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Abstract: A duality theory existing between iterative learning and repetitive control for linear
time-invariant systems has been reported. This paper considers the application of this duality
in the design of such controllers for a non-minimum phase experimental facility and a three-axis
gantry robot, where the task performed can be configured in either mode of operation. The
models used in the design work have been obtained using frequency domain tests conducted on
the physical plants. The control design has been performed for both systems, and verified using
simulation studies in the case of the gantry robot and experimentally obtained test results in
the case of the non-minimum phase plant.

1. INTRODUCTION

Many tracking systems have to operate with periodic
reference/disturbance signals and are encountered in a
wide range of practical applications, examples of which
include robotic manipulators that are required to repeat a
given task to a high level of accuracy and chemical batch
processes. Iterative learning control (ILC) is one technique
especially developed for controlling systems operating in
a repetitive (or pass-to-pass) mode with the requirement
that a reference trajectory r(t) defined over a finite interval
0 ≤ t ≤ T is followed to a high precision.

Since the original work of Arimoto et al. [1984] in the mid
1980’s, the general area of ILC has been the subject of
intense research effort. A possible initial source for the
literature in this field is the survey paper Bristow et al.
[2006]. One approach in ILC is to construct the input to
the plant or process from the input used on the last trial
plus an additive increment which is typically a function
of the past values of the measured output error, where on
any trial this latter quantity is the difference between the
achieved output and the desired reference trajectory. As
such, it places the analysis of ILC schemes firmly outside
standard (or 1D) control theory — although it still has a
significant role to play in certain cases of practical interest.
Instead, ILC must be seen in the context of fixed-point
problems or, more precisely, repetitive processes (see the
references in Rogers et al. [2007]) which are a distinct class
of 2D systems where information propagation in one of
the two independent directions only occurs over a finite
duration.

A periodic signal can be generated by an autonomous
system operating in a positive feedback loop where the
plant model is a pure time delay. Hence by the internal
model principle it is to be expected that these periodic
signals can be controlled by duplicating this model within
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a feedback control loop. This has led to the ILC approach
and also to repetitive controllers (RC). For background on
RC see, for example, Hara et al. [1988], Tomizuka et al.
[1989].

These two approaches differ in the way the periodic
compensation is applied but they are not equivalent. It
has, however, been shown in de Roover and Bosgra [1997],
de Roover et al. [2000] that they are related by duality as
a consequence of the difference in location of the internal
model inside the controller. In particular, the repetitive
controller has the structure of a servo compensator with
the internal model located at the system output whereas
the iterative learning controller has the structure of a
disturbance observer where the internal model is located
at the system input. These results have led to a general
framework for the design of multiple-input multiple-output
(MIMO) ILC and RC controllers where a number of
existing schemes in both cases appear as special cases on
making suitable modifications to the internal model.

In this paper, controllers designed using this duality are
applied to both a gantry robot, and a non-minimum
phase electromechanical system, both of which can be
configured to operate in ILC and RC modes. The high level
of performance achieved using these controllers is then
established using both experimental and simulation test
results. The next section gives the required background.
This is followed by a description of the test facilities, both
having been extensively used to evaluate a wide variety of
ILC and RC control laws. After this, the controller designs
and accompanying results for the gantry robot and non-
minimum phase system are detailed.

2. BACKGROUND

Any periodic signal can, with appropriate boundary con-
ditions, be generated by an autonomous system consisting
of a positive feedback control loop with a pure time delay
in the forward path and appropriate initial conditions. In
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particular, a discrete-time periodic signal of length N can
be generated from

xw(tk+1) = Awx(tk), xw(t0) = xw0

w(tk) = Cwx(tk) (1)

where the N × N matrix Aw is given by

Aw =









0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0









and the 1 × N row vector Cw as

Cw = [ 1 0 0 · · · 0 ]

Now consider a discrete linear time-invariant system with
m outputs and l inputs described by the m × l transfer-
function matrix G(z) with input vector u = up + uw and
output signal y = Gu. Then given a desired periodic
output signal r(tk) = r(tk+N ), tk = 0, ∆T, 2∆T, · · · ,
with sampling time ∆T, let e = r − y denote the tracking
error. Then the robust periodic control problem is to find
a controller K(z) (where z denotes the discrete-time delay
operator) such that the resulting closed loop system is
1) asymptotically stable, 2) the tracking error tends to
zero exponentially for all periodic reference vectors r and
periodic disturbances satisfying (1), and 3) properties 1)
and 2) are robust to perturbations in the plant dynamics.

The solution to this robust periodic control problem is
given by the internal model principle Francis and Wonham
[1975]. In particular, suppose that the controller K(z)
contains in each channel a realization of the disturbance
generating system driven by the error E(z). Also let K(z)
be such that the feedback connection of K(z) and G(z)
is internally stable. Then K(z) solves the robust periodic
control problem.

Both ILC and RC attempt to solve the robust periodic
control problem and hence it follows that the internal
model principle provides a solution for these cases. Also
this principle can be formulated as a servo compensator
where the disturbance model is realized in each channel of
the output space (or vector) or, dually, in each channel of
the input space (or vector). The first case here corresponds
to implementation of RC and the second uses the structure
of a disturbance observer and corresponds to ILC.

Following on from the work in de Roover and Bosgra
[1997], de Roover et al. [2000], the design algorithms for
RC and ILC can be stated as follows.

RC. Introduce the following N × 1 vector

Bw = [ 0 · · · 0 0 1 ]
T

and
Ar = diag{Aw}

Br = diag{Bw}

Cr = diag{Cw}

where each diagonal block is repeated m times. In a similar
way we define {Al, Bl, Cl} where each diagonal block is
repeated l times. Also

Cr(zINm − Ar)
−1Br = z−NIm(Im − z−NIm)−1

Cl(zINl − Al)
−1Bl = z−NIl(Il − z−NIl)

−1

An RC implementation with current error feedback based
on state feedback of memory variables and estimated state
feedback of the plant G(z) = C(zI − A)−1B + D is as
follows

System

xk+1 = Axk + Buk

yk = Cxk + Duk

Observer
x̂k+1 = Ax̂k + Buk + Lǫk

Feedback Error
ek = rk − yk

Observer Error

ǫk = ek + Cx̂k + Duk

Disturbance Memory

xr,k+1 = Arxr,k + Bruk

Control Input

uk = Krxr,k + Kx̂k (2)

where L is the plant state observer gain matrix and Kr and
K are the state feedback law matrices for the disturbance
memory and the plant respectively.

ILC. The underling structure here is generated by a dis-
turbance observer (which has been shown to be the exact
dual of a servo compensator de Roover and Bosgra [1997]).
Assume at this stage there is a periodic disturbance at the
plant input generated by a system {Al, Cl} with non-zero
initial conditions. An observer for this system now results
from duplicating the system and applying feedback, with
gain matrices Lr and L respectively to the estimated states
from an observer error. The estimate of the disturbance
d̂k is used to compensate the disturbance dk and also the
estimated plant state feedback control is applied using the
feedback gain matrix K. Finally, the assumed error d at
the plant input is replaced by an actual error resulting
from the reference input vector r. Hence the disturbance
estimator compensates for an input disturbance which is
equivalent to the control error in the output space.

We now have

System As in RC above.

Observer

x̂k+1 = Ax̂k + B(uk + d̂k) + Lǫk

Observer Error

ǫk = ek + Cx̂k + D(uk + d̂k)

Feedback Error
ek = rk − yk

Disturbance Memory

xl,k+1 = Alxl,k + Llǫk

d̂k = Clxl,k

Control Input

uk = Kx̂k − Clxl,k (3)

The design of the RC (2) and the ILC (3) involves the
selection of the gain matrices {L, Kr,K} and {K, Ll, L}
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respectively. The following results give necessary and suf-
ficient conditions for their existence in each case.

Theorem 1. Consider the RC law (2) and suppose that
L is chosen such that A + LC is asymptotically stable.
Suppose also that {Kr,K} is chosen such that the linear
system with state matrix

[

Ar −BrC
0 A

]

is asymptotically stable. Then (2) solves the problem
under consideration if, and only if,

rank

([

λI − A B
−C D

])

= nx + m

for all λ in the spectrum of the matrix Aw, where nx

denotes the state vector dimension.

Theorem 2. Consider the ILC law (3) and suppose that
K is chosen such that A + BK is asymptotically stable.
Suppose also that {Ll, L} is chosen such that the linear
system with state matrix

[

Al 0
BCl A

]

is asymptotically stable. Then (2) solves the problem
under consideration if, and only if,

rank

([

λI − A B
−C D

])

= nx + l

for all λ in the spectrum of the matrix Aw and

rank(B) + ny = rank

([

B
D

])

The first result here requires that the plant transfer-
function matrix does not have transmission zeros which
are also eigenvalues of the matrix Aw. Also the transfer-
function must be square. The second result places the same
restriction on transmission zeros and also the plant must
have at least as many outputs as inputs. A routine argu-
ment also shows that the ILC will only give asymptotic
tracking of the reference vector when the plant transfer-
function is square and invertible.

Turning now to the actual design of RC for given data, it
can be shown de Roover et al. [2000] that the separation
principle allows {Kr,K} and L to be designed indepen-
dently. Also the case for ILC follows by duality. Next
we describe the gantry robot and non-minimum phase
facilities and then proceed to design controllers for each
system by both routes.

3. EXPERIMENTAL FACILITIES

A non-minimum phase experimental test facility (see Fig-
ure 1) has been constructed to evaluate ILC and RC
schemes (see Freeman et al. [2005],Cai et al. [2007] for
details). The presence of a right-half plane zero has led to
this type of system traditionally presenting difficulties in
ILC, due to problems associated with obtaining a stable
plant inverse. The facility consists of a rotary mechanical
system of inertias, dampers, torsional springs, a timing
belt, pulleys and gears. A further spring-mass-damper
system is connected to the input in order to increase
the relative degree and complexity of the system. A 1000
pulse/rev encoder records the output shaft position and

a standard squirrel cage induction motor drives the load.
The sampling frequency used during the tests conducted
with this system is 100Hz. The nominal continuous time
plant transfer function has been identified from frequency
response data (using the Bode gain plot approximation
and some data conditioning) as

G(s) =
1.202(4 − s)

s(s + 9)(s2 + 12s + 56.25)
(4)

Fig. 1. The non-minimum phase plant experimental test
facility.

A multi-axis test facility, see Figure 2, has also been
constructed in order to enable ILC and RC schemes to be
practically assessed on a realistic industrial application.
The apparatus consists of a three-axis gantry robot which
is supported above one end of a 6m long industrial chain
conveyor. A description of the test facility can be found
in Ratcliffe [2005]. Experimental tests using a sample fre-
quency of 100Hz have been conducted to calculate models
for the dynamic response of each axis. The combined
displacement reference trajectories for each axis (shown
in Figure 3) produce a ‘pick and place’ action, designed
to collect a payload from a dispenser, synchronize position
and velocity with the conveyor and place the payload on
the conveyor. The reference trajectories fix the time taken
for each iteration at 2 seconds, which, using a 100Hz sam-
pling frequency, results in there being 200 sample instants
per trial (or iteration).

Fig. 2. Gantry robot system

Each axis of the gantry robot has been modelled using data
from frequency response tests, and, because the axes are
orthogonal, minimal interaction has been found to exist
between them. Results for both RC and ILC controllers
have been obtained for the complete system but due to
space limitations only one axis is considered here — the
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Fig. 7. Normalized Mean Squared Error for gantry robot
using RC

Fig. 8. Experimental output for the non-minimum phase
system using RC

second duration (in order to avoid an excessive initial
control input on each trial). Figure 8 shows the tracking
output produced by the non-minimum phase plant using
the repetitive control scheme over the first 20 trials in one
of the experiments undertaken, and Figure 9 shows the
corresponding error evolution. Figure 10 and Figure 11
show the tracking output and error respectively using the
dual ILC scheme. In order to confirm the high level of
tracking accuracy that has been achieved using the non-
minimum phase system, Figure 12 and Figure 13 show the
mean squared error results corresponding to the RC and
ILC designs respectively.

5. CONCLUSIONS AND FUTURE WORK

Results have been presented to verify the efficacy of
using a duality approach to design RC and ILC schemes.
Simulated and experimental test results have shown that a
high level of tracking accuracy can be achieved, and future
work will examine the effect of the design parameters
used on the performance and robustness properties of the
controllers.

Focus will then concentrate on applying this approach in
order to produce new controllers through the dualisation
of existing ILC or RC designs. These will then be im-

Fig. 9. Experimental error for the non-minimum phase
system using RC

Fig. 10. Experimental output for non-minimum phase
system using ILC

Fig. 11. Experimental error for non-minimum phase sys-
tem using ILC

plemented and evaluated using the non-minimum phase
system and gantry robot.
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