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Abstract: In this paper, we present an unknown input observer (UIO) design method for a class
of nonlinear systems in the presence of disturbances in both the dynamics of the system and
the output. The main idea lies in the introduction of Sobolev norms to define a new criteria to
study robustness of the observer. Contrarily to the classical H∞ criteria, this new criteria, called
the modified H∞ criteria, allows to solve the problem of unknown input observer design in the
presence of disturbances. Based on the Lyapunov stability theory and the modified H∞ criteria,
new sufficient synthesis conditions are given in terms of Linear Matrix Inequalities (LMIs). To
show the performances of the proposed method, we considered the problem of simultaneous
synchronization and decryption in chaotic communication systems.
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1. INTRODUCTION

The problem of estimating unknown inputs is motivated
by certain applications such as fault detection, fault di-
agnostic, control system design and synchronization and
decryption in chaotic communication systems.
Observer design for estimating the state of a system and
the unknown inputs in the linear case has received consid-
erable attention in the past. However, little research has
been paid toward nonlinear case. Additionally, most of the
existing results for nonlinear systems concerns only the
estimation of the state of the system subject to unknown
inputs, see Chen and Saif [2006], Pertew et al. [2005] for
instance. Very few works have been carried out on estimat-
ing the unknown inputs. We cite here some of the available
results in a synchronization and input recovery context.
In Huijberts et al. [2000], the problem of unknown, con-
stant or slowly time-varying input estimation using an
Extended Kalman Filter (EKF) is discussed. In Boutayeb
et al. [2002], the authors proposed an approach to estimate
simultaneously the state of the system and the unknown
inputs using a generalized state space observer. This ap-
proach is extended recently, to a more general class of
nonlinear systems in Trinh et al. [2004], and to discrete-
time case using the EKF in Boutayeb [2004].
In certain applications, such as chaos communication, the
quality of the input reconstruction plays a very impor-
tant role. Indeed, in chaos communication systems, the
transmitted signal through a transmission channel is often
corrupted by noise. Therefore, proposing a new unknown
input observer synthesis method that take into account
the disturbances that affect the output signal is necessary.

This paper deals with unknown input observer design
method for a class of nonlinear systems. The proposed
method takes into account the presence of disturbances in
both the dynamics of the system and the output. The main
result lies in the use of Sobolev norms to define a new crite-
ria of robustness, called the modified H∞ criteria. Contrar-
ily to the standard H∞ method, the modified H∞ criteria
offers the possibility to solve the unknown input observer
synthesis problem in a noisy context. Based on the Lya-
punov stability theory and the differential mean value
theorem, new sufficient synthesis conditions are given in
terms of Linear Matrix Inequalities (LMIs) easily tractable
using standard convex optimization algorithms. It should
be noticed that for more details on the Sobolev norms, we
refer the reader to Bourles and Colledani [1995], Alessandri
[2007].
The rest of this note is arranged as follows. In section 2, we
present the motivating problem to show the significance
of this work. In section 3, we introduce the modified
H∞ criteria, which is based on Sobolev norms. The pro-
posed unknown input observer synthesis method is given
is section 4. The validity of the theoretical work is shown
through a numerical example in section 5. Finally, we end
this note by a conclusion in section 6.

Notations : The following notations will be used through-
out this paper.

• ‖.‖ is the usual Euclidean norm;
• (⋆) is used for the blocks induced by symmetry;
• AT represents the transposed matrix of A;
• Ir represents the identity matrix of dimension r;
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• for a square matrix S, S > 0 (S < 0) means that this
matrix is positive definite (negative definite);

• the notation ‖x‖Lr

p
=
( ∫ +∞

0 ‖x(t)‖pdt
) 1

p

is the Lr
p

norm of the vector x(.) ∈ R
r. The set Lr

p is defined
by

Lr
p =

{

x(.) ∈ R
r : ‖x‖Lr

p
< +∞

}

and then (Lr
p, ‖.‖Lr

p
) is called the Lebesgue space;

• es(i) =
(

0, ...,0,

i th
︷︸︸︷

1 , 0, ...,0
︸ ︷︷ ︸

s components

)T
∈ R

s, s ≥ 1 is a vector of

the canonical basis of R
s;

• the set Co(x, y) is the convex hull of the set {x, y},
i.e.

Co(x, y) =
{

λx + (1 − λ)y, λ ∈ [0, 1]
}

.

2. MOTIVATING PROBLEM

In chaotic communication systems, the transmitted signal
through a transmission channel is generally disturbed by
noises or bounded disturbances. For this reason the H∞

performance analysis plays an important role on the qual-
ity of the reconstruction of the useful signal (the original
message to be decrypted). There are many chaotic com-
munication techniques. See Yang [2004] for an overview
on all the existing methods. Among these techniques, we
mention that based on unknown input observers. This
method, called simultaneous synchronization and decryp-
tion technique, is represented in Figure 1.

Fig. 1. Simultaneous synchronization and decryption tech-
nique based on UIO.

2.1 Analytic Study of the Problem

To study analytically the problem represented in Figure 1,
we prefer to consider the general problem of H∞ unknown
input observer design for a class of nonlinear systems. Let
us consider the class of systems described by the following
set of equations :

{
ẋ = Axx + Auu + Bf(x, u) + Eωω
y = Cx + Du + Dωω

(1)

where x ∈ R
n is the state vector, u ∈ R

m denotes the
unknown input to be estimated, y ∈ R

p is the output
vector and ω is the vector of disturbances. At this stage,

we assume only that ω ∈ Ls
2([0, +∞]). Ax, Au, B, C, D and

Dω are constant matrices of adequate dimensions. D is of
full column rank. The nonlinear function f : R

n×R
m 7→ R

q

is assumed to be differentiable with respect to x and u and
satisfies the following inequality :

aij ≤ ∂fi

∂ζj

(ζ) ≤ bij , ∀ ζ ∈ R
n+m (2)

The inequality (2) implies that the differentiable function
f is γ-Lipschitz where

γ =

√
√
√
√

i=q
∑

i=1

j=n+m
∑

j=1

max
(

|aij |2, |bij |2
)

.

Note that the reformulation of the Lipschitz condition for
differentiable functions as in (2) leads to less restrictive
synthesis conditions and avoids high gain as shown in Ze-
mouche et al. [2007].
Before presenting the observer, we need to define the
bounded convex domain

Hq,n,m =
{

ν = (ν11, ..., νq(n+m)) : aij ≤ νij ≤ bij

}

(3)

of which the set of vertices is defined by :

VHq,n,m
=
{

α = (α11, ..., αq(n+m)) : αij ∈ {aij, bij}
}

.

(4)

At this stage of the paper, we consider the same structure
of the observer as in Boutayeb et al. [2002]. Before intro-
ducing the unknown input observer equations, we need the
following notations for simplicity of the presentation :

E = [In 0] (5)

M = [Ax Au] (6)

H = [C D] (7)

ζ =

[
x
u

]

(8)

Since D is of full column rank, then also

[
E
H

]

is of full

column rank and then the matrix

([
E
H

]T [
E
H

])−1

exists.

Now, we set

[P Q] =

([
E
H

]T [
E
H

])−1 [
E
H

]T

(9)

where P and Q are real matrices of dimension (n + m).n
and (n + m).p respectively.
Therefore, we deduce from (9) that :

PE + QH = In+m. (10)

The unknown input observer structure is of the form :
{

ż = Nz + Ly + PBf(z + Qy)

ζ̂ = z + Qy
(11)

where ζ̂ denotes the estimate of ζ.
The aim is to determine the matrices N and L such
that the estimation error ε = ζ̂ − ζ converges H∞

asymptotically towards zero, i.e. :

‖ε‖
L

n+m

2

≤ λ‖ω‖Ls

2
(12)

where λ > 0 is the disturbance attenuation level to be
minimized
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2.2 H∞ Filtering Design Problem Li and Fu [1997]

Given the system (1) and the unknown input observer (11),
then the problem of H∞ filtering design is to determine the
matrices N and L so that

lim
t→∞

ε(t) = 0 for ω(t) = 0; (13)

‖ε‖
L

n+m

2

≤ λ‖ω‖Ls

2
∀ ω(t) 6= 0; ε(0) = 0. (14)

The problem of H∞ filtering design (13)-(14) is reduced
to find a Lyapunov function V (ε) such that

W (ε) , V̇ + εT ε − λ2ωT ω < 0. (15)

It is easy to show that (15) implies (13) and (14). Indeed,

if ω(t) = 0, then (15) implies that V̇ < 0. Thus, from
the Lyapunov theory, we deduce that the estimation error
converges asymptotically to zero, and then we have (13).
Now, if ω(t) 6= 0 and ε(0) = 0, then (15) implies that

V (t) +

∫ t

0

εT (θ)ε(θ)dθ − λ2

∫ t

0

ωT (θ)ω(θ)dθ < 0.

Since V (ε(t)) ≥ 0 for all t ≥ 0, then for t → +∞, we
obtain

∫ ∞

0

εT (θ)ε(θ)dθ ≤ λ2

∫ ∞

0

ωT (θ)ω(θ)dθ

that leads to (14).

2.3 Formal H∞ Convergence Analysis

From the fact that y = Hζ + Dωω, we obtain :

ε = z +
(

QH − In+m

)

ζ + QDωω (16)

and then from (10), the error vector becomes

ε = z − PEζ + QDωω. (17)

After completing the calculations, we obtain the following
dynamics of the error vector :

ε̇ = Nε +
(

N + FH − PM
)

ζ + PBδf

+
(

FDω − PEω

)

ω + QDωω̇
(18)

where
δf = f(ζ̂) − f(ζ) (19)

and
F = L − NQ (20)

If we set
N = PM − FH (21)

then, the error dynamics becomes

ε̇ =
(

PM − FH
)

ε + PBδf

+
(

FDω − PEω

)

ω + QDωω̇
(22)

Note that the term ω̇ is introduced formally, because at
this stage ω belongs only to Ls

2([0, +∞]).
Now, if we use a quadratic Lyapunov function

V (ε) = εT Sε

where S = ST > 0, we obtain, after detailing the
calculations, the following expression :

V̇ = εT
[(

PM − FH
)T

S + S
(

PM − FH
)]

ε

+ 2εT S
(

FDω − PEω

)

ω + 2εT SPBδf

+ 2εT SQDωω̇

(23)

2.4 Motivating Obstacle

In this subsection, we show that if we use the classical H∞

criteria (12), we are unable to obtain a suitable synthesis
method of the gains N and L. Indeed, this is due to the
presence of the term ω̇.
Using the classical H∞ criteria (12) or equivalently (15),
we have :

W (ε) = εT
[(

PM − FH
)T

S + S
(

PM − FH
)

+ In+m

]

ε + 2εT S
(

FDω − PEω

)

ω

+ 2εT SPBδf + 2εT SQDωω̇ − λ2ωT ω

(24)

In order to obtain a suitable condition under which

W (ε) < 0, ∀ ε 6= 0

we must dominate (or eliminate) the terms δf and ω̇
from (24).
Since f satisfies (2), then we know that the problem of
the presence of δf can be solved using the differential
mean value theorem as in Zemouche et al. [2007] or
the classical Cauchy-Schwartz inequality as in Rajamani
[1998], Boutayeb et al. [2002]. However the presence of
the term ω̇ in (24) is a true obstacle. Indeed, we cannot
eliminate it from (24). Then, to solve this problem, we
must add a negative term depending of ω̇T ω̇. This solution
need to introduce a modified H∞ criteria. This is the
subject of the next section.

3. MODIFIED H∞ CRITERIA

Before introducing the modified H∞ criteria that we
propose in this paper, we start by defining the Sobolev
spaces and Sobolev norms that we use later.

3.1 Sobolev Space and Sobolev Norm

Sobolev Space In mathematics, a Sobolev space is a
vector space of functions equipped with a norm that is
a combination of Lp norms of the function itself as well
as its derivatives up to a given order. The derivatives are
understood in a suitable weak sense 1 to make the space
complete, thus a Banach space. It is named after Sergei L.
Sobolev. The Sobolev space that we use in this paper can
be defined by :

Wk,p
r ([0, +∞]) =

{

z : [0, +∞] → R
r such that

∂iz

∂ti
∈ Lr

p([0, +∞]), i = 0, ..., k
} (25)

All the derivatives in (25) are understood in a suitable
weak sense.

1 A weak derivative is a generalization of the concept of the
derivative of a function (strong derivative) for functions not assumed
differentiable, but only integrable, i.e. to lie in the Lebesgue space
L1([0, +∞]).
Let u be a function in the Lebesgue space L1([0, +∞]). We say that
v in L1([0,+∞]) is a weak derivative of u if,

∫ +∞

0

u(t)ϕ̇(t)dt = −

∫ +∞

0

v(t)ϕ(t)dt

for all continuously differentiable functions ϕ with ϕ(0) = ϕ(∞) = 0.
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Sobolev Norm With the above definition, the Sobolev
space Wk,p

r ([0, +∞]) admits a natural norm defined as
follows :

∥
∥
∥z
∥
∥
∥

r

k,p
=

[
i=k∑

i=0

(∥
∥
∥

∂iz

∂ti

∥
∥
∥
Lr

p

)p

] 1
p

=

(
i=k∑

i=0

∫ +∞

0

∥
∥
∥
∥

∂iz(t)

∂ti

∥
∥
∥
∥

p

dt

) 1
p

.

(26)

Wk,p
r ([0, +∞]) equipped with the norm ‖.‖r

k,p is a Banach
space.
Sobolev spaces with p = 2 are especially important
because of their direct connection with the Lebesgue space
Lr

2, which is often used to analyze the H∞ performance of
estimators.

3.2 New Criteria to Study Robustness

Hereafter, we present a new robustness criteria which
allows to solve the problem underlined in Section 2.4. First
of all, we assume now that ω ∈ W1,2

r ([0, +∞]). Then,
this new criteria, called a modified H∞ criteria, is defined
rigorously as follows :

‖ε‖
L

n+m

2

≤ γ1,2‖ω‖r
1,2. (27)

It is obvious that the criteria (27) allows to add to (24) a
negative term depending of ω̇T ω̇.

3.3 Modified H∞ Filtering Design Problem

Given the system (1) and the unknown input observer (11),
then the modified H∞ filtering design problem consists to
compute the matrices N and L so that

lim
t→∞

ε(t) = 0 for ω(t) = 0; (28)

‖ε‖
L

n+m

2

≤ γ1,2‖ω‖r
1,2 ∀ ω(t) 6= 0; ε(0) = 0. (29)

Then, to satisfy (28)-(29) it is sufficient to find a Lyapunov
function V (ε) so that

W (ε) , V̇ + εT ε − γ2
1,2ω

T ω − γ2
1,2ω̇

T ω̇ < 0. (30)

We can show easily that (30) implies (28) and (29). Indeed,

if ω(t) = 0 (then ω̇(t) = 0), then (30) implies V̇ < 0
and then the estimation error converges asymptotically to
zero as in (28). Nevertheless, if ω(t) 6= 0 and ε(0) = 0,
then (30) implies

V (t) +

∫ t

0

εT (θ)ε(θ)dθ

− γ2
1,2

∫ t

0

ωT (θ)ω(θ)dθ − γ2
1,2

∫ t

0

ω̇T (θ)ω̇(θ)dθ < 0.

Since V (ε(t)) ≥ 0 for all t ≥ 0, then for t → +∞, we have
∫

∞

0

εT (θ)ε(θ)dθ ≤ γ2
1,2

(∫
∞

0

ωT (θ)ω(θ)dθ −

∫ t

0

ω̇T (θ)ω̇(θ)dθ

)

that leads to (29).

4. UNKNOWN INPUT OBSERVER SYNTHESIS
METHOD

In this section, we present mainly the observer synthesis
method used to design the matrices N and L, which solve
the modified H∞ filtering design problem with an optimal
disturbance attenuation level γ1,2.

4.1 Sufficient Synthesis Conditions

Hereafter, we state a theorem which provides sufficient
conditions ensuring (30) with an optimal disturbance
attenuation level γ1,2.

Theorem 1. The modified H∞ unknown input observer
design problem corresponding to the system (1) and the
observer (11) is solvable if there exist matrices S = ST > 0
and R of adequate dimensions so that the following convex
optimization problem is feasible :

min(µ) subject to Γ(α, µ) < 0, ∀α ∈ VHq,n,m
(31)

where

Γ(h, µ) =

[
M(h) RDω − SPEω SQDω

(⋆) −µIs 0
(⋆) (⋆) −µIs

]

(32)

M(h) = A(h)T S + SA(α) − HT RT − RH + In+m (33)

A(h) = P
[

M + B

i=q
∑

i=1

j=n+m
∑

j=1

hijeq(i)e
T
n+m(j)

]

(34)

After solving (31), we can compute the matrix F as
F = RS−1. Then, we deduce the observer matrices and
the minimum disturbance attenuation level as follows :

N = PM − FH

L = F + NQ

γ1,2 =
√

µ

Proof. After detailing the calculations in (30), we obtain

W (ε) = εT
[(

PM − FH
)T

S + S
(

PM − FH
)

+ In+m

]

ε + 2εT S
(

FDω − PEω

)

ω

+ 2εT SPBδf + 2εT SQDωω̇

− γ2
1,2ω

T ω − γ2
1,2ω̇

T ω̇

(35)

If we use the differential mean value theorem Zemouche
et al. [2007], we deduce that there exist ηi ∈ Co(ζ, ζ̂) such
that

δf =





i=q
∑

i=1

j=n+m
∑

j=1

∂fi

∂ζj

(ηi)eq(i)e
T
n+m(j)



 ε. (36)

By setting

hij(ηi) =
∂fi

∂ζj

(ηi), Hij = eq(i)e
T
n+m(j)

h =
(

h11, ..., h1(n+m), h2(n+m), ..., hq(n+m)

)

the equation (35) becomes

W (ε) = εT

[(

P

[

M + B

i=q∑

i=1

j=n+m∑

j=1

hij(ηi)Hij

]

− FH

)T

S

+ S

(

A(h)
︷ ︸︸ ︷

P

[

M + B

i=q∑

i=1

j=n+m∑

j=1

hij(ηi)Hij

]

−FH

)

+ In+m

]

ε + 2εT S

(

FDω − PEω

)

ω

+ 2εT SQDωω̇ − γ2
1,2ωT ω − γ2

1,2ω̇T ω̇

(37)

If we use the change of variable R = FS, then (37) will
be rewritten as follows :
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W (ε) =

[
ε
ω
ω̇

]T

Γ
(

h, γ2
1,2

)
[

ε
ω
ω̇

]

(38)

where Γ(.) is defined in (32).

Since h ∈ Hq,n,m and Γ
(

h, γ2
1,2

)

is affine (then convex)

in h, then from the convexity principle Boyd and Vanden-
berghe [2001], we deduce that

Γ
(

h, γ2
1,2

)

< 0, ∀ h ∈ Hq,n,m

if

Γ
(

α, γ2
1,2

)

< 0, ∀ α ∈ VHq,n,m
. (39)

Therefore, (39) implies W (ε) < 0, which means that
the modified H∞ unknown input observer design problem
is solvable. Then, obtaining the minimum value of the
disturbance attenuation level γ1,2 consists to solve (31)
with µ = γ2

1,2. This ends the proof of Theorem 1.

4.2 Case where Rank(D) < m

In this case, we cannot use y to estimate simultaneously
x and u. However, we must use another output which
depends of the derivative of y. To simplify the study of
this case, we assume without loss of generality that D = 0.
This new output is under the form :

y1 = T ẏ (40)

where T is a matrix of appropriate dimension to be
determined later. Then, we have

y1 = C̄x + D̄u + Ēωω + D̄ωω̇ + (TCB)f(x, u) (41)

where
C̄ = TCAx, D̄ = TCAu

Ēω = TCEω, D̄ω = TDω

with ω belongs now to W2,2
r ([0, +∞]).

Assuming that the matrix D̄ is of full column rank, then
the corresponding unknown input observer is :

{
ż = Nz + Ly1 + P̄Bf(z + Q̄y1)

ζ̂ = z + Q̄y1
(42)

where
[
P̄ Q̄

]
=

([
E
H̄

]T [
E
H̄

])−1 [
E
H̄

]T

(43)

H̄ =
[
C̄ D̄

]
(44)

Since ω̈ will be appeared in the dynamics of the error

vector ε = ζ̂− ζ, then the Sobolev norm of order two must
be used in order to obtain an adequate synthesis method.
Therefore, we have the following new modified H∞ criteria
of order two :

‖ε‖
L

n+m

2

≤ γ2,2‖ω‖r
2,2. (45)

In the following theorem, we state sufficient conditions
under which the problem of modified H∞ filtering design
of order two, corresponding to the system (1) and the
observer (42), is solvable.

Theorem 2. The modified H∞ filtering design problem (45)
corresponding to (1) and (42), is solvable if the following
conditions hold :

• T ∈ ker(CB) \ {0}, i.e. T 6= 0 and TCB = 0;

• Rank
(

D̄ = TCAu

)

= m (for the existence of (42));

• there exist matrices S = ST > 0 and R of adequate
dimensions so that the following convex optimization
problem is feasible :

min(µ) subject to Γ(α, µ) < 0, ∀α ∈ VHq,n,m
(46)

where

Γ(h, µ) =






M(h) N L P

(⋆) −µIs 0 0
(⋆) (⋆) −µIs 0
(⋆) (⋆) (⋆) −µIs




 (47)

M(h) = A(h)T S+SA(α)−H̄T RT−RH̄+In+m (48)

A(h) = P̄
[

M + B

i=q
∑

i=1

j=n+m
∑

j=1

hijHij

]

(49)

N = RĒω − SP̄Eω (50)

L = RD̄ω + SQ̄Ēω (51)

P = SQ̄D̄ω (52)

The observer gains N, L and the minimum disturbance
attenuation level γ2,2 will be computed by :

N = P̄M − RS−1H̄

L = RS−1 + NQ̄

γ2,2 =
√

µ

Proof. The proof uses the same tools as that of The-
orem 1. Moreover, here we use the Lyapunov function
V (ε) = εT Sε to show that under the conditions of Theo-
rem 2, we have always

W (ε) , V̇ + εT ε − γ2
2,2

(

ωT ω − ω̇T ω̇ − ω̈T ω̈
)

< 0. (53)

Remark 3. Note that if the derivative y(k) is needed to
estimate simultaneously x and u, then we must use a
modified H∞ criteria of order k + 1, i.e. :

‖ε‖
L

n+m

2

≤ γk+1,2‖ω‖r
k+1,2. (54)

Remark 4. If ker(CB) = {0}, then we must consider as

unknown input to estimate, the vector ū =

[
u

f(x, u)

]

and

then, we estimate simultaneously x and ū, i.e. ζ =

[
x
ū

]

.

5. NUMERICAL EXAMPLE

In this section, we give a numerical example to illustrate
the analytic results of the proposed method. We consider
the problem of synchronization and decryption in chaotic
communication systems represented in Figure 1. For this,
we consider the case where only the transmitted signal is
affected by disturbances. In order to well illustrate the
performance and usefulness of the proposed theoretical
results, we have chosen to use a picture as an unknown
signal (unknown input) to be reconstructed (an encrypted
picture to be decrypted). This picture represented in
Figure 2, is transformed into a one dimensional signal u
using the Matlab function ”reshape”.
The dynamic model of the transmitter is the chaotic

system of Rössler. The parameters of the system are given
as follows :

Ax =

[
0 −1 −1
1 a 0
0 0 −c

]

, Au =

[
1
2
0

]

, B =

[
0
0
1

]

,
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Fig. 2. Original picture

C = [0 1 0] , D = 1, Dω = 1, Eω =

[
0
0
0

]

and

f(x, u) = x1x3 + x1u + b

where a = 0.398, b = 2, c = 4, values for which the system
exhibits a chaotic behavior.
Matrices P and Q are

P =






1 0 0
0 1 0
0 0 1
0 −1 0




 , Q =






0
0
0
1




 .

Since the system is chaotic, then its states are bounded.
Thus, we can compute numerically the bounds aij and bij .
After simulating the system by using Matlab-Simulink, we
obtained the following values :

a11 = 0, a12 = −1.5, a13 = −1.5,

b11 = 5, b12 = 1, b13 = 1.

Using Matlab toolbox LMI, we obtain the following solu-
tions of the convex optimization problem of Theorem 1 :

N =






0 0.04 −1 2.04
1 −0.90 0 0.70
0 1.32 −4 1.32
−1 −1.26 0 −2.86




 , L =






1
2
0
−2




 , γ1,2 = 2.91

For numerical simulations, we have used as disturbance
ω(t) a gaussian distributed random signal with mean zero.
For ω(t) with a standard deviation σ = 0.032, the received
and decrypted pictures corresponding to the signals y and
û, respectively, are represented in Figure 3. We observe
that the picture is well decrypted in spite of the presence
of weak disturbance.

(a) Received picture (b) Decrypted picture

Fig. 3. Received and decrypted pictures

6. CONCLUSION

The main result of this paper lies in the definition of a new
criteria to study robustness. This latter, called the modified
H∞ criteria is based on the use of Sobolev norms. Indeed,
the derivative of the disturbances appears naturally in
the dynamic error equation, and then the use of Sobolev
norms is required because the disturbances must belong
to the Sobolev space. Thanks to a Lyapunov quadratic
function and the differential mean value theorem, new
synthesis conditions, expressed in terms of LMIs, are given.
The validity of the proposed method is shown through a
numerical example. We have considered the problem of
simultaneous synchronization and decryption in chaotic
communication systems.
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