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Abstract: Surge is one of the two main dynamic instabilities that can occur in compressor
systems (the other is the rotating stall) preventing their satisfactory operation and being
potential cause of serious damages. In this paper we consider a Close Coupled Valve (CCV) as
actuator, and we suggest the use of a second-order sliding-mode (2-SM) technique for the active
control of the surge phenomenon. We refer to the Moore-Greitzer model with cubic compressor
characteristics, and we show that the proposed technique can drive the system towards a stable
operating point by rejecting a significant class of persistent pressure and flow disturbances acting
on the system. Furthermore, the perfect knowledge of the compressor and load characteristics
is not required to design the controller.

1. INTRODUCTION

Compressors are used in a wide range of applications.
These includes turbojet engines used in aerospace propul-
sion, power generation using industrial gas turbines, tur-
bocharging of internal combustion engines, pressurization
of gas and fluids in the process industry, transport of
fluids in pipelines and so on. The useful range of operation
of turbo-compressors is limited, by choking at high mass
flows when sonic velocity is reached in some component,
and at low mass flows by the onset of two instabilities
known as surge and rotating stall. Surge and rotating
stall are dynamic instabilities that can occur in compres-
sor systems of both the axial and centrifugal type. Both
these instabilities cause disruption of the normal operating
condition which is designed for steady and axisymmetric
airflow. Rotating stall is a severely non-axisymmetric dis-
tribution of axial flow velocity around the annulus of the
compressor, taking the form of a wave or “stall cells” that
propagates steadily in the circumferential direction at a
fraction of the rotor speed. Pure surge, on the other hand,
is an axisymmetric oscillation of the mass flow along the
axial length of the compressor. Deep surge is a mostly
axisymmetric oscillation with such a large variation of
mass flow that during part of the cycle the compressor
operates in reversed flow, which is highly undesirable as
can cause structural damages. Often surge and stall are
coupled although each can occur without the other. Both
phenomena are likely to occur in the low range of the mass
flow, where the compressor characteristics has positive
slope. Powerful methods for “active control” of surge and
stall were studied by many researchers. Such methods use
feedback to stabilize the unstable regime allowing for both
⋆ Corresponding author A. Pisano (pisano@diee.unica.it). Par-
tially supported by the MIUR project n. 630/2007 “New models
and methods for control and diagnostics in combined cycle power
plants”

operation in the peak efficiency and pressure rise regions
located in the neighborhood of the surge line, as well as
an extension of the operating range of the compressor, see
Epstein et al. (1989). In the last decade, the literature on
feedback stabilization of compression systems has become
extensive. This is partly due to the introduction, and suc-
cess, of the popular Moore-Greitzer model, see Moore and
Greitzer (1986), that, despite of its simplicity, captures the
essential phenomena underlying the compressor dynamic
instabilities.

A variety of actuator devices have been suggested in
the literature, among them Inlet Guide Vanes (IGV)
(Nakagawa et al. (1994)), Throttle valves (Pinsley et
al. (1991)), (Blanchini and Giannatasio (2002)), Close
Coupled Valve (CCV) (Gravdahl and Egeland (1999)).
In Epstein et al. (1989) an approach with two actuators,
inlet valve and plenum with mobile walls, was presented.
Among the studies on surge and stall active control using
CCVs, it should be cited the work by Simon e Valvani
(1991), in which, probably for the first time, the stability
analysis was conducted by making reference to the explicit
nonlinear model and a Lyapunov-based controller relying
on the measure of the mass flow was proposed. The
comprehensive book Gravdahl e Egeland (1999) presents
a broad overview of the field and also includes a novel
compression model which generalizes the standard Moore-
Greitzer model by taking into account a possibly time-
varying compressor angular velocity. Several adaptive and
passivity-based controllers using the CCV actuator were
suggested. They considered many control problems with
increasing complexity: surge control without disturbances,
surge control with constant disturbances, surge control
with time varying disturbances, surge and stall control
without disturbances, etc.

On the other hand, since the appearance of the Moore
Greitzer model, nonlinear analysis and design techniques
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were applied extensively to the field. Some recent inter-
esting contributions used bifurcation methods Nayfeh and
Abed (2002) and high-gain adaptive control, Blanchini
and Giannatasio (2002).

In this work we focus on the active surge control problem
considering a CCV as actuator. We suggest a control
technique based on the second-order sliding mode (2-SM)
approach that makes use of the airflow measurement only.
For the stability analysis we refer to the reduced-order
Moore-Greitzer model with the stall state variable set to
zero.

The load characteristics, defined by the opening of a
fictitious throttle valve, is allowed to vary in a bounded
range. We study the practically relevant case in which the
compressor is starting near a stable operating point, and,
from some time instant on, the throttle valve is closed until
the operating point enters the surge zone. The proposed 2-
SM CCV control scheme will drive the compressor towards
a new, suitably computed, operating regime in the low
mass flow region. Furthermore, the presented procedure
allows for an imprecise knowledge of the compressor and
load characteristics.

The paper is structured as follows. Section 2 recalls the
model of Moore and Greitzer and presents, in increas-
ing degree of complexity, the reduced-order (stall-free)
model as well as the “actuated” model including the CCV
and subject to pressure and flow disturbances. The main
standing assumptions are outlined. In Section 3 we derive
a constructive procedure to compute a feasible steady-
state operating point. In Section 4 it is described the
new approach to surge avoidance based on the second-
order sliding mode control technique. The results of some
computer simulations are discussed in the Section 5, and
some concluding remarks are presented in the final Section
6.

2. SYSTEM MODELS

We refer to the well known model suggested by Moore
and Greitzer (1986). The basic compression system that
forms the basis for the model development comprises an
(axial or centrifugal) compressor, working between a large
constant pressure reservoir (ambient) and a plenum vol-
ume containing compressible gas (Figure 1). The plenum
volume discharges through a throttle valve into another
large reservoir. The throttle models the load char-
acteristics. The third-order system of equations forming
the Moore-Greitzer model is as follows

ψ̇ =
1

4B2lc
(φ − φ

T
(ψ)) (1)

φ̇=
1

lc
(ψc(φ) − ψ −

3H

4
(
φ

W
− 1)J) (2)

J̇ = J(1 − (
φ

W
− 1)2 −

J

4
)̺ (3)

where:

• ψ is the non dimensional plenum pressure or pressure
coefficient (pressure divided by density and the square
of compressor speed),

Fig. 1. Basic compression system

• φ is the annulus averaged mass flow coefficient (axial
velocity divided by compressor speed),

• J is the squared amplitude of rotating stall amplitude
• ψc and φT are the compressor and throttle (i.e., load)

characteristics

and the state variables derivatives are understood with re-
spect to the adimensional scaled time variable ξ = (U/R)t,
with U being the compressor tangential speed and R the
mean compressor radius (see Moore and Greitzer (1986)).
B, lc and ̺ are constant parameters, and ψc is the com-
pressor characteristics for which a cubic approximation is
considered

ψc(φ) = ψc0 +H [1 +
3

2
(
φ

W
− 1) −

1

2
(
φ

W
− 1)3] (4)

where ψc0, W and H are proper constants.

The throttle characteristic is defined by

φT (ψ) = γ
T

√

ψ ⇔ ψT (φ) =
1

γ2

T

φ2 (5)

Since the scope of this paper is surge suppression, we
disregard the stall dynamics by considering the reduced-
order model obtained from (1)-(3) by setting the stall state
variable J set to zero. It yields the second-order model

ψ̇ =
1

4B2lc
(φ − φ

T
(ψ)) (6)

φ̇=
1

lc
(ψc(φ) − ψ) (7)

The planar system (6)-(7) allows for a clear graphical
interpretation of its behaviour. It admits a single point
of equilibrium Pe ≡ (φe, ψe) located at the point of inter-
section between the compressor and load characteristics,
whose typical shapes are shown in the Figure 2. From the
local stability analysis of the linearized dynamics it follows
that all operating points in correspondence of which
the compressor characteristics has negative slope
are stable (see Gravdahl and Egeland (1999)).

2.1 Close Coupled Valve

The CCV actuator is located located close to the com-
pressor outlet duct and causes the additional adjustable
pressure drop

ψv =
1

γ2
v

φ2 = Kccvφ
2 (8)
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Fig. 2. Typical throttle and compressor characteristics

which leads to the following “controlled” Moore-Greitzer
model:

ψ̇ =
1

4B2lc
(φ− φ

T
(ψ)) (9)

φ̇ =
1

lc
(ψc(φ) −Kccvφ

2 − ψ) (10)

The pressure drop across the CCV can be modulated
by adjusting the the CCV flow coefficient Kccv, and
is therefore treated as the control variable devoted to
provide for a surge-free operation of the compressor. In
order to better understand the effect of changing Kccv,
it is convenient to combine together the compressor and
CCV pressure drops by defining the so-called “equivalent”
compressor characteristics ψE :

ψ
E
(φ) = ψc(φ) −Kccvφ

2 (11)

Then we can rewrite system (9)-(10) as

ψ̇ =
1

4B2lc
(φ − φ

T
(ψ)) (12)

φ̇ =
1

lc
(ψ

E
(φ) − ψ) (13)

The same graphical analysis done for the original “uncontrolled”
model (6)-(7) can be made, which establishes that the
unique equilibrium point of (12)-(13) is located at the
intersection between the throttle characteristics and the
equivalent compressor characteristics (11).

Figure 3 shows the throttle characteristic ΨT together
with some equivalent characteristics which correspond to
different values of Kccv. When Kccv = 0, i.e., the CCV is
fully open, the equivalent characteristic coincides with the
original compressor one.

Again, the local stability of the equilibrium point is af-
fected by the slope of ψE(φ) at that point. By augmenting
Kccv the equilibrium point moves to the left and, at the
same time, the slope of ψE(φ) at the equilibrium decreases.
Then, by taking Kccv sufficiently large, the resulting equi-
librium point can be always made stable.

2.2 Perturbed dynamics

We further complicate the model by assuming the possible
presence of pressure and flow disturbances

ψ̇ =
1

4B2lc
(φ− γT

√

ψ + ηφ(ξ)) (14)
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Fig. 3. The throttle characteristic ψT and the equivalent
characteristics ψE for different values of Kccv (0 <
k1 < k2 < k3).

φ̇ =
1

lc
(ψ

E
(φ) − ψ + ηψ(ξ)) (15)

with the (possibly time-varying) uncertainties ηφ and ηψ
bounded, in modulus, by the positive constants a and b:

|ηφ| ≤ a, |ηψ| ≤ b (16)

The effect of the disturbances can be interpreted as a
rigid translation of the load and equivalent compressor
characteristics. The “perturbed” characteristics are

ψEη(φ) = ψE(φ) + ηψ (17)

φTη(ψ) = γT
√

ψ − ηφ (18)

The latter can be reversed as

ψTη(φ) =
1

γ2

T

(φ+ ηφ)
2 (19)

Figure 4 studies the variation of the intersection point
caused by the effect of the disturbances on the compres-
sor and load characteristics. It is clear that the intersec-
tion point of the perturbed characteristics lies within the
shaded region around the “nominal” point of intersection
P2 of the unperturbed system.
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Fig. 4. Effect of the flow and pressure disturbances on the
localization of the operating point

2.3 Assumptions

It is assumed that at the beginning the CCV is open, i.e.
Kccv = 0, and the initial load value γT = γT is such
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that the corresponding intersection with the compressor
characteristics determines a stable point of operation P1.
Thus, due to the effect of the disturbances, the compressor
trajectory starts from some vicinity of the stable equilib-
rium point P1 = (φe1, ψe1) with the load characterized
by the constant opening γT = γT . From this point on, a
bounded variation (reduction) of γT is allowed such that

γT ∈ (γ
T
, γT ) (20)

with a known lowerbound γ
T
. It is of interest to

study the case in which the lower-bound is such that the
corresponding point of equilibrium P2 with the CCV fully
opened is unstable.

The control task is to close the CCV sufficiently, in order
to keep a stable operating regime in spite of the variation
of γT . The task is feasible according to the Figure 3 and
the related considerations previously made.

In the next Section the problem of computing a conve-
nient value for the steady airflow set-point is dealt with.
Since the compressor will be driven by the controller to-
wards such operating condition, it is crucial to choose it
carefully by taking into account that it should remain
stable in spite of the possible variation of γT . It is
shown in next Section that the range of permitted (says,
“stabilizable” or “achievable”) set-point values is limited.
A constructive procedure to select a “good” set-point,
namely an operating point that can be stabilized by the
CCV, is given. It is desirable to maximize the mass flow
in the new operating point, hence the upper bound of the
admissible domain will be considered.

3. COMPUTATION OF THE DESIRED
STEADY-STATE OPERATING POINT

The active CCV control will drive the compressor towards
a suitable airflow set-point value φ0, that needs to be
evaluated carefully. The mass flow set-point φ0 cannot be
chosen arbitrarily.

3.1 The disturbance-free case (ηφ = ηψ = 0)

A set-point φ0 is said to be “stabilizable” if, for any
load condition in the admissible domain (20), there is
Kccv > 0 such that the load and equivalent compressor
characteristics intersect at φ = φ0, and the resulting point
of intersection is a locally stable equilibrium.

Consider the “uncontrolled” compressor system (Kccv =
0) and the extremal load characteristics at the boundaries
of (20) (i.e., γT = γ

T
and γT = γT ), together with the

corresponding points of intersection. By assumption the
first one (says P1) is stable, while the second one P2 is
unstable. It is clear that the value φ = φe1 cannot be
stabilized when γT < γT , since this would require a posi-
tive vertical translation of the compressor characteristics,
that would be achieved by means of a physically meaning-
less negative value of Kccv. This is clearly impossible since
Kccv ≥ 0 by construction.

All points in the interval [φe2,φe1] are subject to similar
considerations, i.e, there are admissible load conditions
that would prevent the attainment of a stable operation
at that point, due to the constraint Kccv ≥ 0. Then, it

follows that the set-point φ0 should satisfy, at least, the
condition φ0 < φe2

According to the above considerations, the stabilizable set-
points belong to an interval of the type

φ0 ∈ (0, φ∗
0
), φ∗

0
< φe2 (21)

Remember that the stabilizable set-points must fulfill two
properties: i) there must exist Kccv > 0 such that the
load and equivalent compressor characteristics intersect
at that point, and ii) the intersection point is a stable
equilibrium. The latter is satisfied if the slope of the
equivalent characteristics at that point is negative.

We suggest a simple off-line iterative procedure for com-
puting φ∗

0
. Define Ki

ccv = iδ, with δ being a small positive
number and i = 1, 2, ....

At the i-th iteration, it is drawn the equivalent charac-
teristics ψie corresponding to the value of Ki

ccv. Then, the
corresponding point of intersection φi

0
with the “worst-

case” load characteristics (γ
T

= γ
T
) is found. Finally, the

stability of the intersection point is studied. If it is unstable
the next iteration is made. If it is stable, then the iterations
stop and φ∗

0
is assigned the φi

0
value.

Since P2 is unstable, the intersection point is certainly
unstable for small values of Kccv. Nevertheless, according
to Figure 3 and the related considerations previously made
in Section 2.1, the iterations will end after a finite number
of steps due to the stabilizing effect of increasing Kccv. In
particular, because the intersection points decrease along
the iterations, the suggested algorithm gives the largest
stabilizable set-point as requested.

Analytically, the iterative algorithm is formalized as fol-
lows:

i-th step

A. Compute φi
0

such that

ψc(φ
i
0
) −Ki

ccv

(

φi
0

)2

=
1

γ2

T

(

φi
0

)2

(22)

B. Check the condition
∂ψE
∂φ

∣

∣

∣

∣

φ=φi

0

< 0 (23)

which, considering (11) and (4), can be rewritten as follows

φi
0
>

1

2Ki
ccv

∂ψc
∂φ

∣

∣

∣

∣

φ=φi

0

=
1

2Ki
ccv

3

2

H

W

[

1 −

(

φi
0

W
− 1

)2
]

(24)

C. If (24) is verified then φ∗
0

= φi
0

and the iterations stop,
otherwise go to the (i+ 1)-th step.

3.2 Model discrepancies in the compressor characteristic

Let us analyze the effect of possible discrepancies be-
tween the nominal and actual compressor charac-
teristics. In the computation of the intersection points
by means of (22), it is permitted that the “wrong” in-

tersection φ̃i
0

is less than φi
0
. Then, for example, it can

be used any imprecise compressor characteristics ψ̃c such
that ψ̃c(φ) < ψc(φ) in the flow domain of interest. Indeed
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if ψ̃c(φ) < ψc(φ) the obtained intersection point φ̃i
0

will be
smaller than φi

0
.

The stability condition (24) could give unreliable results in
the presence of a large uncertainty onH adW . To enhance
the robustness of the stability condition one can implement
a more conservative version using the knowledge of some
am ≥ supφ

∂ψc

∂φ
(this approach is followed in Gravdahl and

Egeland (1999)). It is obtained

2Ki
ccvφ

i
0
> am (25)

It is clear that using condition (25) instead of (24) one
obtains a conservatively smaller value of φ∗

0
at the end of

the iterations.

3.3 The perturbed case

Now let us consider the presence of flow and pressure
disturbances. As shown in Figure 4, the disturbances
alter the compressor and load characteristics leading to
an uncertainty region around the “nominal” intersection
point in absence of the disturbances.

The rationale and structure of the algorithm are exactly
the same, nevertheless, the formula (22) for computing
the intersection points should be modified. Indeed,
actually, instead of finding the unique intersection point
solution of (22) we should evaluate the smaller intersection
point over the admissible range (which has the form of the
shaded region in Figure 4). It is clear from the Figure 4
that we aim to compute the value φ

0
, thus we have to

consider the disturbance values ηφ(ξ) = a e ηψ(ξ) = −b.

Considering the perturbed characteristics (14) and (16)
into (22) it yields the new formula for computing the lower,
worst-case, intersection point.

ψc(φ
i
0
) −Ki

ccv

(

φi
0

)2

− b =
1

γ2

T

(

φi
0

+ a
)2

(26)

Clearly the solution of equation (26) is less than that of
(22) as it is clear from the Figure 4).

The stability condition (24) is not reliable in the presence
of the disturbances. The more roust and restrictive condi-
tion (25) should be used in the perturbed case.

4. MAIN RESULT

At the beginning (ξ = ξ1), the compressor is assumed to
be working in a vicinity of a stable point of equilibrium
φ1.

It is defined a dynamic airflow reference profile φ0R that
starts from φ1 and converges (decreases) smoothly towards
the chosen set-point value φ0 = φ∗

0
(i.e., the largest

stabilizable set-point) computed in the previous Section.
The reference profile is designed as the solution of the
following differential equation

τφφ̇0R + φ0R = φ0, φ0R(ξ1) = φ1 (27)

The solution φ0R of (27) decreases smoothly and monoton-
ically from φ1 to φ0 with an exponential profile depending
on the time constant τφ0R

(the smaller τφ, the faster the
transient).

Consider the tracking error variable

σ = φ− φ0R(ξ) (28)

Introduce the following auxiliary control variable

u =
1

γ2
v

φǫ
2 = Kccvφǫ

2 → Kccv = φǫ
2/u (29)

with φǫ being a lower-saturated version of φ (ǫ ≈ 0)

φǫ =

{

φ if φ ≥ ǫ > 0
ǫ otherwise

(30)

As long as condition φ ≥ ǫ is not violated, the following
system dynamics is obtained by considering (30) into (14)-
(15)

ψ̇ =
1

4B2lc
(φ− γT

√

ψ + ηφ) (31)

φ̇ =
1

lc
(ψc(φ) − u− ψ + ηψ) (32)

It is proposed the following control algorithm, referred to
as the “Generalized sub-optimal” (G-SO) integral 2-SMC,
see Bartolini et al. (2003).

ẇ = Udsign (σ − βσMj) (33)

u =







U w > U
w 0 ≤ w ≤ U
0 w < 0

(34)

with arbitrary constant β ∈ [0.5, 1), Ud > 0 and U > 0
sufficiently large, and with σMj (j = 1, 2, ...) being the
value of σ at the most recent timer instant tMj at which
σ̇(tMj) = 0. σMj is then denoted as the “last singular
point” of σ.

The performance of the resulting closed loop system is
established in the following Theorem:

Theorem 1 Consider system (31)-(32) starting at the
time instant ξ = ξ1 near the stable equilibrium point
(φ1, ψ1). Consider the tracking error variable (28)-(27)
and apply the “generalized suboptimal” integral 2-SM con-
trol algorithm (33)-(34). Then condition σ = 0 is achieved
after a finite transient, which means that φ→ φ0 exponen-
tially.

Proof of Theorem 1. See the Appendix

5. SIMULATIONS

For simulation purposes it is considered the compressor
model (4), (31)-(32) with the parameters B = 0.7, lc = 3,
H = 0.18, W = 0.25, ψc0 = 0.3 and the state initial
conditions φ(0) = 0.4 and ψ(0) = 0.3. For the throttle
parameter γT we considered the initial and final values 0.65
and 0.5, respectively, and a smooth decrease transition
between them starting at ξ = 250. Corresponding to
the initial throttle parameter γT = γT = 0.65, and
assuming no disturbances,it is found the stable equilibrium
point (φ, ψ)=(0.526,0.657) attracting the compressor state
during the first transient. As the throttle parameter start
to decrease at ξ > 250, the system leaves the equilibrium
reaching the surge zone. The appearance of a deep surge
phenomenon is seen by performing the simulation TEST
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1, with no disturbances (ηψ = ηφ = 0) and no control, i.e.,
Kccv = 0. The phase plane trajectory of the uncontrolled
system is shown in the figure 5.
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Fig. 5. TEST 1. State plane evolution.

Now let us apply the proposed nonlinear CCV-based con-
troller by disregarding, temporarily, the flow and pressure
disturbances. The procedure described in Section 3 for
computing the largest stabilizable set point gives rise to
φ∗

0
= 0.3 for the unperturbed case. The value φ0 = 0.3 is

then selected as the set-point for the steady flow, and the
reference profile φ0R is defined according to (27) with the
time constant τφ = 1/20.

The control algorithm (33)-(34) has been applied with
Ud = 0.1, β = 0.8, U = 5. The CCV flow coefficient Kccv

is computed as per (29)-(30), with the parameter ε = 0.01.

In the first controlled test, TEST 2, no disturbances are
applied. Figure 6 shows the output u of the suboptimal
controller, the CCV flow coefficient Kccv, the pressure ψ
and the flow φ together with its reference value φ0R.
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Fig. 6. TEST 2. Time profiles of u, Kccv, pressure and
flow.

In the TEST 3 it is investigated the effect of the distur-
bances. It is applied a pair of disturbing signals satisfying
the restrictions (16) with a = b = 0.02. To cope with
the disturbances the discontinuous magnitude Ud needs to
be increased to Ud = 1.) The set-point selection criterion
suggested in the Section 3 for the perturbed case leads to

the value φ
∗

0
= 0.25. Thus the reference profile is changed,

as compared to the previous TEST 2, by reducing the
desired steady value φ0 to 0.25.

Figure 7 shows the same signals depicted in the previous
Figure 6 plus the applied disturbances. Now the control
signal u (or equivalently Kccv) cannot be constant in the

steady state since it must compensate for the effect of
the disturbances. The flow is perfectly regulated along the
desired steady state value. The pressure oscillates in the
steady state due to the flow disturbance ηφ, whose effect
cannot be compensated for. If ηφ would be zero then ψ
would be exactly regulated as well.
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Fig. 7. TEST 3. Time profiles of the flow and pressure
disturbances, u, Kccv, pressure and flow.

As a final TEST 4, the complete full-order model (1)-(3)
including the stall state variable J has been simulated
under the same conditions as those in the TEST 3, and
considering the initial condition J(0) = 0.1. This test
aims to show that the proposed control schemes possesses
interesting properties of stall suppression as well. It can be
noted that the stall variable tends rapidly to zero. These
promising properties will be investigated more thoroughly
in next works.

0 100 200 300 400 500 600
0

0.5

1

φ

Flow φ (continous line) and its reference value (dashed line)

0 100 200 300 400 500 600
0

0.5

1

ψ

Pressure ψ

0 100 200 300 400 500 600
0

0.1

0.2

J

Normalized Time ξ

Stall Variable J

Fig. 8. TEST 4. Simulation with the third-order model
including the rotating stall

6. CONCLUSION

A robust surge-avoidance active controller for compressor
systems, based on the second-order SMC approach, and
using has been proposed. The proposed methodology, that
uses a CCV as actuator device, does not require the perfect
knowledge of the compressor parameters and characteris-
tics, and it proves to be robust against a significant class of
perturbations. The simulative analysis confirms the good
performance of the method. Next activities will be targeted
to the study of the combined surge/stall avoidance prob-
lem, in order to validate the promising simulation results.
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Appendix A. PROOF OF THEOREM 1

Let us compute the derivative of the error variable (28).
In light of (32) it yields

σ̇ = φ̇− φ̇0R =
1

lc
(ψc(φ) − u− ψ + ηψ) − φ̇0R =

=
1

lc
(f1(φ, ψ, ξ) − u)

(A.1)

with f1(φ, ψ, ξ) = ψc(φ) − ψ + ηψ − lcφ̇0R. Now compute
also the second derivative of σ. After some manipulations
it yields

σ̈ =
1

lc

[

∂ψc(φ)

∂φ
φ̇− u̇− ψ̇ + η̇ψ

]

− φ̈0R =

=
1

lc

[

1

lc

∂ψc(φ)

∂φ
(ψc(φ) − u− ψ + ηψ) − u̇−

−
1

4B2lc
[φ− φ

T
(ψ) + ηφ] + η̇ψ

]

− φ̈0R

=
1

lc
(f2(φ, ψ, ξ, u) − u̇)

(A.2)

with the function f2 given as follows

f2(φ, ψ, ξ, u) =
1

lc

∂ψc(φ)

∂φ
(ψc(φ) − u− ψ + ηψ)+

−
1

4B2lc
([φ − φ

T
(ψ) + ηφ] + η̇ψ − lcφ̈0R

(A.3)

The second-order dynamics (A.2)-(A.3) is candidate for
the applicability of the suboptimal control algorithm. Note
that the actual discontinuous control variable is u̇, thus the
system input u, obtained by integrating the discontinuous
signal u̇, will be continuous. This methodology is the so-
called “anti-chattering” 2-SMC Bartolini et al. (2003). It
must be shown that the uncertain functions f1 and f2
fulfill the boundedness requirements required by the 2-
SMC applicability conditions.

Assume, temporarily, that the flow will never leave some
bounded domain of the type φ ∈ (φ, φ). It is easy to
show that the pressure dynamics (31) is BIBO stable,
with the “inputs” being the airflow variable φ and the flow
disturbance ηφ. Then, under the above assumption on φ

there are ψ and ψ such that the pressure is bounded too

according to the condition ψ ∈ (ψ, ψ).

Considering (27) one concludes that the generated set-

point φ0R is smooth, then |φ̇0R| and |φ̈0R| are both
bounded by some constant. Thus, by taking into account
(16) and according to the boundedness and smoothness of
the reference φ0R(ξ), function f1 in (A.1) is bounded, in
modulus, by some constant F1.

|f1(φ, ψ, ξ)| ≤ F1 (A.4)

The nonnegative control variable u, the pressure drop
across the CCV, is also bounded. Assuming that the pres-
sure disturbance ηψ has bounded derivative than function
f2 is bounded, in modulus, by some constant F2

|f2(φ, ψ, ξ, u)| ≤ F2 (A.5)

The second-order dynamics (A.2), satisfying condition
(A.5), can be stabilized in finite time by designing the
control variable according to the integral suboptimal algo-
rithm (33)-(34) whose parameters must fulfill the following
sufficient inequalities

U > F1 Ud >
F2

(2β − 1)
β ∈ [0.5, 1) (A.6)

According to the stability properties of the suboptimal
algorithm, see Bartolini et al. (2003), conditions σ = σ̇ = 0
are achieved in finite time. With the above sufficient tuning
rules, the convergence transient of σ is monotonical, which
means that the flow do not feature transient overshoot or
undershoot. After the end of the transient the flow will
exactly match the desired profile φ0R(ξ). Thus, the stable
operating condition φ = φ0 is reached after an exponential
monotonic transient. This means that the flow variable φ
will never leaves the bounded domain φ ∈ (φ, φ), with
φ > ε as previously assumed. This validates all previous
considerations and concludes the proof.
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