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Abstract: In industrial practice, extensive simulations are performed in order to analyse the
safety and the correct operation of controlled chemical processes. One aspect of verifying the
safe operation is to prove that the states of the system stay within a safe region for a certain set
of inputs or disturbances which is the main theme of this paper. Recently, a rigorous method
for this type of verification problem has been proposed which makes use of Barrier Certificates
for verifying whether an undesired set of states can be reached. If the system dynamics can
be described in polynomial form, the safety of the system can be proven algorithmically. The
determination of a barrier certificate is a sum-of-squares (SOS) problem which can further be
transformed into a non-convex Bilinear Matrix Inequality (BMI) problem. This paper deals
with proving the safety of a Continuously Stirred Tank Reactor (CSTR), a non-linear system,
using barrier certificates. Uncertainties are represented by a bounded disturbance acting on
the system. Safety is explicitly proven for a convex set of initial conditions and a non-convex
unbounded unsafe set. Two situations are considered, the uncontrolled plant and the closed-loop
system with a state-feedback controller. For the solution of the BMI problem, three different
numerical approaches are compared. It turned out that solving the non-convex BMI problem
directly is more efficient than solving it using the convex iterative approach.

Keywords: Barrier certificate, Nonlinear systems, Chemical reactor, Polynomial methods,
Polynomial models, Safety analysis.

1. INTRODUCTION

In industrial practice, the validation of a controller is usu-
ally performed by simulations of the closed-loop system.
However, with this method not all uncertainty scenarios
can be examined which implies that the success of a
controller at a real plant depends on the correct choice of
the simulation parameters, e.g. the disturbances and the
parametric model uncertainties. As a result, guarantees for
the performance of a controller cannot be given. A possibil-
ity to rigorously certify the stability and the reachability of
the system is the construction of auxiliary functions as e.g.
Lyapunov functions [Khalil (1996)] or Barrier Certificates
[Prajna and Jadbabaie (2004)]. While for the analysis of
linear systems, quadratic Lyapunov functions and theo-
rems from robust linear control are sufficient, there exists
no algorithmic procedure for the construction of Lyapunov
functions or Barrier Certificates for general uncertain non-
linear systems. In certain cases, a systematic construction
of such functions can be performed, especially for low-
order non-linear models. The polynomial description of
systems provides a suitable basis for the algorithmic con-
struction of such auxiliary functions and by suitable trans-
formations, an even larger class of non-linear systems can
also be examined [Papachristodoulou and Prajna (2005)],
[Savageau and Voit (1987)]. For polynomial systems, a

suitable set of parameterized polynomial Lyapunov func-
tions or Barrier certificates can be constructed using the
sum-of-squares (SOS) decomposition and the Positivstel-
lensatz, a theorem from real-algebraic geometry [Parrilo
(2000)], [Stengle (1974)]. The Positivstellensatz can be
considered as a generalization of the S-procedure [Boyd
et al. (1994)] used in robust control theory where the posi-
tivity of a quadratic polynomial function over a quadratic
set is proven using constant multipliers, usually introduc-
ing a certain amount of conservativeness. The Positivstel-
lensatz proves the positivity of a polynomial function over
a set of polynomial constraints using parameterized poly-
nomial multipliers which can be evaluated with the help
of numerical optimization techniques. However, this often
leads to bilinear representations that contain products of
two unknown coefficients. Such bilinear representations
cannot be represented as convex Linear Matrix Inequalities
(LMIs), but lead to Bilinear Matrix Inequalities (BMIs)
which may be non-convex. Non-convex problems are dif-
ficult to solve in general since there may be many local
optima. By introducing additional variables, known as the
lifting variables, it is possible to transform BMIs into LMI
problems. Similarly, a product of more than two unknown
coefficients in a polynomial leads to general Polynomial
Matrix Inequality (PMI) problems which can also be trans-
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formed into LMI problems. However, it is difficult to assess
the conservativeness of such transformations.

Using Lyapunov functions, one can indirectly prove sys-
tem safety by proving asymptotic stability globally or
locally (within a region of attraction). The determination
of a Lyapunov function for non-linear systems can also
be done systematically using SOS decompositions [Pa-
pachristodoulou and Prajna (2002)]. However, a drawback
of the Lyapunov function approach is that it requires the
stronger result that the system is exponentially stable in
the region of attraction.

This paper deals with the safety verification of a nonlinear
polynomial system. The system is considered to be safe if
its trajectories always stay within a bounded region for a
given bounded set of disturbances. The theoretical contri-
bution of this paper is the consideration of an unbounded
non-convex unsafe set which has so far not been treated
in the literature. We use the method to verify the system
safety for a Continuously Stirred Tank Reactor (CSTR)
[Klatt and Engell (1998)] with the van-der-Vusse reaction
scheme by determining a smallest possible reachable region
around the operating point of the system. Using barrier
certificates, the safety of the system is proven for the
uncontrolled (open-loop) case as well as for the controlled
(closed-loop) case. The bilinear SOS problem is solved by
alternatingly fixing the optimization degrees of freedom
and solving the resulting convex LMI problems repeatedly
[Prajna and Jadbabaie (2004)] as well as by the penalty
method from [Stingl (2005)]. For our problem, the penalty
method is more efficient.

2. PRELIMINARIES

2.1 Mathematical Notations

We denote a scalar variable by lowercase characters, vec-
tors by lowercase bold characters and n × m matrices
by uppercase bold characters. Let Sn denote a set of
symmetric matrices of size n × n, X denote a set of all
possible values of the states of the system and D a set of
possible disturbance values. We use subscripts 0, u and
d for representating initial, unsafe and disturbance sets
respectively. The symbol � indicates positive semidefinite-
ness of a matrix. The complement of a set is indicated by
using ⊥ as a superscript. N0 is a set of natural numbers. R

and C denote real and complex vector spaces respectively.

2.2 Sum-of-Squares Decomposition

A polynomial p(x) of degree 2d can be shown to be non-
negative or a sum-of-squares (SOS) if it can be shown
that p(x) = Z(x)T QZ(x) where Q � 0 and Z(x) is a
monomial vector in x of degree ≤ d [Parrilo (2000)]. If
p(x) =

∑

i cix
αi , αi ∈ N0, that is p(x) is affine in an

unknown coefficient vector (also known as the decision

variable) c = [c1 c2 c3 . . .]
T
, then proving non-negativity

of p(x) is a convex semidefinite program in c and Q:

p(x) ≥ 0 ⇔ ∃ c,Q : Q � 0, trace(AiQ) = ci, (1)

where Ai is a real matrix of suitable dimension that is
determined from the comparision of the coefficients of p(x)
and Z(x)T QZ(x). Determining Q � 0 is an LMI problem.

Note that, with the above formulation, p(x) ≥ 0 is proved
independent of the range of the variable x. Therefore, x is
also called the independent variable. The following is an
example of a SOS decomposition:

p(x) = 2x4
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The SOS decomposition of the product between two pa-
rameterized polynomials p(x) and q(x) is a non-convex
semidefinite program which is referred to as a Bilinear
Matrix Inequality (BMI):

p(x) · q(x) ≥ 0 ⇔ ∃ c,d,Q :

Q � 0, trace(AijQ) = cidj ,
(3)

where Aij is determined similar to Ai as described above.
BMI or, in general, PMI problems are difficult to solve
because of their non-convex solution set. Some approaches
to solve such problems are discussed in section 3.2.

2.3 Positivstellensatz

In control theory, it is often required to prove the satisfac-
tion of some condition only when other condition(s) are
fulfilled. For example, consider that we have polynomial
functions p(x), g(x) and h(x) that it is required to prove
that,

p(x) ≥ 0 whenever g(x) ≥ 0, h(x) = 0, x ∈ R. (4)

Alternatively, we may want to prove that the intersection
of the sets p(x) ≥ 0, g(x) ≥ 0 and h(x) = 0 is non-empty
in R. The above requirement can be proven using the
Positivstellensatz. The Positivstellensatz is an algebraic
technique [Parrilo (2000)], [Stengle (1974)] which combines
a set of inequality and equality constraints into a single
inequality constraint. The individual conditions in (4) can
be combined by using multipliers:

p(x) − σ
T (x)g(x) + λ

T (x)h(x) ≥ 0,

σi(x) ≥ 0, ∀ i, x ∈ R,
(5)

where σi(x) =
∑

j sjx
αj , λi(x) =

∑

j ljx
αj , αj ∈ N0.

σi(x) and λi(x) are multiplier polynomials affine in the
unknown coefficients sj and lj . Thus, if such σ(x) and λ(x)
exist, then we are able to prove (4). Inequality (5) is affine
in the unknown coefficients of σ(x), λ(x) and therefore is
an LMI problem.

Thus, it can be seen that, using the Positivstellensatz, we
are able to prove the non-negativity of a polynomial over
a semialgebraic set (a set of equalities and inequalities).
Using multipliers, the problem can be transformed into a
convex one.

2.4 Barrier Certificates

A barrier certificate is a polynomial function of the states
of a system which, if it exists, proves the safety of the sys-
tem [Prajna and Jadbabaie (2004)]. Consider a continuous
dynamic system

ẋ = f(x), x ∈ X . (6)
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Fig. 1. Idea of a Barrier certificate.

Let X0 be an initial set of states and Xu be an unsafe
set of states. Then, a barrier certificate B(x) satisfies the
following requirements:

B(x) > 0 ∀ x ∈ Xu, (7)

B(x) ≤ 0 ∀ x ∈ X0, (8)

∂B

∂x
(x)f(x) ≤ 0 ∀ x when B(x) = 0. (9)

The basic idea is to require that B(x) is strictly positive
in Xu and non-positive in X0 (see Fig. (1)). The third
requirement (9) ensures that, at B(x) = 0, the rate of
change of B(x) along the flow of system dynamics is always
non-increasing. This ensures that the system trajectories
will never cross the zero-level set. Hence, B(x) = 0
serves as a barrier between X0 and Xu. Employing the
Positivstellensatz, the requirements (7)-(9) can be treated
as SOS constraints if the function f(x) is polynomial.

3. MAIN IDEA

3.1 Problem Definition

We consider the following system:

ẋ(t) = f(x(t),u(t),d(t)),

x(t) ∈ X ⊆ R
nx , d(t) ∈ Dd ⊆ R

nd ,
(10)

where u(t) = Kx(t) is the control input and d(t) is
a disturbance variable. We assume x = 0, u = 0 and
d = 0 as the nominal operating point. Given an initial
set, our goal is to determine a barrier function around
the operating point which serves as an upper bound on
the maximum reachability set of the system. The barrier
certificate problem for the disturbed system (10) is then
given by:

B(x) > 0 ∀ x ∈ Xu,

B(x) ≤ 0 ∀ x ∈ X0,

∂B

∂x
(x)f(x,u,d) ≤ 0 ∀ x when B(x) = 0, u = Kx, d ∈ Dd.

(11)

The initial set X0 is fixed as a convex ellipsoid with
parameter r0:

X0 = {x ∈ X |g0(x) ≥ 0}, g0(x) = xT (−P0)x + r2

0
,

P0 � 0.
(12)

The unsafe set Xu is parameterized by an unknown radius
ru as:

Xu = {x ∈ X |gu(x) ≥ 0}, gu(x) = xT (Pu)x − r2

u,

Pu � 0.
(13)

Therefore, Xu is an unbounded non-convex set. If (11)
holds, Xu is the set of states that cannot be reached. Thus,
its complement X⊥

u is a superset of all reachable states.

Fig. 2. Illustration of the problem: The goal is to minimize
ru. The curved arrows represent possible trajectories.

That is, X⊥

u ⊇ X0. The disturbance set is Dd = {d|gd(d) ≥
0} where gd(d) is defined polynomially.

Our objective is to determine B(x) for the maximum
unsafe set or equivalently for the minimum reachable set.
In other words, we search for the minimum radius ru (see
Fig. (2)). We restrict our search for ru to a compact subset
of the statespace Xss ∈ X , characterized by Xss = {x ∈
X |gss(x) ≥ 0}. By choosing Xss large enough, this does
not impose an additional restriction but it facilitates the
numerical solution. From the definitions of the sets X0, Xu

and Dd and the definition of the barrier certificate (11), the
following SOS optimization problem is obtained employing
the Positivstellensatz (5):

min ru subject to:

SOS1 :B(x) − ǫ − σu(x)gu(x) − σss(x)gss(x) ≥ 0,

SOS2 : − B(x) − σ0(x)g0(x) − σss(x)gss(x) ≥ 0,

SOS3 : −
∂B

∂x
(x)f(x,u,d) − σss(x)gss(x)−

σd(d)gd(d) + λB(x,d)B(x) ≥ 0,

SOS4−SOS7 : σu(x) ≥SOS 0, σ0(x) ≥ 0,

σss(x) ≥SOS 0, σd(d) ≥ 0,

(14)

where σ, λ are the multipliers that are parameterized
affinely in unknown coefficients and ǫ is a small positive
constant which ensures strict positivity of B(x) in Xu.
The set of inequalities (14) involves products between
the unknown coefficients due to terms σu(x)gu(x) and
λB(x,d)B(x). Hence, problem (14) is a BMI problem.
The following section discusses approaches to solve BMI
problems.

3.2 Some Approaches to Solve BMI Problems

We solve the bilinear optimization problem (14) here using
the three different methods:

(i) Iterative approach
This approach is adapted from [Prajna and Jadbabaie
(2004)]. Consider again equation (3) which involves
a product between the coefficients c and d. In this
approach, the BMI problem is solved by alternatingly
fixing c and d. Fixing either of them at a time leads to
convex LMI problems. Below, we state the algorithm
that implements this approach for problem (14):

Algorithm 3.1. (1) Initialization: In this step, B(x)
and Xu (that is, the radius ru) are initialized. It
is easier to initialize B(x) rather than λB(x,d)
since one can always assume a circular B(x)
separating X0 and Xu. Also, a very small Xu is
chosen; that is ru is chosen very large such that
it lies at the mid-point of a chosen interval.
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ru = (lb + ub)/2, (15)

where lb, ub denote the lower bound and the
upper bound of the interval respectively. The
optimization problem (14) is solved to determine
a feasible λB(x,d) and other multipliers.

If the problem is infeasible, then ru is increased
using a bisection method in which,

lb = ru, ru = (lb + ub)/2. (16)

If the problem is feasible, then ru is decreased
using a bisection method in which,

ub = ru, ru = (lb + ub)/2. (17)

The optimization is repeated until a minimum
value of ru is obtained. This step can be described
as:

solve (14) for a fixed B(x).

(2) Fixing λB(x,d): The feasible solution λB(x,d)
obtained from the previous step is fixed. Starting
from the minimum ru obtained in the previous
step, the optimization problem is solved to de-
termine a feasible B(x) and a new minimum
ru which is lower than the one obtained in the
previous step. During the course of optimization,
ru is varied by the bisection method (15)-(17).
This step can be described as:

solve (14) for a fixed λB(x,d).

(3) Fixing B(x): The feasible B(x) obtained from
the previous step is fixed. Starting from the
minimum ru obtained in the previous step, this
step is same as the step (1). On obtaining a
new minimum ru, goto step (2) and the whole
procedure is repeated until a stopping criterion
is satisfied.

(ii) Theory of Moments approach
The theory of moments method is based on the
lifting and relaxation technique [Lasserre (2001)].
Lifting is required to replace the bilinear terms by
a single variable so that the resulting inequality can
be represented in LMI form. For example, consider
the following BMI problem:

p + q + p · q ≥ 0; p, q ∈ R. (18)

Replacing each monomial piqj with a lifting variable
yij , inequality (18) can be written as,

y10 + y01 + y11 ≥ 0. (19)

The lifting variables satisfy the following non-convex
constraints:

y10 · y01 = y11, y20 = y2

10
, y02 = y2

01
. (20)

The non-convex constraints can be relaxed by build-
ing a moment matrix of first order, thereby relaxing
monomials of degree up to 2, as follows:

M1(y) =





1 y10 y01

y10 y20 y11

y01 y11 y02



 � 0. (21)

Inequalities (19)+(21) constitute an LMI problem.
Owing to the relaxation, the feasible solution set of
the original non-convex problem is enlarged and is
also convex. Solution of the relaxed problem gives
an upper bound on the global optimum solution of
the original problem (18). Further relaxation would
introduce additional variables resulting in additional

constraints which would further reduce the feasible
convex solution set (obtained from the previous LMI
relaxation), thereby making the relaxation tighter.
This results in a reduction of the gap between the
global optimum and the relaxed optimum. Building
a nested series of LMI relaxations, the method con-
verges towards the global optimum. The following
scheme represents the idea of the method:

SolLMI1
⊃ SolLMI2

⊃ . . . ⊃ SolBMI problem,
tighter relaxation −→

where SolLMI1
is the convex solution set of the 1st-

order LMI relaxation and so on. The size of the
relaxed LMI problem grows polynomially with the
relaxation order. Therefore, the approach requires a
large memory and is computationally expensive.

(iii) Penalty/Augmented Lagrangian approach

Penalty/Augmented Lagrangian methods are similar
to the interior-point (IP) methods [Nesterov and
Nemirovsky (1994)] which are useful in solving con-
vex optimization problems like the LMI problems.
The penalty/augmented Lagrangian method differs
from the IP method in that the former makes use
of the penalty function which penalizes the matrix
inequality constraints. With some internal change of
variables and matrix operations, the method can be
extended to BMI problems as well. This method re-
quires a starting point for its initialization which can
be fixed to zero in most cases. A detailed discussion
on this method and on the choice of a suitable penalty
function can be found in [Stingl (2005)].

The computational complexity of this method
is dominated by the construction of the Hessian
(second-order derivative) of the augmented Lagran-
gian. The efficiency of the algorithm can be consid-
erably improved by exploiting the sparse structure of
the Hessian matrix. The penalty/augmented Lagran-
gian method only guarantees local convergence. When
initialized appropriately, the convergence to the opti-
mum solution is fast.

To implement the iterative approach, SOSTOOLS (avail-
able at www.cds.caltech.edu/sostools/) along with Se-
DuMi [Sturm (1999)], both are freely available MAT-
LAB 1 -based toolboxes, were used. For implementing the
theory of moments, YALMIP [Löfberg (2004)] along with
SOLVEMOMENT (shipped freely with YALMIP), which
are also freely available toolboxes, were used. For im-
plementing the penalty/augmented Lagrangian method,
YALMIP along with PENBMI (see www.penopt.com/ for
a free developer version) were used.

4. CASE STUDY: A CSTR SYSTEM

A Continuous Stirred Tank Reactor (CSTR) system is
considered [Klatt and Engell (1998)] with the van-der-
Vusse reaction scheme:

A
k1→ B

k2→ C, and 2A
k3→ D,

where A is the educt, B is the product, C and D are the un-
wanted by-products, and k1, k2, k3 are the reaction rates.
The original model (see Fig.(3)) is a 4th-order non-linear
ordinary differential equation (ODE) system containing

1 A registered trademark of The MathWorks, Inc.
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Fig. 3. Continuously stirred tank reactor.

exponential terms in the rate coefficients k1, k2, k3. As-
suming tight temperature control, the exponential terms
can be approximated by constants and the model can be
simplified to a 2nd-order non-linear ODE system:

dca

dt
= 0.0999 · V̇ · (ca0 + d − ca) − 0.01450 · ca

− 1.92861 · 10−03 · c2

a,

dcb

dt
= −0.0999 · V̇ · cb + 0.01450 · ca − 0.01450 · cb.

(22)

where ca, cb are the concentrations of the educt and the
product, respectively, V̇ is the input flow rate of educt A
and is the manipulated variable, ca0 is the nominal input
concentration of educt A, and d is the disturbance acting
on the input concentration ca0.

Here, ca0 = 5.1 mol/l. The nominal operating point is

ca = 1.235 mol/l, cb = 0.9 mol/l and V̇ = 0.05236 l/s. The
practical limits of the state space Xss are as follows:

camin = 0 mol/l, camax = 14.09 mol/l,

cbmin = 0 mol/l, cbmax = 11.07 mol/l.
(23)

Therefore, we have the following state space constraints:

gss(ca) = (ca − 0)(14.09 − ca) ≥ 0,

gss(cb) = (cb − 0)(11.07 − cb) ≥ 0.
(24)

As concentrations cannot become negative, d ≥ −5.1 mol/l.
We restrict d to the relatively large range −1.8708 mol/l ≤
d ≤ 1.8708 mol/l. Therefore, the disturbance set is given
by

gd(d) = −d2 + 1.87082 ≥ 0. (25)

For reasons of numerical stability, we perform shifting
and scaling of system (22) along with the constraints.
The nominal operating point of the system is shifted to
the origin and the whole system is scaled so that the
values of the state variables vary between −1 and +1. The
transformed variables are given by,

x1 =
ca − 1.235

14.09 − 0
, x2 =

cb − 0.9

11.07 − 0
,

xd =
d − 0

1.8708 − (−1.8708)
, u = V̇ − 0.05236.

The initial set is fixed as a convex set around the nominal
operating point, that is

g0(x) = xT (−P0)x + r2

0
≥ 0,

P0 =

[

14.092 0
0 11.072

]

, x =

[

x1

x2

]

, r0 = 0.2.
(26)

For the CSTR system (22), the following two scenarios are
considered:

(i) open-loop system, that is, u = 0 l/s,
(ii) closed-loop system, that is, u = −Kx where K =

[0.9907 0.0954] was obtained by a linear quadratic
regulator (LQR) design procedure considering the
linearized system (22) at the nominal operating point.

We parameterize the barrier certificate polynomial of order
2 as B(x) =

∑

i bix
αi , α1 = [2 0], α2 = [0 2], α3 =

[1 1],α4 = [1 0], α5 = [0 1], α6 = [0 0], where m,n in
αi = [m n] indicate the degrees of the variables x1, x2

respectively. Similarly, the other multiplier polynomials
are of order 2.

4.1 Results

The resulting maximum unsafe set for the open-loop case
and the closed-loop case are shown in fig. (4) in the original
state space. The zero-level contour of the barrier certificate
separates the initial set and the unsafe set. The solid curves
represent the system trajectories for d = 1.8708 mol/l
while the dashed curves represent the system trajectories
for d = −1.8708 mol/l. Observe that the obtained unsafe
set is almost the optimal upper bound of the maximum
reachability of the system.

Table (1) shows a comparision between the numerical
approaches used to solve the optimization problem. The it-
erative approach was initialized with B(x) = xT P0x−0.05
in both cases while PENBMI initializes all the unknown
coefficients, by default, as 0. The iterative approach as well
as the penalty/augmented Lagrangian method provide a
feasible solution while the theory of moments approach,
though theoretically rigorous, failed to arrive at a feasible
solution due to high memory requirements.

The maximum unsafe set for the open-loop case (see
Fig. (4(a))) is given by

gu(ca, cb) = (ca − 1.235)2 + (cb − 0.9)2 − 0.29614 ≥ 0

(iterative approach),

gu(ca, cb) = (ca − 1.235)2 + (cb − 0.9)2 − 0.2962 ≥ 0

(penalty/augmented Lagrangian approach).

The maximum unsafe set for the closed-loop case (see
Fig. (4(b))) is given by

gu(ca, cb) = (ca − 1.235)2 + (cb − 0.9)2 − 0.046951 ≥ 0

(iterative approach),

gu(ca, cb) = (ca − 1.235)2 + (cb − 0.9)2 − 0.0430 ≥ 0

(penalty/augmented Lagrangian approach).

5. SUMMARY AND CONCLUSIONS

In this paper, a method to prove the safety of an un-
certain non-linear polynomial system was presented using
the sum-of-squares decomposition. For the CSTR system,
safety was proved for the open-loop as well as the closed-
loop case. The involved BMI problem was solved using
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Table 1. Computational times of numerical ap-
proaches for solving the optimization problem
for the 2nd-order CSTR system. The iterative
and penalty/aug. Lagrangian methods were
solved on an Intel Celeron processor, 2.40 GHz,
512 MB RAM while the moments method was
solved on an AMD Dual-Opteron processor,

2.40 GHz, 8 GB RAM.

Approach Solver Comput. time
(open-loop/closed-loop)

Iterative SeDuMi at-least 1 hour
for each case

Penalty/Aug. PENBMI 17.5 sec. / 8.3 sec.
Lagrangian

Theory of SOLVEMOMENT fails due to high
Moments memory requirements
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Fig. 4. Barrier certificates for the 2nd-order CSTR system.

three different methods. The results from the iterative ap-
proach and the penalty/augmented Lagrangian approach
are almost equivalent; however, the former method is much
slower compared to the latter one. The theory of moments,
though theoretically rigorous, failed in practice for our
problem mainly due to high memory requirements.

Due to the bilinear (non-convex) nature of the opti-
mization problem, the available BMI solvers (SOLVE-
MOMENT and PENBMI) do not guarantee convergence
towards a feasible solution, especially when the system
order is increased. Moreover, the success of the PENBMI
solver depends on an appropriate initialization of the de-
cision variables. Therefore, the iterative approach seems

to be more attractive in the case of higher system orders.
However, as explained in section 3.2, the problem must be
appropriately initialized which could be difficult for higher-
order systems. Hence, a method to initialize the iterative
approach in such cases must be investigated further.
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