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Abstract: This paper presents a new algorithm for the closed-loop H∞ composite control of
singularly perturbed bilinear systems with time-varying parameter uncertainties and exogenous
disturbance using the successive Galerkin approximation (SGA). The singularly perturbed
bilinear system is decomposed into two subsystems of a slow-time scale and a fast-time scale via
singular perturbation theory, and then two H∞ control laws are obtained for each subsystem.
H∞ control theory guarantees robust closed-loop performance but the resulting problem is
difficult to solve for bilinear systems. In order to overcome the difficulties inherent in the H∞

control problem, the suitable robust H∞ feedback control law can be constructed in term of the
approximated solution to a Hamilton-Jacobi-Isaac equation using SGA. The composite control
law consists of H∞ control laws for each subsystem.

1. INTRODUCTION

The major importance of bilinear systems indeed lies in
their applications to the real world systems, for example:
the basic law of mass action, dynamics of heat exchanger
with controlled flow, DC motor and induction motor
drives, mechanical brake system [1, 2, 3]. These bilinear
systems are linear in control and linear in state but not
jointly linear in state and control. It is important to
understand its real properties or to guarantee the global
stability or to improve the performance by applying the
various control techniques to bilinear system rather than
its linearized system since the linearization of bilinear
system loses its nature property [1, 2, 4, 5].

Singular perturbation theory has been a highly recognized
and rapidly developing area of control system research in
the last thirty years, and control methods to solve the
singularly perturbed systems have received much attention
by many researchers [2, 6, 7]. Recently, an excellent survey
of the applications of the theory and control methods of
singular perturbation and time scales and the importance
features of the singularly perturbed systems have been
reported in [8]. Also very efficient and high accurate
optimal control methods for both continuous time and
discrete time singularly perturbed linear systems are found
in a recent book [9]. In the class of optimal control
[2, 6, 7, 9, 10], design of the control law for the singularly
perturbed system has ill-defined numerical problems. To
avoid these problems, the full order system is decomposed
into reduced slow and fast subsystems, and optimal control
laws are designed for each subsystem. Thus, the near-
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optimal composite control law consists of two optimal sub-
control laws [2, 6, 7, 9, 11].

Recently, robust control is issued and developed by many
researchers for linear systems [12, 13, 14]. But in the class
of bilinear and nonlinear systems, because conditions for
the solvability of the robust H∞ control design problem
are hard, still there are a lot of problems to be developed.
For bilinear and nonlinear systems, the H∞ optimal con-
trol problem is reduced to the solution of the Hamilton-
Jacobi-Isaac (HJI) equation, which is a nonlinear partial
differential equation (PDE) [15, 16]. The solution of a
nonlinear PDE is extremely difficult to solve and so re-
searchers have looked for methods of approximating its
solution. Specially, the practical method named successive
Galerkin approximation (SGA) to improve a stabilizing
feedback control were proposed in [15, 17]. The problem
of improving the closed-loop performance of a stabiliz-
ing H∞ control can be reduced to solving a first-order,
linear PDE called the Generalized-Hamilton-Jacobi-Isaac
(GHJI) equation [15]. An interesting fact is that when
the process is iterated, the solution to the GHJI equation
converges uniformly to the solution of the HJI equation
which solves the H∞ optimal control problem [15]. In
addition, [17] shows how to find a uniform approximation
to the HJI equation such that the approximate controls
are still stable on a specified set using SGA. However,
the SGA method has the difficulty that the complexity
of computations increases according to order of system.

In this paper, we focus on the class of a H∞ feedback con-
trol for singularly perturbed bilinear systems with time-
varying parameter uncertainties and exogenous distur-
bance. In order to obtain the closed-loop H∞ control law
using the SGA method, one must compute n−dimensional
integrals, and the number of computations increases ac-
cording to n. Therefore, the full order system is decom-
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posed into the reduced order subsystems via singular per-
turbation theory, and we define GHJI equations for each
subsystem, and then, we can obtain two sub-control laws
for each subsystem through SGA method. In this case,
n1− and n2−dimensional integrals are computed and the
number of computations are decreased, where n = n1+n2.
Thus, the near-optimal H∞ composite control law consists
of two optimal H∞ sub-control laws.

2. H∞ CONTROL FOR SINGULARLY PERTURBED
BILINEAR SYSTEMS WITH PARAMETER

UNCERTAINTIES

The infinite-time H∞ control problem considers a class
of singularly perturbed bilinear systems with parameter
uncertainties and exogenous disturbances described by the
following differential equations:

α̇ = (A1 + ∆A)α + A2β + Hω + (B1 + {αM1})u (1)

εβ̇ = A3α + A4β + (B2 + {βM2})u (2)

z =



[

C1α
C2β

]

Du


 (3)

α( t 0) = α0, β(t0) = β0

with respect to the performance criterion:

J =

∞∫

0

(
zT z − γ2ωT ω

)
dt (4)

where α ∈ Rn1 , and β ∈ Rn2 are states, u ∈ Rm is a
control input, z ∈ Rq is a controlled output, ω ∈ Rp

is a exogenous disturbance, A1, A2, A3, A4, B1, B2,
M1, M2, C1, C2, D are constant matrices of appropriate
dimensions, ε is a small positive parameter, and γ is
a positive design parameter. The notation used for the
bilinear term in (1-2) means {αM1} =

∑n1

j=1 αjM1j and

{βM1} =
∑n2

j=1 βjM2j , and we define that B̃1 ≡ B1 +

{αM1} and B̃2 ≡ B2 + {βM2}. In addition, ∆A ∈ Rn1×n1

represents the uncertainty in the system and satisfy the
following assumption.

Assumption 1:

∆A(t) = E1Q(t)E2 (5)

where E1 and E2 are known real constant matrices with
appropriate dimensions and Q(t) is an unknown matrix
function with Lebesgue measurable elements such that
Q(t)T Q(t) ≤ I. ♦

For computational simplification, without loss of general-
ity we assume that DT D = I. Therefore, the performance
criterion (4) can be written in the equivalent form:

J =

∞∫

0

(
αT CT

1 C1α + βT CT
2 C2β + uT u − γ2ωT ω

)
dt.(6)

By the help of [7], we solve slow and fast optimal control
problems and combine their solutions to form a composite
control:

uc = u∗

s + u∗

f . (7)

Let us assume that the open-loop system (1-3) is a stan-
dard singularly perturbed system for every us, that is
namely, the equation:

βs = −A−1
4

(
A3αs + B̃2us

)
(8)

has a unique solution.

The slow time scale problem of order n1 can be defined by
eliminating βf and uf from (1-3) and (6) using (8). Then
the resulting slow time scale problem becomes control of
the following slow subsystem:

α̇s =
(
A0 + ∆A)αs + Hω + B̃sus (9)

αs(t0) = α0

with respect to the performance criterion:

Js =

∞∫

0

(
αT

s C0αs + 2αT
s Lsus + uT

s Dsus − γ2ωT ω

)
dt (10)

where

A0 = A1 − A2A
−1
4 A3

B̃s = B̃1 − A2A
−1
4 B̃2

C0 = CT
1 C1 + AT

3 A−T
4 CT

2 C2A
−1
4 A3

Ls = AT
3 A−T

4 CT
2 C2A

−1
4 B̃2

Ds = I + B̃T
2 A−T

4 CT
2 C2A

−1
4 B̃2.

By the help of [13, 16], the approach adopted in this paper
for solving the robust H∞ control problem involves solving
a parameter-dependent HJI equation associated with an
H∞ performance criterion and the uncertainty in the state
function. Given the bilinear system (1-3), any desired γ,
and some σ and δ, we can define the following HJI equation
corresponding to the problem of quadratic stabilization:

∂J∗

s

∂αs

T

Asαs −
1

4

∂J∗

s

∂αs

T(
B̃sD

−1
s B̃T

s − γ−2HHT

−2σE1E
T
1

)
∂J∗

s

∂αs

+ αT
s

( 1

2σ
ET

2 E2 + Cs + δI
)
αs = 0 (11)

with the boundary condition:

J∗

s (0) = 0 (12)

where

As = A0 − B̃sD
−1
s LT

s

Cs = C0 − LsD
−1
s LT

s .

Moreover, from robust H∞ control theory [12], [? ], it
is well known that if J∗

s (αs) is a unique positive-definite
solution of (11). Then, the H∞ control of the slow time
scale problem is given by

u∗

s = −D−1
s

(
LT

s +
1

2
B̃T

s Ps

)
αs = Gsαs (13)

where Psαs = ∂J∗

s /∂αs.
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The fast time scale problem of order n2 is defined by
freezing the slow variable αs and shifting the equilibrium
of the fast subsystem to the origin.

εβ̇f = A4βf + B̃2uf (14)

βf (t0) = β0 + A−1
4

{
A3(α

0) + B̃2us(t0)
}

where βf = β − βs. The performance criterion of the fast
time scale problem is given by

Jf =

∞∫

0

(
βT

f CT
2 C2βf + uT

f uf

)
dt. (15)

If J∗

f (βf ) is a unique positive-definite solution of the HJI
equation:

∂J∗

f

∂βf

T

A4βf −
1

4

∂J∗

f

∂βf

T

B̃2B̃
T
2

∂J∗

f

∂βf

+ βT
f CT

2 C2βf = 0(16)

with the boundary condition

J∗

f (0) = 0 (17)

then the H∞ control of the fast time scale problem is given
by

u∗

f = −
1

2
B̃T

2 Pfβf = Gfβf (18)

where Pfβf = ∂J∗

f /∂βf .

A realizable composite control requires that the system
states αs and βf be expressed in terms of the actual
system states α and β. Specifically, this can be achieved
by replacing αs by α and βf by β − βs so that

uc = Gsα + Gf

[
β + A−1

4 (A3α + B̃2Gsα)
]
. (19)

3. H∞ COMPOSITE CONTROL USING SUCCESSIVE
GALERKIN APPROXIMATION

In order to obtain the H∞ composite control law uc,
we need to find the solutions, ∂J∗

s /∂αs and ∂J∗

f /∂βf .
In this section, we present the new algorithm to obtain
approximation of these solutions using SGA.

3.1 GHJI equations to H∞ composite control

Assumption 2
Ωs and Ωf are compact sets of Rn1 and Rn2 , respectively.
Slow and fast time scale states are bounded on Ωs and Ωf ,
respectively. ♦

Under Assumption and by the help of [11, 17], we can
define the GHJI equations for singular perturbed bilinear
systems.

Definition 1
If initial control laws, u

(0)
s : Rm × Ωs −→ Rm and

u
(0)
f : Rm × Ωf −→ Rm, are admissible and functions,

J
(i)
s : Rn1 × Ωs −→ Rn1 and J

(i)
f : Rn2 × Ωf −→ Rn2 ,

satisfy the following Generalized-Hamilton-Jacobi-Isaacs

equations, written by GHJI(J
(i)
s , u

(i)
s ) = 0, namely

1

4

∂J
(i−1)
s

∂αs

T(
B̃sD

−1
s B̃T

s −γ−2HHT−2σE1E
T
1

)∂J
(i−1)
s

∂αs

−
1

2

∂J
(i)
s

∂αs

T(
B̃sD

−1
s B̃T

s −γ−2HHT−2σE1E
T
1

)∂J
(i−1)
s

∂αs

+
∂J

(i)
s

∂αs

T

Asαs + αT
s

( 1

2σ
ET

2 E2 + Cs + δI
)
αs = 0 (20)

with boundary condition:

J (i)
s (0) = 0, (21)

here i-th slow control law is given by

u(i)
s = −

1

2
D−1

s

(
LT

s αs +
1

2
B̃T

s

∂J
(i−1)
s

∂αs

)
, (22)

and GHJI(J
(i)
f , u

(i)
f ) = 0, namely

∂J
(i)
f

∂βf

T

A4βf +
1

4

∂J
(i−1)
f

∂βf

T

B̃2B̃
T
2

∂J
(i−1)
f

∂βf

−
1

2

∂J
(i)
f

∂βf

T

B̃2B̃
T
2

∂J
(i−1)
f

∂βf

+ βT
f CT

2 C2βf = 0 (23)

with boundary condition:

J
(i)
f (0) = 0, (24)

here i-th fast control law is given by

u
(i)
f = −

1

2
B̃T

2

∂J
(i−1)
f

∂βf

, (25)

and i is iteration number.

3.2 Galerkin projections of the GHJB equations

In this section, we use Galerkin’s projection method to
derive approximate solutions to the GHJI equations on

the compact set, Ω. We find an approximate solution J
(i)
N

to the equation GHJB(J (i), u(i)) = 0 by letting

J
(i)
N (x) =

N∑

j=1

c
(i)
j φj(x) (26)

where the coefficients cj are constant in the infinite-time
case. Substituting this expression into the GHJI equation
results in an approximation error:

error = GHJI(

N∑

j=1

c
(i)
j φj , u

(i)). (27)

The coefficients cj are determined by setting the projection
of the error (27) on the finite basis, {φj}

N
1 , to zero for all

states, x ∈ Ω,

〈GHJB(

N∑

j=1

c
(i)
j φj , u

(i)), φn〉Ω = 0, n = 1, · · · , N (28)

Then (28) becomes N equations with N unknown con-
stants.
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To represent (28) by the matrix equations, we define

ΦN (x) ≡ (φ1(x), · · · , φN (x))T (29)

and let ∇ΦN be the Jacobian ΦN . If η : RN −→ RN is a
vectoer valued function, then we define the notation

〈η,ΦN 〉Ω ≡




〈η1, φ1〉Ω · · · 〈ηN , φ1〉Ω
...

. . .
...

〈η1, φN 〉Ω · · · 〈ηN , φN 〉Ω




where the inner product is defined as

〈f, g〉Ω ≡

∫

Ω

f(x)g(x)dx, (30)

and then

JN ≡ cT
NΦN (31)

where cN ≡ (c1, c2, · · · , cN )T .

Given an initial control u
(0)
s , we compute an approximation

to its cost J
(0)
sN = c

T (0)
sN ΦsN where c

(0)
sN is the solution of

Galerkin approximation of GHJB equation (20), i.e.,

a(0)
s c

(0)
sN + b(0)

s = 0 (32)

where

a(0)
s = 〈∇ΦsNA0αs,ΦsN 〉Ωs

+ 〈∇ΦsN B̃su
(0)
s ,ΦsN 〉Ωs

b(0)
s = 〈αT

s C0αs,ΦsN 〉Ωs

+〈2αT
s Lsu

(0)
s + u(0)T

s Dsu
(0)
s ,ΦsN 〉Ωs

.

Here we can compute the updated control law that is based

on the approximated solution, J
(i−1)
sN .

u(i)
s =−D−1

s

(
LT

s αs −
1

2
B̃T

s ∇ΦT
sNc

(i−1)
sN

)
(33)

Then we can obtain the approximation:

J
(i)
sN = c

T (i)
sN ΦsN (34)

here c
(i)
sN is the solution of

a(i)
s c

(i)
sN + b(i)

s = 0 (35)

where

a(i)
s = 〈∇ΦsNAsαs,ΦsN 〉Ωs

−
1

2
〈∇ΦsN (B̃sD

−1
s B̃T

s

−γ−2HHT − 2σE1E
T
1 )∇ΦT

sNc
(i−1)
sN ,ΦsN 〉Ωs

b(i)
s = 〈αT

(
Cs +

1

2σ
ET

2 E2 + δI
)
αs,ΦsN 〉Ωs

+
1

4
〈c

T (i−1)
sN ∇ΦsN (B̃sD

−1
s B̃T

s

−γ−2HHT − 2σE1E
T
1 )∇ΦT

sNc
(i−1)
sN ,ΦsN 〉Ωs

and i is iteration number.

Similarly, given an initial control u
(0)
f , we can compute an

approximation to the cost J
(i)
fN = c

T (i)
fN ΦfN where c

(i)
fN is

the solution of Galerkin approximation of GHJB equation

for the fast-time case. The following lemma states the

existence of unique solutions, c
(i)
sN and c

(i)
fN of Galerkin

approximation.

Lemma 1
Suppose that {φsj}

N
1 and {φfj}

N
1 are linearly independent

respectively, then as and af are invertible. Furthermore,
existence of the unique solutions is guaranteed.
The proof of this lemma can be drawn from (Randal W.
Beard, 1995, [17]).

3.3 The new algorithm to H∞ composite control

The following algorithm presents that the H∞ composite
control can be designed by two closed-loop control laws
of fast- and slow-subsystem using the SGA method for
singularly perturbed bilinear systems.

Algorithm

Initial Step

Compute

a(0)
s = 〈∇ΦsNA0αs,ΦsN 〉Ωs

+ 〈∇ΦsN B̃su
(0)
s ,ΦsN 〉Ωs

b(0)
s = 〈αT

s C0αs,ΦsN 〉Ωs

+〈2αT
s Lsu

(0)
s + u(0)T

s Dsu
(0)
s ,ΦsN 〉Ωs

a
(0)
f = 〈∇ΦfNA4βf ,ΦfN 〉Ωf

+ 〈∇ΦfN B̃2u
(0)
f ,ΦfN 〉Ωf

b
(0)
f = 〈βT

f CT
2 C2βf ,ΦfN 〉Ωf

+ 〈u
(0)T

f u
(0)
f ,ΦfN 〉Ωf

.

Find c
(0)
sN and c

(0)
fN satisfying the following linear equations:

a(0)
s c

(0)
sN + b(0)

s = 0, a
(0)
f c

(0)
fN + b

(0)
f = 0.

Set i = 1.
Iterative Step

Improved controllers are given by

u(i)
s =−D−1

s

(
LT

s −
1

2
B̃T

s P (i)
s

)
αs = G(i)

s αs,

u
(i)
f =−

1

2
B̃T

2 P
(i)
f βf = G

(i)
f βf .

where P
(i)
s αs = ∇ΦT

sNc
(i−1)
sN and P

(i)
f βf = ∇ΦT

fNc
(i−1)
fN .

Compute

a(i)
s = 〈∇ΦsNAsαs,ΦsN 〉Ωs

−
1

2
〈∇ΦsN (B̃sD

−1
s B̃T

s

−γ−2HHT − 2σE1E
T
1 )∇ΦT

sNc
(i−1)
sN ,ΦsN 〉Ωs

b(i)
s = 〈αT

(
Cs +

1

2σ
ET

2 E2 + δI
)
αs,ΦsN 〉Ωs

+
1

4
〈c

T (i−1)
sN ∇ΦsN (B̃sD

−1
s B̃T

s

−γ−2HHT − 2σE1E
T
1 )∇ΦT

sNc
(i−1)
sN ,ΦsN 〉Ωs

a
(i)
f = 〈∇ΦfNA4βf ,ΦfN 〉Ωf

−
1

2
〈∇ΦfN B̃2B̃

T
2 ∇ΦT

fNc
(i−1)
fN ,ΦfN 〉Ωf

b
(i)
f = 〈βT

f CT
2 C2βf ,ΦfN 〉Ωf
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+
1

4
〈c

T (i−1)
fN ∇ΦfN B̃2B̃

T
2 ∇ΦT

fNc
(i−1)
fN ,ΦfN 〉Ωf

.

Find c
(i)
sN and c

(i)
fN satisfying the following linear equations:

a(i)
s c

(i)
sN + b(i)

s = 0, a
(i)
f c

(i)
fN + b

(i)
f = 0.

Set i = i + 1.
Final Step

The H∞ composite control law is

uc = Gsα + Gf

[
β + A−1

4 (A3α + B̃2Gsα)
]

♦

4. A NUMERICAL EXAMPLE

Consider a fourth-order example representing the physical
model of induction motor drives (Figalli et al., 1984, [3])
with parameter uncertainties and exogenous disturbance.
The states variables are given by α = [x1 x2]

T = [φds φqs]
T

and β = [x3 x4]
T = [ids iqs]

T , and the control variable
is given by u = [u1 u2 u3]

T = [vds vqs ws]
T , where φds

and φqs are projections of the stator flux, ids and iqs are
projections of stator current, vds and vqs are projections
of the supply voltages, and ws is a slip angular frequency.
The problem matrices of a bilinear system represented in
(1-3) have the following values:

A1 =

[
0 321.57

−321.57 0

]
, A2 =

[
−0.312 0

0 −312

]
,

A3 =

[
98.87 27059

−27059 98.87

]
, A2 =

[
−44.93 2.57
−2.57 −44.93

]
,

B1 =

[
1 0 0
0 1 −7.3

]
, B2 =

[
87.3 0 87.8
0 87.3 −53

]
,

M11 =

[
0 0 0
0 0 −1

]
, M12 =

[
0 0 1
0 0 0

]
,

M21 =

[
0 0 0
0 1 0

]
, M22 =

[
0 0 1
0 0 0

]
,

H = [1 1 0 0]T , C1 = I2, C2 = I2, D = I3.

In this paper, we choose that ε = 0.01. We assume
that the parameter uncertain matrices, E1 = [1 1 0 0]T ,
E2 = [21 18 0 0] and Q(t) = sin(16πt), and the ex-
ogenous disturbance, ω = 0.5 sin(74πt) − 0.4 cos(83πt).
The simulation results are presented with initial states,
[α(t0) β(t0)] = [−0.07 0.04 15 47], in the figures 1-4, where
every upper plots are the state trajectories obtained from
full-order SGA method and lower plots are the state trajec-
tories obtained from proposed algorithm. In the figure 5, a
dashed line, (– –), is the trajectory of performance criterion
obtained from full-order SGA method and a sold line, (—-
), is the trajectory of performance criterion obtained from
proposed algorithm. The figures show that the proposed
algorithm is more robust than the full-order SGA method,
because errors of the full-order SGA method are bigger
than those of the proposed algorithm. In this simulation,
for the full-order SGA method, 7-dimensional basis and
computed 4-dimensional integrals for 7×(1+7+49) = 399
times. But, in the proposed algorithm, we can use only 3-
dimensional basis and computed 2-dimensional integrals
for 3 × (1 + 3 + 9) = 39 times for each subsystem, re-
spectively. Therefore, we can say that the computational

complexity is greatly reduced without loss of performance.

Fig. 1. Trajectories of x1

Fig. 2. Trajectories of x2

5. CONCLUSIONS

In order to overcome the difficulties inherent in the ro-
bust H∞ control problem for singularly perturbed bi-
linear systems with time-varying parameter uncertainties
and exogenous disturbance, we have presented the closed-
loop H∞ composite control scheme and a new algorithm
using the SGA. In this paper, the suitable robust H∞

composite control law has been designed by H∞ control
laws of slow and fast subsystems. Each control law has
been constructed in term of approximated solution to each
Hamilton-Jacobi-Isaac equation. The advantages of pro-
posed algorithm are as follows: (i) all of the computations
can be performed off-line, (ii) the resulting control law is in
feedback form, (iii) the algorithm guarantees uniformly the
H∞ performance, (iv) computational complexities can be
greatly reduced. Through the presented simulation results,
it should be noted that the proposed algorithm are more
effective than the full order SGA method.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

210



Fig. 3. Trajectories of x3

Fig. 4. Trajectories of x4

Fig. 5. Trajectories of Performance Criterion
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