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Abstract: This work addresses the design of a robust closed-loop plasma glucose controller for
Type 1 Diabetes Mellitus patients. The feedback controller is based on Sliding Mode Control
(SMC) while robust feedforward boluses to compensate food intake are calculated in a robust
way by means of an interval glucose predictor that minimizes the risk of hypoglycaemia. The
designed controller has been validated in a virtual environment following standard protocols. The
resulting control algorithm shows a considerable robustness regarding intra-patient variability
in insulin sensitivity as well as an enhanced ability to handle disturbance rejection. The
International Diabetes Federation guidelines for glycaemia targets in Diabetes Mellitus are
fulfilled by the designed control strategy.

1. INTRODUCTION

Diabetes mellitus is a metabolic disease that is accom-
panied by elevated plasma glucose levels comprising all
forms of acute or chronic hyperglycaemia. This is so due
to the lack of insulin secretion by the β-cells in the islets
of Langerhans in the pancreas (Type 1 Diabetes) or a
reduction in its efficiency to promote transport of glucose
into the cells (Type 2 Diabetes).

Since the Diabetes Control and Complications Trial
(DCCT Research Group [1993]) euglycaemia has been es-
tablished as the control objective for patients with Type 1
Diabetes, except if some contraindication exists. However,
there still lacks a universal, efficient and safe system able
to normalize the glucose levels of patients. The intensive
insulin therapy required to achieve the glucose control
objectives, based on the injection of basal and bolus insulin
to “emulate” its physiological secretion, has as counter-
action an increase in the risk of severe hypoglycaemia with
all their consequences.

Recent advances in continuous subcutaneous (sc) glucose
monitors and the generalization of the use of insulin pumps
have triggered the development of the so-called artificial
pancreas (Hovorka et al. [2006]). Although closed-loop
control of plasma glucose has been a subject of continuous
research for the last 40 years, till now no commercially
available product does exist (Bequette [2005]). As insulin
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pumps technology is relatively mature, the primary limita-
tions to develop such artificial pancreas are the availability
of robust and precise glucose sensors and the development
of reliable control algorithms.

Although several studies have demonstrated the feasibility
of closed-loop insulin delivery systems (Steil et al. [2006])
no one control algorithm has shown its superiority. Several
recent papers provide an overview of diabetes control
strategies from the control engineering point of view, see
for instance Bequette [2005], Parker et al. [2001], Hovorka
[2005a], Steil et al. [2004] Doyle III et al. [2007], Hovorka
[2005a], Doyle III et al. [2007], Hovorka [2005b], Galley
et al. [2004], Campos-Delgado et al. [2006], Ruiz-Velazquez
et al. [2004].

The main problems faced when developing control algo-
rithms for an artificial pancreas are:

• There are many models that describe the behavior of
the glucose-insulin system, from simple ones such as
the so-called “minimal model” by Bergman (Bergman
et al. [1979]), to very complex ones such as Sorensen’s
model (Sorensen [1985]); see for instance Hovorka
et al. [2004], Dalla Man et al. [2007]. However, none of
them can realistically describe the behavior of Type
1 Diabetes.

• Moreover, many of the model parameters are difficult
or impossible to estimate for an individual. Even
the simplest models present non-identifiability regions
(Pillonetto et al. [2003]).

• Such a system must rely on accurate enough pre-
dictions of glycaemia. However, there exists a large
intra-individual and inter-individual variability in the
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patients’ behavior. Furthermore, parameters such as
insulin sensitivity change along the day in individuals.

• Strong disturbances like stress, exercise or meal intake
are acting on the system. In this latter case, an
important source of uncertainty is the quantity of
carbohydrates in the ingested food, since it is difficult
to have a precise estimation of it from a mixed meal.
Furthermore, it is very difficult to measure properly
all these acting disturbances.

Another important limitation in the development of the
artificial pancreas is that insulin delivery have the effect
of lowering the glucose level and no action exist to rise it.

In this paper, a robust sliding mode closed-loop glucose
controller is developed in order to guarantee safe opera-
tion regarding variability in the patient’s behavior (large
variations in patient’s parameters like insulin sensitivity,
etc.). Compensation of meal disturbances is tackled in
a semi-automatic way by calculating bolus insulin doses
from uncertain information by means of interval simula-
tions (Calm et al. [2007]). This method minimizes the risk
of hypoglycaemia even in case of large variations in the
parameters of the patient.

Virtual patients have been widely used to test control
algorithms in the field of artificial pancreas and some
recent papers describe very friendly environments for such
purpose (Canonico et al. [2006]). Validation protocols have
also been defined for a proper validation in this context
(Chassin et al. [2004]). This protocol will be followed by
this work except in the case of system failures, which is
out of the scope of this paper.

The paper is organized as follows: Section 2 describes
the virtual patient model considered here; in Section
3, the developed closed-loop algorithm, composed of an
SMC feedback loop plus an interval bolus feedforward, is
designed; Section 4 presents the results and finally some
conclusions are drawn in Section 5.

2. VIRTUAL PATIENT

To develop, evaluate and test the designed controller, a
simulation environment is used. Simulation of an insulin
therapy involves modeling subcutaneous insulin absorp-
tion, carbohydrates digestion and absorption, insulin phar-
macokinetics and pharmacodynamics (PK/PD), and glu-
cose metabolism. The relationship among these processes
is shown in Figure 1.

Fig. 1. Model overview.

In this work, the model presented in Hovorka et al.
[2002, 2004], has been used to represent the glucose-
insulin system. This model shows a good trade-off between
simplicity and accuracy. Experimental validation results
have been reported in the literature. Simple models are

also implemented for the measurement device and for the
insulin pump.

2.1 Glucose-insulin model

Carbohydrates digestion and absorption. This
model describes the carbohydrates catabolism to monosac-
charides (mostly glucose) taking place during meal diges-
tion, as well as intestinal absorption. Glucose absorption
rate UG is represented by

UG(t) =
DGAGt exp(−t/tmax,G)

t2max,G

(1)

being DG the amount of carbohydrates ingested, AG is
carbohydrate bioavailability and tmax,G is the time-of-
maximum appearance of glucose in plasma (Hovorka et al.
[2004]).

Subcutaneous insulin absorption. Subcutaneous ab-
sorption of bolus and infused insulin is modelled by means
of a linear two-compartmental system (Hovorka et al.
[2004]):

dS1(t)

dt
= u(t) −

S1(t)

tmax,I
,

dS2(t)

dt
=

S1(t)

tmax,I
−

S2(t)

tmax,I
(2)

where tmax,I is the time-to-maximum insulin absorption.
The exogenous insulin flow is thus given by

Iex(t) :=
S2(t)

tmax,I
. (3)

Insulin PK/PD and glucose metabolism. Insulin
pharmacokinetics is considered of first order. Plasma in-
sulin concentration, I(t), is thus described as

dI(t)

dt
=

Iex(t)

VI

− keI(t) (4)

where Iex(t) is the exogenous insulin absorption rate
above-described, ke is the fractional elimination rate and
VI is the insulin distribution volume.

Plasma insulin concentration is considered to affect on glu-
cose transport from plasma to the tissues, hepatic glucose
production and peripheral glucose disposal (Hovorka et al.
[2004]). These actions are modelled as first-order processes:

dx1(t)

dt
= −ka1x1(t) + kb1I(t)

dx2(t)

dt
= −ka2x2(t) + kb2I(t)

dx3(t)

dt
= −ka3x3(t) + kb3I(t) (5)

where x1 represents the effects of insulin on glucose distri-
bution/transport, x2 represents the effect on glucose dis-
posal and x3 the effect on endogenous glucose production;
kai, i = 1, . . . , 3 are deactivation rate constants and kbi,
i = 1, . . . , 3 activation rate constants. It will be considered
here an alternative parametrization where kb1

ka1

=: SIT ,
kb2

ka2

=: SID and kb3

ka3

=: SIE , representing respectively
insulin sensitivities to transport, disposal and endogenous
glucose production.
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Finally, glucose metabolism is represented as the two-
compartmental system (Hovorka et al. [2004])

dQ1(t)

dt
= −F c

01(t) − x1(t)Q1(t) + k12Q2(t) −

−FR(t) + UG(t) + EGP0(1 − x3(t))

dQ2(t)

dt
= x1(t)Q1(t) − (k12 + x2(t))Q2(t)

G(t) =
Q1(t)

VG

where Q1 and Q2 represent the masses of glucose in the
accessible and non-accessible compartments, k12 repre-
sents the transfer rate constant from the non-accessible to
the accessible compartment, VG represent the distribution
volume of the accessible compartment, G is the glucose
concentration and EGP0 represents endogenous glucose
production extrapolated to the zero insulin concentration.
F c

01 is the total non-insulin-dependent glucose disposal,
and FR is the renal glucose clearance above the glucose
threshold of 9 mmolL−1. Contrary to Hovorka et al. [2004],
these ones are modelled here by the functions:

F c
01(t) =

f01

9
(G(t) − 4.5 −

√

(G(t) − 4.5)2 ) + f01

FR(t) =
0.003VG

2
(G(t) − 9 +

√

(G(t) − 9)2 )

Table 1 lists the model parameters used for the different
components of the model, taken from Hovorka et al. [2002,
2004], patient n=2.

Table 1. Model parameters for patient n = 2.

Symbol Value Unit

AG 0.8 unitless

tmax,G 40 min

VI 0.12 L/kg

ke 0.138 1/min

ka1 0.0157 (12)∗ 1/min

ka2 0.0231 (27) 1/min

ka3 0.0143 (6) 1/min

SIT 18.7 × 10−4 (11) min−1 per mUL−1

SID 6.1 × 10−4 (8) min−1 per mUL−1

SIE 379 × 10−4 (2) mUL−1

k12 0.0871 (8) 1/min

f01 0.0075 (2) mmol /(kg min)

VG 0.13 (1) L/kg

EGP0 0.0143 (2) mmol /(kg min)

tmax,I 55 min
*Accuracy of a parameter estimate expressed as a fractional standard

deviation (%).

The sensor is modelled as a pure time delay (t0=10 min)
with white noise,

Gmeas(t) = G(t − t0) + ǫ (6)

3. CLOSED-LOOP GLUCOSE CONTROLLER

3.1 Control architecture

It will be considered here that closed-loop glucose control
is carried out through the sc-sc route, i.e. a continuous
glucose monitor and an insulin pump accessing to subcu-
taneous tissue are considered.

Meal
Ingestion

Fig. 2. Feedback-feedforward control scheme.

Control scheme will be based on a feedback-feedforward
strategy. On one hand, a feedback sliding mode controller
will be charged of keeping plasma glucose at its target
value. On the other hand, a feedforward scheme will help
this controller to face with postprandial glucose excursions
from information given by the user on the meal ingested.
Based on a prediction of postprandial glucose with con-
sideration of uncertainty in patient’s behavior and meal
description, a bolus insulin dose will be estimated to min-
imize the risk of hypoglycaemia and supplied additionally
by the insulin pump (see Figure 2).

3.2 Feedback sliding mode controller

Basic Concepts.- SMC is a robust and simple procedure
to synthesize controllers for linear and nonlinear processes
based on principles of Variable Structure Control (VSC).
The design problem consists of tuning the parameters
of each controller’s structure and defining the switching
logic. The first step in SMC is to define a surface S(t),
along which the process can slide to its desired final value.
The sliding surface divides the phase plane into regions
where the switching function S(t) has different signs. The
structure of the controller is intentionally altered as its
state crosses the surface in accordance with a prescribed
control law.

There are many options to choose the sliding surface. In
this work, the sliding surface presented by Slotine and Li
[1991] is used, consisting in the integral-differential error
function

S(t) :=

(

d

dt
+ λ

)n
t

∫

0

e(τ)dτ (7)

where n is the system order, e(t) is the tracking error
between the reference and the output and λ is a tuning
parameter, which helps to shape S(t). This term is selected
by the designer, and determines the performance of the
system on the sliding surface.

The control objective is to ensure that the controlled
variable is driven to its reference value. It means that,
in stationary state, e(t) and its derivatives must be zero.
This condition is achieved assuring that

dS(t)

dt
= 0. (8)
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Once the sliding surface has been selected, attention must
be turned to the design of the control law that drives the
controlled variable to its reference value and satisfies (8).
The SMC control law, U(t), consists of a continuous part,
UC(t), and a discontinuous part, UD(t), so that

U(t) = UC(t) + UD(t). (9)

The continuous part is given by

UC(t) = f(Y (t), R(t)) (10)

where f(·) is a function of the controlled variable, Y (t),
and the reference value, R(t). The discontinuous part,
UD(t), generally incorporates a nonlinear element that
includes the switching element of the control law. In this
case a natural continuous approximation of the signum
function was included to avoid the chattering problem
(Zinober [1994]). This is the sigmoid-like function

UD(t) = KD

S(t)

|S(t)| + δ
, δ > 0 (11)

where KD is the tuning parameter responsible for the
reaching mode and δ is a tuning parameter used to reduce
the chattering problem. Chattering is a nondecreasing
oscillatory component of finite amplitude and frequency. It
is undesirable in practical applications because it produces
high control activity and also can excite high frequency
dynamics ignored in the process modelling (Zinober [1994],
Slotine and Li [1991]).

Controller synthesis.- For design purposes, the following
second-order differential equation is used to approximate
the plasma glucose-insulin relationship at a given esti-
mated equilibrium point (I0, G0):

α
d2G(t)

dt2
+ β

dG(t)

dt
+ G(t) + Ω(t;DG) = KI(t) (12)

where G(t) and I(t) are deviations of plasma glucose and
insulin infusion with regard to the chosen point, α, β and
K are the model parameters and Ω(t;DG) represents the
disturbance on glycaemia produced by an ingestion of DG

grams of carbohydrates. For the second-order process (12),
the sliding surface (7) is as follows

S(t) =
de(t)

dt
+ λ1e(t) + λ0

t
∫

o

e(τ)dτ (13)

where e(t) := R(t)−G(t) is the error between the reference
and the continuous glucose monitor output. λ0 = λ2 and
λ1 = 2λ are tuning parameters.

Applying the sliding condition (8) to (13):

dS(t)

dt
=

d2e(t)

dt2
+ λ1

de(t)

dt
+ λ0e(t) = 0 (14)

and solving for the highest derivative, we obtain

d2G(t)

dt2
=

d2R(t)

dt2
+ λ1

de(t)

dt
+ λ0e(t). (15)

Substituting now (15) in (12) and solving for I(t), in
absence of perturbations, provides the continuous part
of the controller using the equivalent control procedure
(Utkin [1981]):

IC(t) =
1

K

(

α
d2R(t)

dt2
+ αλ1

de(t)

dt
+ αλ0e(t)

+β
dG(t)

dt
+ G(t)

)

. (16)

The following criteria may be used to tune the controller,

λ1 =
β

α
. (17)

Once λ1 is chosen the initial value of λ0 can be obtained
using the relations λ0 = λ2 and λ1 = 2λ. They are
obtained when (13) is deduced,

λ0 =
λ2

1

4
. (18)

However λ0 and λ1 can be fitted independently only
restricted to obtain a stable dynamics of the sliding
surface. For de discontinuous part of the controller the
tuning parameters are,

KD =
1

K
, and δ = 0.6 (19)

Regarding the discontinuous part of the controller, the
gain KD will be selected so that KKD > 0. Accordingly
to the Lyapunov stability criterion (25), its value must
be high enough to cancel the disturbances. In order to
increase the dynamic behavior of the sliding mode con-
troller in the hypoglycemic range a variable gain KV has
been considered, so that when the glucose is bigger than
88 mg/dL then KV = 1; otherwise KV = K∗

V .

Finally, with the selection of λ1, λ0 and replacing dR(t)
dt

= 0
(Camacho et al. [2007]), I(t) can be simplified. Thus, the
incremental control action over the basal insulin is given
by

I(t) =
α

K

[

λ0e(t) +
G(t)

α

]

+ KV KD

S(t)

|S(t)| + δ
. (20)

The SMC controller was implemented in the virtual pa-
tient using the follow parameters λ0 = 3.2 × 10−4, λ1 =
13.7, KD = −4.9, δ = 0.6, K∗

V = 0.5 and the plasma
glucose-insulin model with K = −2.1, α = 6889 and
β = 166.

Stability analysis.- To proof the reaching condition, the
following Lyapunov function is first defined

V (t) =
1

2
S2(t), S(t)

dS(t)

dt
< 0. (21)

Substituting the glucose model (12) in the derived sliding
surface (14):

dS(t)

dt
=−

1

α

(

KI(t) − β
dG(t)

dt
− G(t) − Ω(t;DG)

)

−λ1
dG(t)

dt
+ λ0e(t). (22)

Substituting now in the above equation the control law
(20), the derivative of sliding surface is obtained:

dS(t)

dt
=

1

α

(

Ω(t;DG) − KKV KD

S(t)

|S(t)| + δ

)

. (23)
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Stability condition is thus given by

1

α

(

S(t)Ω(t;DG) − KKV KD

S(t)2

|S(t)| + δ

)

< 0. (24)

In the above expression Ω(·) is a non-negative quantity
since it represents a glucose concentration value. It also
holds that KKV KD > 0. Thus, for S(t) > 0,

KKV KD

S(t)

|S(t)| + δ
> Ω(t;DG) (25)

must hold to get stability. This will have to be fulfilled from
an estimation of the maximum expected perturbation and
a proper tuning of KD. For S(t) < 0, condition (24) will
hold everywhere.

3.3 Feedforward meal compensation

When meal in ingested, a high rise on plasma glucose
will appear. In case information is given to the system
about the amount of carbohydrates contained in the meal,
a feedforward scheme may be implemented to additionally
infuse a bolus insulin flow. However, this must be done
carefully, since an excess of insulin may induce not desir-
able hypoglycaemia episodes.

In this work, uncertain information on the quantity of
carbohydrates supplied, DG, and patient’s peripheral and
hepatic insulin sensitivities, SID and SIE , are considered.
An interval glucose predictor (Calm et al. [2007]) is then
used to calculate a band containing all possible glucose
excursions given the defined uncertainty. Based on a worst-
case analysis, the bolus dose of insulin is calculated to
reduce the risk of hypoglycaemia episodes, calculated as
the area under 70 mg/dL (see Figure 3).

0 1 2 3 4 5
0

50

100

150

200

250

70

Time (hours)

B
lo

d
d

 g
lu

c
o

s
e

 (
m

g
/d

l)

lower bound

nominal model

upper bound

xxx
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Fig. 3. Example of computation of the hypoglycaemia risk
index (60 gr CHO; 6IU). Upper and lower bounds
computed for 20 % variation in model parameters.

4. RESULTS

To demonstrate the feasibility of the proposed closed-loop
controller, a virtual patient with nominal parameters as
described in previous sections has been considered and a
typical one day routine has been implemented (Steil et al.
[2006]):

• Food intake: 55.1 g CHO at 8:00; 87.9 g CHO at 13:00;
69.0 g CHO at 18:00 and 45.3 g CHO at 22:00.

The controller has been tested during 36 hours compris-
ing fasting as well as postprandial states. To consider a
realistic situation, insulin sensitivity has been considered
to change along the day, accordingly to clinical study
described in Scheiner and Boyer [2005] in patients with
age between 21 and 60 years. The sensor is modelled with
white noise with zero mean and a standard deviation of 2
mg/dL, also the input of the controller is a filtered glucose
measurement. A third order low pass Bessel filter with a
cut frequency of 125 mHz has been chosen to filter the
glucose signal. The Bessel filter maximizes the flatness of
the group delay curve at zero frequency. The transition
from the pass band to the stop band is much slower than
for other filters, but the group delay is practically constant
in the pass band. In the simulations presented here, it has
been considered that the continuous glucose monitor shows
a delay of 10 min. Saturation in the insulin pump range
has also been considered.

Results are shown in Figure 4, for patient number 2
(taken from Hovorka et al. [2002]). It may be observed
a good noise rejection and a well-behaved robustness of
the controller face to changes in insulin sensitivity during
the fasting state (from 0 to 8 hours and from 25 to 32
hours). No nocturnal hypoglycaemia is produced, keeping
glucose in the euglycaemic range. Regarding postprandial
state, the controller is also robust to insulin sensitivity
changes. In this case, it may observed how the feedfor-
ward meal compensation scheme implemented, helps the
feedback controller by infusing extra bolus insulin doses.
The bolus dose is then complemented by the feedback
controller, as it may be observed. Neither hyperglycaemic
nor hypoglycaemic episodes are observed.
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Fig. 4. Controller behavior for patient n = 2 in fasting and
postprandial state for time-varying insulin sensitivity.

The International Diabetes Federation (IDF), in a recent
publication (International Diabetes Federation [2007]) es-
tablishes as glycaemic goals for clinical management of
diabetes a fasting glucose level lower than 100 mg/dL
and a 2-hour postprandial glucose level lower than 140
mg/dL, with no hypoglycaemia episodes. It is also stressed
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in the IDF guidelines the need to address postprandial
hyperglycaemia, which has been associated to an increased
risk of cardiovascular diseases among other things. It may
observed in Figure 4 that these criteria are fulfilled for the
designed controller in an in silico setting. Set point has
been selected so as to follow an ideal postprandial response
according to the IDF guidelines.

5. CONCLUSIONS

In this paper, a new approach to plasma glucose closed-
loop control composed by a feedback sliding mode con-
troller and a feedforward meal compensation has been
presented. The feasibility of the proposed approach has
been demonstrated in in silico trials.

The designed controller gives a very good overall perfor-
mance, fulfilling the guidelines of the International Dia-
betes Federation on glycaemic targets. While the feedback
sliding mode controller assures robustness against intra-
patient variability, the feedforward bolus compensation,
by means of an interval glucose predictor, helps to reach
the glycaemic target by infusing an extra bolus insulin
which minimizes the hypoglycaemia risk.
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