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Abstract: This paper introduces a novel approach for performing non-invasive particle size analysis for a 
material stream running on a standard conveyor belt. The measurements, carried out with a 3D laser 
scanner and a measuring belt weigher, are accurate, robust and real world physical measures. The 3D data 
obtained with the laser scanner enables more accurate analysis than the spatial monochrome or colour 
images that are commonly used in this field. In this paper the proposed analysis method is used in mineral 
processing application to get information about particle size distribution of the ore flow from the mine to a 
screening station at the surface. This information can be used to optimize operation of a semi autogenous 
grinding station used in Pyhäsalmi. However, with certain limitations, the analysis method can be utilized 
in different kinds of applications. 
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1. INTRODUCTION 

In mineral processing the particle size distribution that is 
flowing to the grinding circuit is an important factor, 
especially in autogenous or semi-autogenous grinding 
processes because the ore is utilized as a grinding media in the 
mills (Hahne et al., 2003). However, it is often the case that 
the ore transportation line from the production site to the 
grinding circuit is quite long and contains large silos. This 
introduces significant delay that is often measured in days.  

Thus, if the ore size distribution is to be controlled before 
grinding, there should be a size distribution measurement 
available as soon as possible. Desired properties for the 
measurement method are robustness and low price as well as 
good accuracy and sampling rate. Also, the method should be 
non-invasive in nature so that it would not disturb the ore 
transportation process.  

There exist examples of such measurements in the literature 
(see e.g. Guyot et al., 2004, La Rosa et al., 2001, Palangio et 
al., 1995) and they are typically based on a spatial image 
taken from the target and further processed with image 
analysis techniques. Another variation to these techniques is 
presented in Larinkari et al., 2005, where the spatial image 
describes the shadow lengths that different sized rocks cast 
when illuminated correctly. 

Although the spatial image contains a lot of information of the 
target, the height of the particles is not easily deduced from 
that data. Much more suitable measurement for this type of 
application would be a spatial image where the intensity 
information (i.e. the z-direction) would be replaced with 
height information. This way the measurement would 
represent physical dimensions. Fortunately, in recent years 

this type of measurement devices have emerged and their 
prices are in a viable range. There exist examples where 3D 
surface measurements are utilized for size classification on a 
moving conveyor belt (see e.g. Thurley and Andersson, 2007).  

This paper introduces a new approach for crushed ore analysis 
that is based on a combination of a belt weigher and a 3D 
laser scanner installed on a same cross-directional axis. 
Installation and practical tests were conducted in Pyhäsalmi 
Mine, which is located in Finland some 500 km’s north from 
Helsinki. 

In Pyhäsalmi the blasted ore is fed through a jaw crusher 
(Nordberg C200B) located in the mine at depth of 1400m.  
The proposed analysis equipment is located also in the mine 
on top of a conveyor belt as indicated in Fig. 1.  

 

Fig. 1. The measurement point in the mine and the ore 
transportation chain to the surface (Figure courtesy of Pyhäsalmi 
Mine) 
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After the measurement point there are three silos before 
screening station and their total capacity is around 10 000 
tons. Since the production rate at the concentrator plant is 
around 160 ton/h, this constitutes a delay in the range of 1-3 
days. 

2. MOTIVATION 

Since the large particles of ore are used as a grinding media 
instead of metal balls, it is clear that the size distribution of 
the ore feed to the mill must be appropriate in order to achieve 
acceptable results. If this is not the case additional iron balls 
must be added and thus additional costs introduced. In 
Pyhäsalmi the grinding circuit is divided into three stages and 
one of them can be operated in completely autogenous mode, 
provided that the ore size distribution is correct. The mine 
personnel have estimated that if there would be correct size 
classes in the silos at all times, some 20% savings could be 
achieved out of 1 000 000 EUR used annually for the iron 
balls. 

As explained in section 1, the transportation delay is a major 
factor that has to be taken into account when trying to 
estimate the trends in the silo levels after the screening 
station. Thus, if the first analysis results are available already 
in the mine, corrective actions can be made 1-3 days in 
advance.  

The goal is to keep the amount of different size classes in 
allowed range at all times. This is to make sure that the size 
distribution will not be a limiting factor for optimal operation 
of the grinding circuit. When the size distribution is measured 
right after the first crushing stage it enables modifications to 
be done already in the mine. These can include changes in 
production planning, drilling, blasting, and crushing. 
Furthermore, when integrated to the mine’s information 
system, the analysis results will be available for plant 
personnel working both in the mine and on the surface. This 
will increase the level of co-operation and planning between 
the two groups. 

3. MEASUREMENT PRINCIPLE 

The general idea of the analysis setup is presented in Figure 2, 
where the laser scanner (Sick LMS-400) is located on a same 
cross-directional axis as the belt weigher (Milltronics 
Accumass BW100). The belt weigher is equipped with a 
speed sensor and is thus capable of measuring the mass flow 
under the scanner. This information along with the speed 
reading is transferred as a standard 4-20mA message to an 
A/D-board of the analysing computer. Since the laser scanner 
is located on a same cross-directional axis as the belt weigher, 
the data coming from these two devices can be easily 
combined. The scanner is connected to an additional network 
interface card (NIC) of the analysing computer via a standard 
Ethernet connection. 

The laser scanner scans a cross-section perpendicular to the 
direction of the conveyor belt 360 times per second. In each of 
these scans the distance of the ore is measured in 240 points 
by varying the angle of the measuring laser in small steps. 
Using these measurements it is straightforward to calculate 

the height of the ore bed in desired points along the cross-
section by applying simple geometry and nearest neighbour 
interpolation. The height of the ore is calculated in 240 
equally spaced points for each cross-section. The points are 3 
mm apart; this corresponds to the average spacing of the 
original measurements. The purpose of interpolation is to 
simply remove any distortions caused by the varying spacing 
of the original measurement points.  

The cross-section scans are done at a frequency of 360 Hz and 
the belt is moving at a constant speed of 1 m/s. This means 
that successive cross-sections are approximately 3 mm apart 
from each other. By combining measurements from multiple 
scans, a 3D height profile with grid spacing of 3x3 mm is 
achieved. The reliability of a single distance measurement 
was estimated by scanning a stopped belt for 3 seconds. The 
standard deviation of a distance measurement is 
approximately 6 mm, which is adequate for this application. 
Of course the accuracy could be much better with different 
type of scanners (e.g. structured light based) but, at least in 
this case, it was found that the achieved performance gain 
comes with a too high price tag. 

 

 

Fig. 2. Measurement setup: Laser scanner and belt weigher 
installed on top of a conveyor belt 

 Calculated results are stored in a local database that can be 
accessed by using a client-software written for this purpose. In 
addition, the results are automatically uploaded to the 
automation system, enabling the plant operators a direct 
access to them. 

4. DATA ANALYSIS 

When the mine is operating normally the ore is fed to a 
mechanical screening station located at the concentrator plant. 
There it is divided into three size classes before grinding; fine 
ore (0 – 35 mm), pebbles (35 – 80 mm) and lumps (> 80 mm). 
It is this mechanically screened distribution that is estimated 
in the mine by using the 3D image and the weight 
information. 

Estimation of the particle size distribution is done in three 
stages. First, individual rock fragments are recognized (via 
segmentation methods) from the 3D image. Then the size 
distribution of these fragments is calculated and in the third 
step the resulting distribution is fed to a calibrating model for 
estimation of the size distribution of the whole ore mass. 
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4.1 Segmentation 

The process of dividing an image to its parts in some 
meaningful way, usually so that these parts correspond to 
objects in real world is called image segmentation. This is 
also an effective way to obtain useful information from the 3D 
image used in this case. The segmentation approach used in 
this application is based on watershed segmentation algorithm 
which is run twice for differently pre-processed data. One of 
the watershed segmentation routines separates background 
from particle clusters and the other separates individual 
particles from each other.  

Watershed algorithm is a well-known segmentation routine 
(see e.g. Vincent and Soille, 1991) that starts from local 
minima at a 3D landscape and “fills up” the areas until 
common borders are reached. Alternatively, the starting points 
can be freely defined. This modification is commonly called 
marker controlled watershed algorithm, where the arbitrary 
starting points are called markers.  

The segmentation process outlined in Figure 3 is described in 
the following. 

 

Fig. 3. Outline of the segmentation algorithm 

Segmentation is started by using a standard median filtering 
algorithm (see e.g. Gonzales and Woods, 2002) with a 3x3 
mask for the 3D data. This is done to decrease measurement 
noise. Missing measurements are replaced with the mean of 
the neighbouring measurements. 

The segmentation process that separates particle clusters from 
the background employs marker controlled watershed 
segmentation on gradient image formed from the 3D profile. 
The gradient image is the magnitude of the gradient calculated 
by using standard Prewitt operator with a 3x3 mask, which is 
one of the common discrete approximations of gradient 
(Sonka et al., 1998). Starting points (i.e. markers) for the 
particles are found by calculating the Laplace of Gaussian (i.e. 
estimate of the sum of the second derivatives in x and y 
directions) for the original 3D profile and searching for large 
continuous areas with negative values. These correspond to 
convex shapes in the rock mass. Markers for the background 
are flat areas in the 3D profile. These are found by performing 
a top hat transformation (Sonka et al., 1998) for the 3D profile 
and choosing values under a specified threshold. 

The second segmentation process that separates individual 
particles from each other is a standard watershed 
segmentation performed on a modified and low pass filtered 
version of the 3D profile. First, the 3D profile and the gradient 
image are scaled to the interval [0, 1] and summed together. 
After this filtering is done with a 12x12 mean filter and 
shallow local minima are removed by using H-minima 
transformation (Soille, 1999). 

The two segmentation results are combined by simply 
discarding erroneous particle borders that are formed outside 
the particle clusters. An example of the segmentation process 
for real data obtained from Pyhäsalmi mine is shown in 
Figure 4. 

 

Fig. 4. Segmentation results. Images from the left: original 
median filtered 3D profile, segmentation into particle clusters, 
segmentation of individual particles and final segmentation 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3294



 

result. The emphasized rectangular area is shown at the 
bottom to provide more detailed view. 

As can be seen from the final results, the segmentation routine 
recognises only the largest particles. This is a desired property 
since the amount of fines can be calculated by subtracting the 
volume of recognised particles from the total volume. 
Besides, there would be no sense to even try to perform 
segmentation for the smallest particles because of limitations 
in measurement accuracy. 

4.2 Virtual sieving and volume estimation 

The particles that have been recognized in the segmentation 
process are classified according to the shortest edge of their 
bounding box. The bounding box is only calculated in two 
dimensions, height of the particle is assumed to be smaller 
than the other two dimensions since this is the most probable 
alignment for particles when they are dropped to the conveyor 
belt.  

Since the scanner can only see the surface from a single point, 
there will inevitably be areas that are not visible to the laser 
eye (see Fig. 5). The volume of the larger particles is 
calculated by integrating over the particle area that is 
identified by the segmentation algorithm. At each point the 
particle height is calculated to be the total height minus the 
estimated height of the ore bed (i.e. the dark area in Fig. 5). 
This approach will “cut off” the sunken part of the particle 
and will in most cases introduce a small error to the volume 
estimation. However, it would be difficult to estimate the 
volume of the sunken part with adequate accuracy due to 
irregular particle shapes and thus this error will be 
compensated by the calibration model. 

 

 

Fig. 5. Illustration of the areas not visible to the scanner 

4.3 Calibration model for the particle size distribution 

The particle size distribution measured from the surface of the 
ore is not the same as the size distribution in the whole ore 
mass. There are two main reasons for this. First, it is possible 
that segregation has happened in the ore mass due to for 
example vibration. Secondly, even if the ore mass would be 
totally homogenous, larger particles have a higher probability 
to be visible on the surface as illustrated in Figure 5. This 

phenomenon is explained in more detail and a model for the 
stack structure is given by Thurley, 2002. 

In this particular case the ore contains a lot of fine particles in 
which the larger pieces of ore are buried. This is a problem 
when looking for the relation between the size distribution on 
the surface and the size distribution of the whole ore mass. 
Therefore calibration is done with regression models that 
estimate the particle size distribution by using variables 
calculated from the particles recognised on the surface. Large 
and small particles are treated differently in these models: 
Large particles are expected to be mostly visible in the ore 
mass. Therefore the amount of large particles that are visible 
is expected to be a good indicator of the amount of the large 
particles in the whole cross section of the ore mass. Small 
particles on the other hand are mostly buried in sand, so their 
amount depends on both the amount of visible small particles 
and on the amount of sand in the ore mass. 

To overcome these problems the non-linear nature of the 
actual and measured proportion of differently sized particles is 
taken into account by generating additional non-linear 
variables for the inputs of the calibration models. The 
following variables are calculated by using the segmentation 
results: 

X1 = volume of ore not recognized as an particle 

X2 = volume of ore classified to size class 50 – 75 mm 

X3 = volume of ore classified to size class 75 – 100 mm 

X4 = volume of ore classified to size class 100 – 135 mm 

X5 = volume of ore classified to size class > 135 mm 

X6 = (volume of ore classified to size class 0 – 50 mm)*X1 

X7 = X2 X1 

X8 = X3 X1 

X9 = X4 X1 

The amount of fine ore is estimated with a standard least 
squares fit by only using variable X1 as input data. The 
amount of pebbles is estimated from variables X6-9 with a 
Partial Least Squares (PLS) model (Sharma, 1996), and 
finally the amount of lumps is estimated with another PLS 
model by using variables X2-5 and X7-9. 

5. SOFTWARE ARCHITECTURE 

In terms of software, the analysis system is designed to be as 
modular as possible. This makes it possible to separate 
different tasks into separate code modules which were 
implemented by using the Component Object Model (COM) 
scheme (Box, 1998). The different modules (see Fig 6) are 
described in the following. 

User Interface (UI): Provides run time access to the analysis. 
Enables the user to modify laser scanner and belt weigher 
settings and provides feedback from the analysis kernel. 
Provides a connection to an external database. The component 
is implemented as an executable COM object. 
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Reader: Connects to the laser scanner through an Ethernet 
connection. Triggers the scanner for data collection and sets 
necessary parameters (scan frequency, scan duration, etc.). 
Returns the collected data to the data buffer of the user 
interface component. Implemented as an executable COM 
object. Not visible to the user. 

Wrapper / Kernel: All the calculation routines described in 
section 4 are implemented into the Kernel component, which 
is automatically generated from MATLAB® code. This 
enables extremely flexible and powerful development for the 
analysis routines since all new ideas can be coded and tested 
with MATLAB®. After this, the final version can be easily 
converted into COM object and uploaded to the analysing 
computer. Since the MATLAB® compiler only generates in-
process components (i.e. DLL-files) the Kernel is 
encapsulated into another COM-EXE component (Wrapper) 
which provides necessary interface for the UI component. 
Both components are invisible to the user. 

TCP-Server: Keeps a local database containing the numeric 
results as well as images showing 3D data (in the form of a 
greyscale image), material reflectance image and a labelled 
image where classified particles are drawn with different 
colours (see Fig. 7). The server is designed to be connected to 
with one or more TCP-Clients. The clients can connect 
through a local area network (e.g. personnel working at the 
plant) or via Internet (e.g. remote monitoring). Implemented 
as an executable COM object. Visible to the user. 

 

Fig. 6. Overview of the software architecture 

The TCP-Client software shown in Fig. 7 communicates with 
the TCP-Server by using a dedicated protocol built on top of 
the TCP/IP layer. It displays the calculation results for the 
particle size analysis as well as silo levels after the screening 
station. The user can view history trends of desired length and 
see visual appearance of the conveyor belt. Currently the 
database contains one minute data for the last 30 days. There 
is also a password protected mechanism for the power users to 
set the target levels for different particle size classes. 

 

Fig. 7. TCP-Client software 

6. RESULTS 

The first results look very promising but a long term data 
collection campaign must be performed before anything 
definite can be said about the reliability of the analysis 
system. 

Right now, the particle size measurement system has been 
calibrated and tested by using 32 samples, each 1.5 meters 
long, collected from the conveyor belt.  

The number of samples is barely adequate for the 
determination of the calibration model parameters, therefore 
the analysis system have been tested by using leave-one-out 
cross-validation method. The correlation between estimated 
and real values is demonstrated in Figure 8. 

 

Figure 8. Analysis results for the 32 hand screened samples 

The average absolute values for the errors are 4.55 kg for fine 
ore, 4.33 kg for pebbles and 4.34 kg for lumps. Average total 
mass of the samples is 143 kg. This means that the average 
error is around 3% and similar results are expected in the 
further tests. There would be some work to be done to 
improve the measurement quality but for this particular 
application this level of accuracy is good enough and most 
probably future efforts will be concentrated on development 
of the ore transportation line model. 

7. CONCLUSIONS 

Current laser scanners are capable of measuring the crushed 
ore with resolution high enough to separate individual 
particles from each other. They are also fast enough to scan 
the ore from a moving conveyor belt. Measurements done 
with laser scanner also have fundamental advantage over 
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methods based on photography, since they provide accurate 
information of the particle height. 

Measurement system presented in this paper is a new and 
accurate way to estimate the particle size distribution of 
crushed ore with far lower costs when compared to 
mechanical screening. The system works very well in its 
current environment but more emphasis should be given to the 
calibration model before it can be easily implemented in other 
plants and particle types. For example, if there would be more 
teaching data available, neural networks might give good 
results since they are able to model the non-linearities 
described in section 4 and thus there would be no need for the 
additional variable creation. However, this would require a 
large number of samples for teaching and validation data sets 
and since the samples from Pyhäsalmi must be shovelled, 
screened and weighed by hand, this would be a demanding 
task. Having said that, the authors are still fairly convinced 
with the accuracy of the PLS-based results since the 
validation was done with a hand screened and weighed 
samples. But in order to utilize the measurement fully in 
Pyhäsalmi mine, the ore transportation chain and its effects on 
particle size distribution must be modelled first. Work is being 
done on this issue. 

This study has been supported by Finnish Funding Agency for 
Technology and Innovation, Pyhäsalmi Mine Oy and Outotec 
Minerals Oy, which is gracefully acknowledged. 
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