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Abstract: This paper proposes the use of sliding mode control to improve the performance of field-
oriented speed controllers of induction motors. The integral sliding mode control provides means to obtain 
an accurate estimate for disturbances and plant parameter perturbations. This estimator is used as an 
auxiliary control loop to reject these disturbances and parameter perturbations while avoiding chattering in 
the main control loop.  The result is a controller with high degree of robustness and accuracy. Stability is 
achieved by using a design procedure based on a Lyapunov function. The feasibility of implementing such 
controllers is verified on a highly nonlinear system, an induction motor. Whether loaded or unloaded, the 
proposed integral sliding mode controller has proved to achieve high performance. 

 

1. INTRODUCTION 

Induction motors are popularly used in industrial applications 
that require motion because of their low cost, rugged 
structure, robustness, and maintainability. However, since the 
induction motor is basically a nonlinear coupling system, 
nonlinear control theory has been applied to the control of 
induction motors in many related research work. For 
example, Kim et al. (1990), Marino et al. (1993), Thomas et 
al. (1994) and Taylor (1994) utilized the feedback 
linearization design approach to achieve input–output 
decoupling, high dynamic performance, and high power 
efficiency. Furthermore, a feedback-linearisable system 
obtained by an integrator addition is presented in Chiasson 
(1993). 

However, the parametric deviation will significantly affect 
dynamic performance and stability of practical 
implementation. Therefore, for the nonlinear feedback 
control of induction motors, many studies have also 
presented designs of compensators for the influence of the 
variation of motor parameters. For instance, Marino et al. 
(1993) and Thomas et al. (1994) presented an adaptive 
feedback linearization tracking controller for the induction 
motor. In these studies, an adaptation law is developed to 
compensate for the parametric uncertainty of the rotor 
resistance and the external load of induction motors. To 
regulate the electromagnetic torque, Ortega & Espinosa 
(1993) and Ortega et al. (1993) developed an adaptive 
nonlinear feedback controller for tuning system parameters. 

The control technique implemented in the above mentioned 
studies as well as in this work is the Field-Oriented Control 
(FOC) technique. The concepts of decoupling both flux and 
torque components in field-oriented control technique enable 
easier control of the induction motor. To drive the motor with 
the resulting current control signals, these currents are to be 
transformed to stator current components and then generated 
using pulse width modulated technique (PWM).  

Nevertheless, as a result of the decoupling and the 
linearization required by the field-oriented control, precise 
knowledge of the motor parameters is required to yield a high 
performance controller. This requirement in practice is 
difficult to achieve due to several reasons. Firstly, the motor 
parameters used for the design of the controller are obtained 
through experiments or system identification methods where, 
in both, errors are very likely to appear depending on the 
overall conditions when carrying the measurement 
procedures. Secondly, even though the parameters obtained 
are precise values for the real system, these parameters vary 
when applying the control method due to change of the 
ambient temperature, change in the parameters due to the 
generated heat and change of the rotor position of the motor. 
In addition, it should be noted that the field-oriented control 
method uses a simplified motor model causing the control 
method to be an approximate and non-precise one. 

To solve these problems, this paper suggests the use of 
sliding mode control method that reduces the calculation 
overhead used by the adaptive method (not to mention the 
convergence problem) to realize a robust control 
methodology that improves the efficiency of the conventional 
robust control method and also to eliminate the excitation of 
high-frequency unmodelled dynamics of the induction motor. 

The proposed method works in conjunction with the field-
oriented method to improve the controller performance, 
eliminate the problems caused by parameter uncertainties, 
and reject the interference disturbances. It is based on the 
idea of composing the overall control action in two parts; a 
continuous part resulting from the field-oriented controller 
(PI) and a discontinuous part resulting from the sliding mode 
controller. The second part rejects disturbances and 
suppresses parametric uncertainties. 
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2. CONTROLLING THE INDUCTION MOTOR 

The plant discussed in this paper is a highly nonlinear 
induction motor. Its model described in the stator direct and 
quadrature frame (d-q) can be written as follows (Kubota & 
Nakano, 1994): 
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The parameters are defined in Table 1. 

Table 1. Induction motor parameter notations. 

Symbol Parameter 
qd φφ ,  Rotor flux components in (d-q) cords. 

qd ii ,  Stator currents in (d-q) cords. 
qd uu ,  Stator voltages in (d-q) cords. 
rs LL ,  Stator and rotor inductances 
rs RR ,  Stator and rotor resistances 

lTT ,  Motor and load torques 
M  Mutual inductance 
N  Number of pole pairs 
J  Moment of inertia 
ω  Electrical rotor speed 

 

The induction motor is commonly controlled by the field-
oriented control scheme. The main idea is to transfer the three 
phase state variables to the stator frame and then to the two 
phase d-q coordinates reference frame locked to the rotor flux 
space vector in order to achieve decoupling between the 
motor flux and torque (Kubota & Nakano, 1994). In this way, 
the motor variables can be separately controlled by stator 
direct-axis (d) current and quadrature-axis (q) current 
respectively, just as in a DC motor (Sen, 1990). Fig. 1 shows 
a general block diagram of an induction motor drive 
controlled by the FOC method. Here, the speed of the motor 
ω  is measured and compared with the reference refω  to 

result in the speed error ωω −= refe , which is processed by 
the speed controller to produce the control input command 

refqi _ .  

The transformation from the measured phase currents ai and 

bi  to the d-q coordinates is shown in the following equations: 
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where θ  is the rotor flux angle that can be obtained from the 
rotor speed ω  and the slip frequency slω  is as follows: 
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Equation (4) uses the flux φ  as one of its parameters, and 
since the flux cannot be measured directly, a flux estimator is 
used. The flux estimator block of Fig. 1 is simply the Laplace 
transform of the first row in (1): 
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where rr RL== ητ 1  is the time constant of the rotor. 

Finally, the current references refdi _  and refqi _  are fed into 
the current controller blocks that generate the reference 
voltages refdu _  and refqu _ . 

IM

Speed
Sensor

abc

dq

abc

dq

ia

ib

id

iq

Speed
Controller

Flux
Estimator

id_ref

Calculation

Inverter

ωref iq_ref uq_ref

ud_ref

e

 

Fig. 1. FOC block diagram 

3. PROPOSED INTEGRAL SLIDING MODE CONTROL 

The main idea of disturbance rejection via sliding mode is to 
compose the two parts of the controller; the continuous and 
discontinuous components. The continuous component is 
used to control the overall behaviour of the system while the 
discontinuous component is used to reject disturbances and to 
suppress parametric uncertainties (Shi & Lu, 1996, Utkin & 
Shi, 1996, and Rios-Gastelum et al., 2003). 

Basically, integral sliding mode control scheme provides a 
means to obtain an accurate disturbance and plant parameter 
perturbations estimation so that they can be removed from 
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the system. This is done via an auxiliary control loop while 
avoiding chattering in the main control loop which normally 
consists of a continuous controller; a PI controller in this 
case. 

A dynamic system under a closed loop control system can be 
represented by the following state-space equation: 

( ) ( ) ( )txduxBxfx ,++=&  (6) 

where x  is the state vector, u  is the control input vector and 
( )txd ,  is a function representing disturbances and 

perturbations caused by parameter variations and unmodelled 
dynamics. 

To suppress ( )txd ,  and hence obtain an accurate controller 
with high degree of robustness, design the control input as: 

dpnm uuu +=  (7) 

where nmu  is the nominal control input while dpu  is the 
introduced new control input vector that cancels the 
disturbances and perturbations to the system. 

Now, (6) can be rewritten as: 

( ) ( ) ( ) ( )txduxBuxBxfx dpnm ,+++=&  (8) 

The condition for this design to work is to make the last two 
terms of (8) cancel each other, i.e. 

( ) ( )txduxB dp ,−=  (9) 

such that the closed loop control system follows the nominal 
design, ( ) ( )txtx nm= , and hence all the disturbances and 
perturbations will no longer affect the system. 
Mathematically, (6) becomes: 

( ) ( ) nmuxBxfx +=&  (10) 

This proposed structure of this technique is achieved by 
replacing the speed controller of Fig. 1 with the combination 
shown in Fig. 2(a). The task now is to design the control 
input vector dpu  using the sliding mode control technique. In 
fact, the sliding mode controller here serves as a disturbance 
and perturbation identifier rather than a controller itself, 
while nmu  is the vector control input vector designed using 
the nominal values of the system. First, design the sliding 
mode surface to be the disturbance and perturbation surface: 

zss o +=  (11) 

where  

refos ωω −=  (12) 

and ( )txz ,  is the surface that needs to be designed to cancel 
disturbances and system parameter perturbations. For z  to 
satisfy (9), set the time derivative of s  equals to zero, 
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To ensure (9), z  needs to be designed as: 
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Therefore, substituting from (11) and (12), and using state 
equations (1) to substitute the sate derivative, the following is 
obtained: 
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where the subscript nm  denotes the nominal design values 
that are used for the vector controller. The second stage of the 
design is the discontinuous control law which is as follows: 

( )ssigngiu dpqdp −== _  (16) 

where g  is a constant control gain. 

To obtain the gain value g , design a Lyapunov function 

ISMCV  as:  

2

2
1 sVISMC =  (17) 

For the sliding mode to be enforced in the surface 0=s , the 
time derivative of (17) should be negative definite, i.e. 

0<= ssVISMC &&  (18) 

First, calculate s&  by the substitution of current derivative 
values from (1) into the time derivative of (11) and (12) and 
using (7) and (15) for the values of nmu  ( nmqi _  in our case) 
and z&  yields: 
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By substituting (16) and (19) into (17) one can obtain the 
gain value g ; 
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which yield, with the use of (7), to the following condition 
after taking into account the maximum change in parameter 
variations : 
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Fig. 2. Proposed integral sliding mode control method: (a) the original structure of integral sliding mode control, (b) the 
modified integral sliding mode control block diagram, and (c) the auxiliary controller block diagram. 

Remark 1: The initial condition of z  in (14) ensures that the 
initial condition of the sliding manifold s  equals to zero; 

( ) 00 =s . In other words, sliding mode is to occur starting 
from the initial time instant. 

Remark 2: Ideally, the switching of control occurs at 
infinitely high frequency to eliminate the deviations from 
sliding manifolds (Utkin, 1993, and Cupertino et al., 2000). 
In practice, the switching frequency is not infinitely high due 
to the finite switching time. Combined with the effects of 
unmodelled dynamics, this finite switching causes undesired 
chattering of the control. For this reason, dpqi _  is replaced by 

the equivalent control input eqqi _  through a low pass filter 
with a cutting frequency carefully chosen faster than the 
perturbations and disturbances dynamics, but also slow 
enough not to excite any unmodelled dynamics (Utkin, 1972, 
and Hung et al., 1993). 

To illustrate the possibility of such a replacement, consider 
(13) which implies that the equivalent control is the solution 
to 0=s&  with respect to dpqi _  under condition 0=s . Thus, 
by using (19), the solution yields: 
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Hence, the equivalent control eqqi _  that can be extracted 

from dpqi _  using a low-pass filter compensates exactly for 
system disturbances and parameter perturbations. 

Remark 3: Since all the controllers implemented in this work 
use a limiter to limit the current command refqi _ , the 
proposed integral sliding mode controller is modified in the 

following manner; (7) is used to modify nmqi _  in (15) to 
result in the following equation: 
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This modification in the control structure is shown in Fig. 
2(b). The proposed auxiliary control block diagram of (24) is 
illustrated in Fig. 2(c). 

4. REAL-TIME IMPLEMENTATION 

The hardware experimental setup uses a DSP kit based on 
TMS320LF2407 that has all the peripherals needed to control 
a 3-phase AC motor. It also contains all the A/D converters 
needed to read the currents of the motor. Two counters of the 
DSP kit are used to perform the necessary interrupt service 
routines (ISRs) for the speed and current controls. The 
feedback control system application based on the 
TMS320LF2407 DSP kit uses the two timers of the DSP in 
the following manner: 

Timer 1 is programmed to generate a 20 kHz PWM. The 
same timer is also used for real-time interrupt generation in 
order to activate the fast and slow interrupts for current and 
speed control implementation respectively. For a 20 kHz 
PWM frequency, this gives an interrupt every 50 
microseconds. Using a software counter, the current control 
routine is executed every two PWM periods (i.e. each 100 
microseconds). Another software counter is used to execute 
the speed control routine every twenty PWM periods (i.e. 
each 1ms).  

Timer 2 counts the encoder pulses. The code uses this 
information to compute the motor speed as an encoder 
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position difference over one sampling period of the speed 
control loop. 

The induction motor used in this paper is a 0.37kW squirrel 
cage induction motor with the parameters shown in Table 2.  

Table 2. Induction motor parameter notations. 

Parameter Value 
rs LL =  1.52 H 

sR  24.6 Ω 

rR  16.1 Ω 
M  1.46 H 
N  1 (2 poles) 
J  5.6 10-3 kg.m2 

 

The first test is performed on the motor in the nominal design 
conditions. A 2000rpm step reference signal is fed to the 
system under both vector control and integral sliding mode 
control methods. The results are shown in Fig. 3. 
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Fig. 3. Speed step-response under both VC and ISMC. 

The speed response of the vector control real-time 
implementation has a rise time of sec38.0=rt  and settling 
time of sec75.0=st  under the 2% allowable tolerance 
criteria. The response of the motor exhibits about 100rpm 
overshoot, or 5% overshoot. The system, however, suffers 
from small fluctuations around the reference in steady state 
due to noise and relatively low accuracy of the optical 
encoder that measures the speed. 

As for the proposed scheme, the results illustrate an enhanced 
transient response of the system as no overshoot occurs. This 
makes the proposed scheme even faster than the vector 
control method. Here, the rise time is sec25.0=rt  and the 
settling time is sec24.0=st .  

To investigate the properties of the proposed ISMC method, 
the two sliding manifolds z  and os  and the auxiliary 
controller action are recorded in Fig. 4. As stated in Remark 
1, it can be seen in Fig. 4 that the sliding mode occurs from 

the initial state sec0=t . This control action is averaged using 
the low-pass filter to obtain the equivalent control, thus 
minimizing the chattering effect as discussed in Remark 2. 
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Fig. 4. Auxiliary manifold z , sliding manifold os and 
auxiliary control action dpqi _ . 

The purpose of the second test is to investigate the 
performance of the proposed control method under system 
parameter perturbations. Since it is not possible to modify the 
rotor’s parameters of a squirrel cage induction motor, the test 
is carried out by modifying the parameters of the continuous 
controller (PI) in two cases; over-damped (Case 1) and under-
damped (Case 2). The test also examines the system under 
load torque conditions; a load torque with the value of 
4.5N.m. is suddenly applied to the shaft of the motor at 

sec5.1=t  when the system is at steady state. The two 
controllers’ real time implementation results are recorded and 
shown in Figs. 5, 6 and 7 for the system in nominal design 
conditions, Case 1 and Case 2 respectively.  

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500

Sp
ee

d 
(rp

m
)

Nominal System with a 4.5N.m. Load Torque Disturbance under VC

 

 

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500

Time (sec)

S
pe

ed
 (r

pm
)

Nominal System with a 4.5N.m. Load Torque Disturbance under ISMC

 

 

Reference Speed
Measured Speed

Reference Speed
Measured Speed

 

Fig. 5. VC and ISMC speed response of nominal system 
under 4.5N.m. load torque disturbance. 

As can be seen from the results, the proposed control method 
always has faster transient responses and settling times 
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without any overshoots. In addition, the integral sliding mode 
control method reduces the drop caused by the applied load 
torque and results in a faster recovery time. Thus, it enhances 
the performance of the system in the face of system 
parameter perturbations and disturbances. 
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Fig. 6. VC and ISMC speed response of perturbed system 
(Case 1) under 4.5N.m. load torque disturbance. 
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Fig. 7. VC and ISMC speed response of perturbed system 
(Case 2) under 4.5N.m. load torque disturbance. 

5. CONCLUSIONS 

This work has proposed the use of a sliding mode controller 
to compensate for system parameter perturbations and 
external disturbances which occur in speed control of 
induction motors under the field-oriented control method. 
The new design is implemented, tested and compared to a 
conventional vector controller. The real-time 
implementations were carried out under nominal design 
conditions, perturbed system conditions and applied load 
torque conditions. From the results, the proposed integral 
sliding mode controller rejected the system parameter 
perturbations and disturbances well compared to the 
conventional vector control method. Furthermore, the 
proposed scheme illustrated faster rise times, settling times 
and recovery times. The overshoot of the vector control 
method was cancelled out and the load drops were 
minimised.  

In conclusion, the proposed design yields a robust control 
system since the compensation starts even at the starting of 
the system. Industrial applications that use induction motors 
and require fast responses and high accuracy can greatly 
benefit from the proposed control scheme. 
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