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Abstract: Estimation of cutting forces in micromilling from the signals of a spindle with Active
Magnetic Bearings (AMB) is treated as an input estimation problem. For the closed-loop AMB
system, a minimum mean square error input estimator with an adjustable delay is derived. This
filter is based on the Wiener filter, where the unknown input is treated as white noise filtered
by known dynamics and the controller is assumed to be known. It is shown that controller
knowledge can be replaced by a perfect measurement of the control signal. Simulation results
demonstrate the applicability of the presented approach.
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1. INTRODUCTION

The topic of this paper concerns an application in the
area of micro-manufacturing. In particular micromilling
is considered, which entails the scaling of conventional
milling to the microdomain. Tools with diameters of less
than 0.5mm are used to manufacture components with
arbitrary 3D features in a range of materials. Application
of such components can be found in medical areas as well
as in automotive and electronics industries. More than in
conventional milling, it is important in micromilling to
monitor the cutting forces during the milling process in
order to maintain a stable cutting process. These forces
can be measured directly with force transducers, however
commercially available systems are limited by their band-
width and the additional space needed in the machine.
In the area of Machine Tool Design and Manufacturing,
techniques have been proposed to indirectly measure the
cutting forces by adding position sensors or accelerometers
in the spindle housing or elsewhere in the machine, measur-
ing the frequency response from the tooltip to the sensor,
and using a Kalman filter approach to obtain cutting force
estimates (see e.g. Chae & Park (2007) and the references
therein). When the milling is performed by a spindle with
Active Magnetic Bearings (AMBs), the active nature of
the bearings can be employed to observe the cutting forces
from the signals of the bearings. In AMB spindles, the
rotor is levitated by generating electromagnetic forces at
the front and rear side of the rotor, as well as in the axial
direction (see figure 1). A stable system is obtained by
using position measurements in a closed-loop to control
the currents of the electromagnets.

The problem of observing the cutting forces from measure-
ments of the currents and displacements in an AMB spin-
dle, can be considered an input estimation problem. The

cutting forces constitute an unknown input to a partially
closed loop dynamical system (see figure 2). Measurements
of the control input y1 and the outputs y2 are available,
viz. the currents through the coils and the displacement
of the rotor respectively, which are used to estimate the
unknown input u2, representing the cutting forces. When it
is assumed that the rotational speed of the milling spindle
is known and fixed, this system is adequately modeled by
a time-invariant system. Hence in this paper we confine
ourselves to the treatment of LTI systems and we assume
an appropriate model of the spindle setup is available,
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Fig. 1. Schematic of an AMB spindle
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either obtained by modeling from first principles or by
system identification.

A priori it is known that cutting forces consist of a slowly
varying offset related to the cutting depth, with on top of
that a signal that is periodic in nature due to the rotation
of the milling tool. The frequency is dependent on the
rotational speed as well as the number of cutting teeth. In
order to obtain cutting force information meaningful for
micro-milling process research, it is important to obtain
cutting force estimates with high bandwidth, small error,
and small phase distortion up to the bandwidth frequency
to preserve the waveform. Having the cutting force esti-
mates available instantly is of less importance and a small
processing delay can be tolerated.

The problems of input estimation and state reconstruction
for systems with unknown inputs has received consider-
able attention over the past few decades (see Sunaram, &
Hadjicostis (2007) and the references therein). These two
problems are closely related, in fact as was shown by (Hou
& Müller, 1992), when a state estimator exists for systems
with unknown inputs, also estimates of the unknown input
can be obtained. Existence conditions and a procedure for
input estimator design was formulated by Hou & Patton
(1998). Many of these results consider systems in a de-
terministic setting. Results on input observers for systems
with noisy measurements are also available. One of the
first results in which no a priori structure on the inputs
is assumed, was published by Glover (1969). Darouach et
al. studied the problem of unbiased minimum variance es-
timation for discrete-time time-varying stochastic systems
with unknown inputs, both in the absence and presence
of feedthrough of the unknown input (Darouach & Za-
sadzinski, 1997; Darouach, Zasadzinski & Boutayeb, 2003).
Kitanidis (1987) solved the state estimation problem for
the case part of the inputs are unknown. Continuing on the
results of Kitanidis, Gillijns & De Moor introduced recur-
sive unbiased minimum variance recursive filters (Gillijns,
& De Moor, 2007a; Gillijns & De Moor, 2007b).

In the case probablistic information on the input is avail-
able, a common approach is to augment the system matrix
(Hostetter & Meditch, 1973; Park et al., 2000). Since
in our application we have a priori information on the
spectral content of the input signal, such approach has
been selected. The problem that we will address in this
paper is to minimize the Mean Square Error (MSE) in
the input estimates, while the bias of the estimator is not
constrained to zero. As a delay in the estimation result is
acceptable, the advantage of minimizing the MSE criterion
is that the smallest estimation error can be obtained even
if that implies that there is some delay. Compared to the
existing techniques for cutting force estimation in Manu-
facturing (like Chae & Park (2007)), the approach in this
paper has a number of favorable features. First, it uses the
information that is already available in the AMB spindle
and hence no additional sensors are needed. A solution is
presented to obtain input estimates from an unstable plant
in a partially closed-loop of which the control law can be
unknown (which is the case for the setup in our labora-
tory). Secondly, often the random-walk model is used to
represent the unknown cutting force, which incorporates
little a priori knowledge. Here the spectral information
available on the cutting forces is used to obtain estimates
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Fig. 2. Block diagram of closed-loop input estimation
problem

with a smaller error. Last, the estimator has an adjustable
delay, giving the possibility to make a trade-off between a
small estimation error and a small time-lag.

This paper is organized as follows. After defining the prob-
lem in section 2, we first discuss some generic assumptions
in section 3. In section 4 the solution to the problem will
be derived based on the Wiener filter. Simulation results
with the presented approach are discussed in section 5.

2. PROBLEM FORMULATION

Consider the closed-loop system as depicted in figure 2.
Plant G is a linear time-invariant discrete-time system
given by

x(t+ 1) = Ax(t) +B1u1(t) +B2u2(t)
y2(t) = Cx(t) + v2(t)

(1)

where x is the state vector with dim(x) = n, u1 is the
control input with dim(u1) = m1, u2 is the unknown
input vector with dim(u2) = m2, y2 the output vector
with dim(y2) = p2. Matrices A, B1, B2 and C are known
matrices with appropriate dimensions, where A has no
unit-circle eigenvalues, (A,C) is detectable and (A,B1)
and (A,B2) stabilizable. Without loss of generality it will
be assumed that rank(B2) = m2 and rank(C) = p2.
The system is stabilized by controller K(z), of which no
exact knowledge is available. Vector y1 with dim(y1) = m1

provides a measurement of vector u1. Measurement noise
sequence v2 with dim(v2) = p2 is assumed to be a zero
mean white noise process with known covariance matrix
Rv2 > 0. Measurement noise v1 with dim(v1) = p1 and
spectral density Φv1 is uncorrelated with v2. The problem
is to construct a causal linear time-invariant filter on
measurements ȳ = col(y1, y2) to get estimate û2 such that
for some fixed time-lag N ≥ 0,

E|û2(t)− u2(t−N)|2 (2)
is minimized.

3. PRELIMINARIES

In the course of this paper the following assumptions are
made. It will be assumed that all signals are exponentially
bounded and that all spectra are rational. Furthermore, it
is assumed that triplet (A,B2, C) has no invariant zeros
on or outside the unit disc, i.e. for every λ ∈ C, |λ| ≥ 1

rank

[
A− λI B2

C 0

]
= n+m2. (3)

When this is not satisfied, there exist a initial state and
non-decaying exponential input which cannot be distin-
guished from the zero input. Hence this condition is nec-
essary to ensure that for t→∞ the mapping between the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

469



input and the output is injective. Note that this condi-
tion also implies that p2 ≥ m2, which is satisfied in the
application at hand.

The superscript asterix will be used to denote the adjoint
operator: G∗(z) = GT (z−1).

4. INPUT ESTIMATION BY WIENER FILTERING

4.1 Introduction

In this section we will derive the solution of the problem
described in section 2. This we will do as follows. First in
section 4.2 it is shown that under reasonable assumptions,
the input sequence can be represented as white noise
filtered by known dynamics. Subsequently, in section 4.3,
the input estimation problem is solved for the case full
information on controller K is available. This solution is
then used in 4.4 to derive the input estimator in case no
information on K is available.

4.2 Spectral model of the unknown input sequence

Given the knowledge that is available on the cutting forces,
a stochastic signal model of the input sequence is the
most natural. Hence, concerning input u2 the following
assumptions are adopted:

A1 u2 is a realization of a stationary stochastic process
that is uncorrelated with v1,2;

A2 u2 has known rational spectrum Φu(z);
A3 ‖Φu(ejω)‖2 → 0 for ω → π.

These assumptions allow to model a large class of input
signals. Under assumptions A1-A3, there exists a stable,
minimal LTI system Gu with state space realization given
by

ξ(t+ 1) = Auξ(t) +Buw(t)
u2(t) = Cuξ(t)

(4)

with w(t) a white noise process with covariance Ru > 0,
such that Φu(z) = Gu(z)RuG

∗
u(z). Here Bu has full

column rank, and Cu has full row rank. Note that as-
sumption A3 implies that the feedthrough in Gu can
indeed be ignored. Defining G1(z) = C(zI − A)−1B1 and
G2(z) = C(zI − A)−1B2, we obtain the cascaded system
Gc(z) = [G1(z) G2(z)Gu(z) ] that admits the state-space
representation

x(t+ 1) = Acx(t) +Bc,1u1(t) +Bc,2w(t)
y2(t) = Ccx(t) + v2(t)

(5)

with

Ac =
[

Au 0
B2Cu A

]
, Bc,1 =

[
0
B1

]
, Bc,2 =

[
Bu

0

]
Cc = [ 0 C ] .

4.3 Known controller

We will start analyzing the input estimation problem
by solving it for the case complete information on the
controller is available.
Proposition 4.1. Consider the closed-loop system described
in section 2 and let unknown input u2 satisfy assumption
A1-A3. In addition assume complete information on con-
troller K is available. Let F be the causal estimator for u2

according to û2 = F ȳ, such that (2) is minimized. Then
F is of the form [ 0 F2 ], i.e. y1 is not used to construct
estimate û2. F2 is given by

F2(z) = F ′(L−Bc,1K(z))
+ F ′′(T−1(z) +GL(z)Bc,1K(z)) (6)

where
F ′ = z−N [Cu 0 ] (zI − Āc)−1

F ′′ = zm−N−1 [Cu 0 ]
N∑

m=1

P (ĀT
c )m−1CT

c R
−1

(7)

and
T−1(z) = I −GL(z)L
GL(z) = Cc(zI − Āc)−1 Āc = Ac − LCc (8)

L = AcPC
T
c R
−1 R = Rv2 + CcPC

T
c

and P is the unique positive definite solution of the discrete
algebraic Ricatti equation (DARE)

P = AcPA
T
c +Bc,2RuB

T
c,2 − LRLT . (9)

Proof For brevity we will only give a sketch of the proof.
From estimation theory it follows that under the given
conditions, the causal filter F that minimizes (2) is the
Wiener filter. In order to arrive at the equations for F ,
denote the cross spectrum of the unknown input u2 and
ȳ as Φu2ȳ, and the spectral density of ȳ as Φȳ. Let M(z)
be a minimum phase function and R̄ a positive definite
matrix, such that Φȳ(z) = M(z)R̄M∗(z) is the canonical
spectral factorization of Φȳ. Then F is given by (Kailath
et al., 2000)

F = {z−NΦu2ȳM
−∗}+R̄−1M−1 (10)

where {·}+ represents the causal part of the expression
between the curly brackets. We will derive an expression
for the spectral factorization of Φȳ, and for Φu2ȳ, which
are then used to derive the causal filter F .

Spectral factorization of Φȳ The objective here is to
derive expressions for M and R̄ such that Φȳ = MR̄M∗.
Observe from figure 2 that ȳ = Ḡu2 + H̄v̄, with

Ḡ =
[
−KS
S

]
G2, H̄ =

[
I −KS
0 S

]
, v̄ =

[
v1

v2

]
and S = (1 + G1K)−1. With this, it follows that the
spectral density of ȳ is given by

Φȳ = ḠΦu2Ḡ
∗ + H̄

[
Φv1 0
0 Rv2

]
H̄∗

Note that

ḠΦu2Ḡ
∗ = H̄

[
0 0
0 G2ΦuG

∗
2

]
H̄∗

so that

Φȳ = H̄

[
Φv1 0
0 Ψ

]
H̄∗,

where we define the Popov function Ψ = G2ΦuG
∗
2 +Rv2 =

Gc,2RuG
∗
c,2 + Rv2 . Factorization of Φv1 and Ψ yields the

desired factorization of Φȳ. As by assumption Φv1(ejω) > 0
for all ω ∈ [−π, π], there exist a minimum phase function
V (z) and a positive definite matrix Rv1 such that V Rv1V

∗

is the canonical spectral factorization of Φv1 . Observe that
Gc,2 is not necessarily stable. However, the properties of
G and Gu in combination with (3) ensure that there exist
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a minimum-phase function T (z) and a positive definite
matrix R, such that Ψ = TRT ∗, where T and R satisfy
(8) and (9) (Kailath et al., 2000). With this we obtain

Φȳ = M

[
Rv1 0
0 R

]
M∗ (11)

with M =
[
V −KST
0 ST

]
minimum phase. Indeed, M−1 =[

V −1 V −1K
0 N

]
is stable due to the stability of V −1, K and

N = (ST )−1.

Cross spectrum Φu2ȳ The cross spectrum between un-
known input u2 and ȳ is given by

Φu2ȳ = Φu2Ḡ
∗ = GuRuG

∗
uḠ
∗. (12)

Derivation of the causal filter Combining (10), (11) and
(12) yields

F = {z−NGuRuG
∗
uḠ
∗M−∗}+

[
R−1

v1
0

0 R−1

]
M−1. (13)

With some algebra, it can be verified that G∗uḠ
∗M−∗ =[

0 BT
c,2G

∗
L

]
. With this we obtain

F =
[

0 {z−NGuRuB
T
c,2G

∗
L}+R−1N

]
(14)

which proves the first part of the proposition. We con-
tinue by deriving the causal part of z−NGuRuB

T
c,2G

∗
L =:

z−NW (z). In order to do this, we will find a strictly causal
function W1(z) and an anti-causal function W2(z) such

that W (z) = W1(z) + W2(z). Partition P =
[
P11 P12

P21 P22

]
according to the partitioning of Ac and let Z = [ P11 P12 ].
From (9) it follows that BuRuB

T
c,2 = Z − AuZĀ

T
c . With

this, W (z) can be written as
W (z) =

[
Cu(zI −Au)−1 I

][
Z −AuZĀ

T
c 0

0 0

] [
(z−1I − ĀT

c )−1CT
c

I

]
. (15)

Note that any function of the form

S12(z) =
[
C1(zI −A1)−1 I

] [ K L
M N

]
[

(z−1I −AT
2 )−1CT

2
I

]
is invariant under transformation[

K L
M N

]
→
[
K −Q+A1ZA

T
2 L+A2QC

T
2

M + C1QA
T
2 N + C1QC

T
2

]
for any matrix Q with appropriate dimensions. Applying
this transformation to (15) with Q = Z, it follows that

W1(z) = Cu(zI −Au)−1AuZC
T
c (16)

W2(z) = CuZĀ
T
c (z−1I − ĀT

c )−1CT
c + CuZC

T
c . (17)

It follows immediately that {z−NW (z)}+ = z−NW1(z) +
{z−NW2}+. Note that W2(z) can be expanded as

W2(z) = [Cu 0 ]
∞∑

m=1

zm−1P (ĀT
c )m−1CT

c (18)

from which it follows that the causal part of z−NW2(z) is
given by

{z−NW2(z)}+ = [Cu 0 ]
N∑

m=1

zm−N−1P (ĀT
c )m−1CT

c

Hence, F =
[

0 (z−NW1(z) + {z−NW2}+)R−1N
]
, which

in combination with the identities
W1(z)R−1N(z) = [Cu 0 ] (zI − Āc)−1(L−Bc,1K(z))

N(z) = T−1(z) +GL(z)Bc,1K(z)
yields the result of (6). 2

For increasing delay N , the estimation error obtained with
F decreases, allowing to trade off lower estimation error
against longer delay. Also note that for N = 0 a filter
structure similar to the Kalman filter is obtained.

4.4 Controller unknown

As expected, the filter obtained in section 4.3 depends on
the controller K(z). If explicit information on K(z) is not
available, we can use the input y1 to construct an estimator
that does not depend on K(z).
Proposition 4.2. Consider the closed-loop system described
in section 2, where no information on the controller K
is available. Let u2 satisfy A1-A3. If the noise on y1 is
negligible, the estimate û2 obtained with causal input
estimator û2 = F̆ ȳ where F̆ is given by

F̆ (z) = F ′ [Bc,1 L ]
+ F ′′([ 0 I ]−GL(z) [Bc,1 L ]) (19)

with F ′, F ′′,GL, and L as defined in (7) and (8), minimizes
(2).

Indeed F̆ does not depend on K, which implies that for
any control law, under the given conditions, optimal input
estimates are obtained. This we can prove as follows.

Proof We have demonstrated the optimality of the input
estimator (6) for the case K is known. If v1 negligible, we
may substitute −K(z)y2 by y1 to obtain

y = F ′(Ly2 +Bc,1y1)
+ F ′′(T−1(z)y2 −GL(z)Bc,1y1). (20)

This can be rewritten to (19). 2

5. SIMULATION RESULTS

The input estimation approach has been tested in simula-
tion using Matlab/Simulink. A simulation model has been
developed based on the properties of the AMB spindle
setup in our laboratory. Signals from the axial AMB are
not considered in this case. System G results from a finite
element modeling which after balanced truncation and
discretization with T = 25µs yielded a model with n = 32,
m1 = 4 (current inputs), m2 = 2 (cutting force inputs in
x and y direction) and p2 = 4 (displacement outputs).
Output noise covariance matrix is diagonal, i.e. Rv = σ2

vI,
with σv = 10−7m. In the simulation a PID controller is
applied to stabilize each of the four magnetic bearings.
The input estimators demonstrated here however do not
use the information on the controller and are designed as
described in section 4.4. For the cutting forces, a waveform
is chosen in accordance with a model describing the cutting
forces when milling with a micro-endmill with two teeth
(Dow, Miller & Garrard, 2000).

We will discuss the simulation results for two cases. First,
for a simple model for the input force, we will compare
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the results obtained with an estimator with and without
delay. At higher rotational speeds estimation results will
improve if the spectral information on the cutting forces is
used when designing estimators. This will be investigated
in the second test.

5.1 Test 1: Input observers with N = 0 and with N > 0

In this test for the input a simple model is chosen, i.e. a
random walk-like model (Au = 0.999 · I, Bu = Cu = I).
Figure 3 shows plots of the simulated response of the AMB
system to the chosen input signal (rotational frequency
is 10, 000 rpm). In this figure only the signals from the
front radial x bearing are displayed. An estimator has been
implemented with no delay (N = 0) and one with a delay
of N = 80 time steps. The result of both estimators is
depicted in figure 4 (x-direction only), where the result
of the delayed estimator has been shifted by 80 time
steps in order to compare it with the input signal. We
observe a number of things. A first difference is that
the result of the estimator for N = 0 is more noisy
than that of N = 80. This can be explained by figure
5(a) and (b). Figure 5(a) depicts amplitude response of
F2(z)G2(z)|1,1, viz. the transfer function from the first
element of unknown input u2 to the first element of its
estimate û2. Figure 5(b) shows the response of the input
estimator to the measurement noise in y2, i.e. it shows
spectral density F2(ejω)Rv2F

∗
2 (ejω)|1,1. These figures show

that the delayed estimator has an equal bandwidth as the
estimator with N = 0, but has steeper roll-off at higher
frequences. Moreover, the high frequency measurement
noise is better suppressed. A more striking difference is
that the estimator for N = 0 has a delay of around 21 time
steps, whereas the estimator for N = 80 has no extra delay.
To investigate this, we need to inspect the phase response
of both filters. It is well known that a filter representing
a pure delay has a linear phase characteristic. In filter
design it is therefore common to evaluate the group delay,
which is the first order derivative of the phase response
function. The more constant the group delay of a filter
is in the pass band, the more it will act as a delay and
the least it will distort the waveform of the input signals
in the pass band. In figure 6 we have depicted the group
delay of F2(z)G2(z)|1,1 for both estimators. This figure
clearly shows that both estimators have a constant group
delay for low frequencies. Here the delayed estimator is also
outperforming the estimator for N = 0, as its group delay
is constant up till the bandwidth of the estimator whereas
the group delay N = 0 for increasing frequencies slightly
drifts off before reaching the bandwidth of the estimator.

An interesting conclusion from this simulation is that the
delay of 21 time steps obtained for N = 0 is the minimum
delay that can be obtained under criterion (2). Indeed,
choosing an N smaller than 21 will not result in a filter
with a smaller total delay (N+the additional delay in
the filter). Moreover, if the noise on y2 is increased, a
filter with a lower bandwidth and a higher group delay
is obtained. This is logical since if the noise on the output
measurements is increased, it will take longer before the
system’s response is strong enough to be discerned from
the noise.
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noise in û2,1 for N = 0 and N = 80

5.2 Test 2: Improved stochastic model for the input

The simulation described in the previous section is per-
formed at a relatively low rotational speed. At higher
rotational speeds, i.e. at 50, 000 rpm, estimation errors
made by the estimator with N = 0 are quite large, whereas
the delayed estimator can still produce good estimates
though. Obviously increasing the rotational frequency of
the AMB spindle results in cutting forces with higher
frequencies. As with any mechanical system, the response
of the AMB system descreases as the exciting frequencies
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increase, resulting in a decreased signal to noise ratio.
Hence, we can improve the estimation result if we use
the a priori information on the spectral content of the
cutting force signal. To verify this, a spectral model for
the input has been chosen that has high power in the
low frequencies regions and incorporates peaks at the first
three harmonics of the cutting force signal (i.e. at 1.7kHz,
3.3kHz and 5kHz). The resulting power spectral density is
depicted in figure 7. In figure 8 the results obtained with an
estimator with N = 0 and N = 240 are compared. Again
estimation results obtained by the delayed estimator have
a smaller error at the cost of time delay.

6. CONCLUSION

For the application of micromilling with an AMB spindle,
a minimum mean square error input estimator has been
developed to estimate the cutting forces. As this estimator

uses data already available in the closed-loop AMB system,
no additional sensors are needed. If exact measurements of
the control currents of the magnetic bearings are available,
no knowledge on the AMB controller is needed. The
estimator has an adjustable delay allowing to trade off the
estimation error against the lag in the estimation results.
Given the dynamics of the plant and the measurement
noise characteristics, there exists a minimum delay that
can be attained. Estimation results can be improved by
using the a priori information on the spectral content of
the cutting forces.
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