function, taking into account:

C1: the depth of the target points E are bounded but
unknown;

C2: the errors e(i) i = 3, 4, 5, 6 must be bounded during
the task, to ensure the visibility;

C3: the kinematic screw of the camera related to R must
be bounded to satisfy the actuators constraints as:

−u1 � T � u1

−u0 � Ṫ � u0
(10)

C4: the velocity vector of the target is square integrable
but unknown.

Let us consider the augmented state

x(t) =
[
e(t)

′
T (t)

′

]
′

∈ ℜ
9

and its derivate:

ẋ(t) =

[
0 B̃1

0 0

]

︸ ︷︷ ︸

A

x(t) +

[
0

I3

]

︸︷︷︸

B1

Ṫ (t) +

[
B̃3

0

]

︸︷︷︸

B2

ω +

[
B̃2

0

]

v
∗

(11)

By defining the tracking error as ε(t) = x(t) − r, where
r = [0 0 0 0 0 0 0 v∗ 0]

′
, the complete system reads as

follows:

ε̇(t) = Aε(t) + B1Ṫ (t) + B2ω + Ar +

[
B̃2

0

]

v
∗

(12)

ε̇(t) = Aε(t) + B1Ṫ (t) + B2ω + B3v
∗

(13)

The part Aε can be written as follows:

Aε =
[
R

′
B̄1C + R

′
T(2)B̄2R + BT(3)

(
B̄3 + D

)
R

]
ε − B3v

∗
(14)

where B3, R = [I6 0] ∈ ℜ6×9 and C = [0 I6] ∈ ℜ6×9

are given by

B3 =
















0

0

(e(3) + Y
∗

2 )/z2

(e(4) + Y
∗

1 )/z1

(e(5) + Y
∗

2 )/z2

(e(6) + Y
∗

3 )/z3

0

0

0

0

0

0
















v
∗

and,

B̄1 =







0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 −1/z2 0 1

0 0 0 −1/z1 0 1

0 0 0 −1/z2 0 1

0 0 0 −1/z3 0 1







; B̄2 =







0 0 0 0 0 0

0 0 0 0 0 0

0 0 1/z2 0 0 0

0 0 0 1/z1 0 0

0 0 0 0 1/z2 0

0 0 0 0 0 1/z3







(15)

D =







0 0 0 0 0 0

0 0 0 0 0 0

0 0 e(3) 0 0 0

0 0 0 e(4) 0 0

0 0 0 0 e(5) 0

0 0 0 0 0 e(6)







; B̄3 =







0 0 0 0 0 0

0 0 0 0 0 0

0 0 Y
∗

2 0 0 0

0 0 0 Y
∗

1 0 0

0 0 0 0 Y
∗

2 0

0 0 0 0 0 Y
∗

3







(16)

The system is now written as:

ε̇(t) =
[
R

′
B̄1C + R

′
T(2)B̄2R + BT(3)

(
B̄3 + D

)
R

]
ε + B1Ṫ + B2ω (17)

3.2 Problem Statement

Find the region sets S∞ and S′ and the control gain
K ∈ ℜ3×9 that guarantees stability, even with uncertain-
ties, and respect the visual index and velocities constraints,
satisfying:

Ṫ = satu0
(Kε) (18)

4. CONTROL SYNTHESIS

4.1 Preliminaries

Consider the memoryless and descentralized nonlinearity
φ(Kε) satisfying [da Silva Jr. and Tarbouriech, 2004]:
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φ(K ε) = satu0
(Kε) − Kε (19)

where each component of φ(Kε) is defined as:

φi(K ε) =

{
u0(i) − Kε if Kε > u0(i)

0 if |Kε| ≤ u0(i)

−u0(i) − Kε if Kε < −u0(i)

(20)

This form of defining the nonlinearity permits to transform
the saturation problem into a deadzone. As a consequence,
the classical methods that envolve sectors condition can be
used to provide the LMI formulation.

The deadzone nonlinearity φ(K ε) satisfies the sector
condition described by the following lemma:

Lemma 1. Consider a matrix G ∈ ℜm×n. If ε ∈ S(u0),
defined by

S(u0) =
{

x ∈ ℜ
m

;−u0 � (K − G)ε � u0

}
(21)

then the nonlinearity φ(K ε) satisfies the following sector
condition

φ(K ε)
′
M(φ(K ε) + Gε) ≤ 0 (22)

for all positive-definite diagonal matrix M ∈ ℜm×n.

�

The closed loop system becomes:

ε̇(t) =
[
R

′
B̄1C + R

′
T(2)B̄2R + BT(3)

(
B̄3 + D

)
R + B1K

]
ε+

+ B1φ(Kε) + B2ω
(23)

From the constraints C1, C2, C3 and C4, one has

∣
∣e(i)

∣
∣ ≤ β, ∀ i = 3, 4, 5, 6 (24)

−u1 � T � u1 (25)

Thus ε should belong to the polyhedral set Ω(ε)

Ω(ε) =







ε ∈ ℜ
9
;−









β

β

β

β

u1(1)

u1(2) − v
∗

u1(3)









�









ε(3)

ε(4)

ε(5)

ε(6)

ε(7)

ε(8)

ε(9)









�









β

β

β

β

u1(1)

u1(2) − v
∗

u1(3)















(26)

Consider the uncertain parameters:

z =

[
z1

z2

z3

]

=

[
z2 + l cos(α)

z2

z2 − l cos(α)

]

The following uncertain parameter can also be defined:

1

z2

= p1 (27)

where p1 satisfies α ∈ [−π + αmin,−αmin], |η| ≤
ηmax = arctan(β) < π/2, d2 ∈ [d2 min, d2 max] and
z2 ∈ [d2 min cos(ηmax), d2 max]. Hence

1

z1

=
1

z2

(
1 +

l cos(α)
z2

) ;
1

z3

=
1

z2

(
1 −

l cos(α)
z2

)

Since l ≪ z2, the relations above can be rewritten:

1

z1

≈
1

z2

(

1 −
l cos(α)

z2

)

= p1 − p2

1

z3

≈
1

z2

(

1 +
l cos(α)

z2

)

= p1 + p2

By considering the intervals between z2, α, p1 and p2,
satisfying

p1 ∈

[
1

d2 max

,
1

d2 min

cos(ηmax)

]

(28)

p2 ∈

[
l cos(−π + αmin)

(d2 min cos(ηmax))2
,

l cos(−αmin)

(d2 min cos(ηmax))2

]

(29)

where B̄k with k = 1, 2, 4, 5 is dependant of the uncertain
parameter p1, described by:

B̄k ∈ {Bkj ; j = 1, 2, 3, 4} , k = 1, 2, 4, 5 (30)

The closed-loop system can be described by the following
polytopic system:

ε̇(t) =

4∑

j=1

λj

[(
R

′
B1jC + R

′
T(2)B2jR + RT(3)(B̄3 + D)R + B1K

)
ε+

+B1φ(Kε) + B2ω
]

(31)

with
∑4

j=1 λj = 1, λj ≥ 0.

4.2 Theoretical Issues

Theorem 2. If there exists a positive-definite function V (ε)
(V (ε) > 0 ∀ε 6= 0 and V (0) = 0) a gain K, a diagonal
positive-definite matrix M , a matrix G and two positive
scalars ζ and δ1, satisfying, for all admissible depth z:

∂V

∂ε

[(
R

′
B̄1C + R

′
T(2)B̄2R + R

′
T(3)(B̄3 + D)R+

+ B1K

)
ε + B1φ(Kε)

]
− 2φ(Kε)

′
M(φ(Kε) + G)+

− ω
′
ω < 0

(32)

V (ε) − ε
′
(K(i) − G(i))

′

1
ζ + 1

δ1

u2
0(i)

(K(i) − G(i))ε ≥ 0 (33)

V (ε) − ε
′
R

′

(i)

1
ζ + 1

δ1

β2
R(i)ε ≥ 0 (34)

V (ε) − ε
′
C

′

(i)

1
ζ + 1

δ1

u2
1(i)

C(i)ε ≥ 0 (35)

V (ε) − ε
′
C

′

(2)

1
ζ + 1

δ1

u2
1(2)

− v∗
C(2)ε ≥ 0 (36)

Hence the gain K and the sets

S1(V, ζ, δ1) =

{

ε ∈ ℜ
9
; V (ε) ≤

1

ζ
+

1

δ1

}

S0(V, ζ) =

{

ε ∈ ℜ
9
; V (ε) ≤

1

ζ

}
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are solutions of the stated problem.

�

The demonstration of this theorem is similar to that shown
in Gao [2006].

The difficulty is to choose a Lyapunov function V (ε) in
order to obtain the constructive conditions. An adequated
choice is the quadratic:

V (ε) = ε
′
Pε (37)

with P = P ′ > 0.

By considering the Theorem 2, (37) and the polytopic
system (31), with the objective of set the conditions as
LMIs, the following proposition can be written:

Proposition 3. If there are two symmetric positive-definite
matrices W ∈ ℜ9×9, R1 ∈ ℜ6×6, a diagonal positive
matrix S ∈ ℜ3x3, two matrices Y ∈ ℜ3×9 and
Z ∈ ℜ3×9, three positive scalars ǫ, ζ and δ1, satisfying:











W (RB1jC)
′
+ (RB1jC)W+

B1Y + Y
′
B
′

1 + R
′
R1R+

ǫ(u
2
1(3)(1 + β

2
+ β

2
))R

′
R

∗ ∗ ∗ ∗ ∗

u1(2)B2jRW −R1 ∗ ∗ ∗ ∗

[B3[I0]
′
]RW 0 −ǫI ∗ ∗ ∗

SB
′

1 − Z 0 0 −2S ∗ ∗

B
′

4jR 0 0 0 −I ∗

0 0 0 0 B5j −ǫI











< 0 (38)

[
W ∗ ∗

Y(i) − Z(i) ζu
2
0(i) ∗

Y(i) − Z(i) 0 δ1u
2
0(i)

]

≥ 0 ∀i = 1, 2, 3 (39)

[
W ∗ ∗

R(i)W ζβ
2

∗

R(i)W 0 δ1β
2

]

≥ 0 ∀i = 1, 2, 3 (40)

[
W ∗ ∗

C(i)W ζu
2
1(i) ∗

C(i)W 0 δ1u
2
1(i)

]

≥ 0 ∀i = 1, 3 (41)

[
W ∗ ∗

C(2)W ζu
2
1(2) ∗

C(2)W 0 δ1(u1(2) − v
∗
)
2

]

≥ 0 (42)

The gain K ∈ ℜ3×9, is given by K = Y W−1.

(1) when ω 6= 0, the trajectories of the closed loop system
done by (23) stay bounded in the set

ϕ1(W, ζ, δ1) =

{

ε ∈ ℜ
9
; ε

′
W

−1
ε ≤

1

ζ
+

1

δ1

}

(43)

for all ε(0) ∈ ϕ0(W, ζ)

ϕ0(W, ζ) =

{

ε ∈ ℜ
9
; ε

′
W

−1
ε ≤

1

ζ

}

(44)

and all perturbation ω(t) satisfying:

‖ω(t)‖
2
2 =

∫
∞

0

ω
′
(τ)ω(τ)dτ =

∫
∞

0

(V
2

E(τ)) + l
2
ω

2
Edτ ≤

1

δ1

(45)

(2) when ω = 0, the sets ϕ0(V, ζ) = ϕ1(V, ζ, δ1) is an
asymptotic stability region for the closed loop system
showed in (23).

�

The demonstration of this proposition is similar to that
shown in Gao [2006].

4.3 Optimization

With the objective of maximizing the size of the sets ϕ0

and ϕ1, the following convex optimization problem can be
formulated by using the LMI condition of the proposition
3.

min
W,R1,Y,Z,S,ζ,δ1,ǫ

ζ + δ1 + δ + σ (46)

under the conditions (38), (39), (40), (41), (42),
[

σI ∗

Y I

]

and
[

δI ∗

I W

]

. These two last conditions are used to minimize the

trace of W−1 and the norm of Y . By this approach, the
value of δ1 is obtained by minimization.

The distance between the camera and the target is in
the interval d2 ∈ [2.226m, 6m]. The reference vi-
sual indices are Y ∗

1 = 0.2, Y ∗
2 = 0 and Y ∗

3 = −0.2.
To guarantee the visibility of the target, β = 0.4 and
α ∈ [−π + π/6,−π/6].

5. NUMERICAL AND SIMULATION RESULTS

By considering the uncertain parameters p1 and p2 as
showed (28) and (29), the matrices (15), (47) and (48)
the polytopes B̄kj , with k = 1, 2, 4, 5 and j = 1, 2, 3, 4 can
be determined, using α, η and d2 ∈ [d2 min; d2 max].

B̄4 =







0 0 0 0

0 0 0 0

0 0 0 0

1/z1 −Y
∗

1 /z1 1/z1 −Y
∗

1 /z1

1/z2 −Y
∗

2 /z2 00

1/z3 −Y
∗

3 /z3 −1/z3 −Y
∗

3 /z3







(47)

B̄5 =







0 0 0 0

0 0 0 0

0 0 0 0

0 −1/z1 0 −1/z1

0 −1/z2 0 0

0 −1/z3 0 1/z3







(48)

Setting kinematic screw limits as u1 = [1 1 0.5]
′

and

u0 = [4 4 5]
′

and solving the optimization problem (46),
the following gain K was obtained by the lmitool Scilab
package:

K =

[
−19.64 −0.06 1.00 −2.44 −0.65 4.29 −5.42 0 0.18

0.06 −31.71 0.21 0.38 0.12 −0.63 0 −3.73 0

−4.84 0.16 −15.86 −5.20 2.65 −7.41 0.50 0 −4.34

]

Simulation results verified the theoretical results presented
in the paper. With respect to the absolute frame of R, the
initial coordinates of the target are: E1(9.2929, 20.7071),
E2(10, 20) and E3(10.7071, 19.2929). The distance admis-
sible between the target and the camera is d2 ∈ [2.226, 6].
The reference visual index are Y ∗

1 = 0.2, Y ∗
2 = 0 and

Y ∗
3 = −0.2. To guarantee the visibility, β = 0.4 was

considered. The initial configuration of the robot is given
by: x0 = −5 m, y0 = 15 m, θ0 = 0 rad and θp0 = 0.5 rad.
The bounds on the camera velocity and acceleration are
u0 = [4 4 5]

′
and u1 = [1 1 0.5]

′
. The reference velocity

used was v∗ = 0.8 .
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Figure 4 shows the robot’s trajectory evolution, tracking a
moving 3-point target in linear trajectory. Figure 5 shows
the evolution of the orientation angle θ of the robot and θp

of the camera. The visual index and the task function are
illustrated in Fig. 6. The kinematic screw evolution and
the control signal are shown in Fig. 7.
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Fig. 4. Trajectory of the robot and the mobile target
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Fig. 6. Visual index and task function
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Fig. 7. Kinematic screw and control signal

6. CONCLUSION

This paper proposed the design of a state feedback control
for a task function, for the case where both camera and
robot principal axis must be perpendicular to the target.

In addition to the stability guarantee, several constraints
were considered during the design, such as target points
depth, actuator saturation, visibility and target velocity.
Simulation results show that this task controlled the robot
and the camera, achieving the reference velocity of v∗ =
0.8 m/s, satisfying the actuator’s dynamic constraints.
Further works should consider practical applications of the
proposed method.
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référencées vision 2D multi-critères. Thèse, LAAS-
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