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Abstract: Diabetes technology is currently focused on developing the artificial pancreas - a
closed-loop control algorithm linking continuous glucose monitoring (CGM) and subcutaneous
insulin delivery. The future development of the artificial pancreas will be greatly accelerated
by employing mathematical modeling and computer simulation. Such in silico testing would
provide direction for clinical studies, outruling ineffective control scenarios in a cost-effective
manner. Thus, computer simulation testing of closed-loop control algorithms is regarded as a
prerequisite to clinical trials of artificial pancreas. We therefore present a system for in silico
testing of control algorithms consisting of a simulated human metabolic system, simulated CGM
and simulated insulin pump. Further, we present an overview of current in vivo clinical trials of
CGM and closed-loop control and illustrate the positive effects of CGM by data collected in a
clinical trial using the Freestyle NavigatorTM (Abbott Diabetes Care, Alameda, CA).

1. INTRODUCTION

Over thirty years ago, the possibility for external regu-
lation of blood glucose (BG) in people with diabetes has
been established by studies using intravenous (i.v.) glucose
measurement and i.v. infusion of glucose and insulin to
maintain normoglycemia by exerting both positive (via
glucose or glucagon) and negative (via insulin) control.
Systems, such as GCIIS or the better known Biostator,
have been introduced and used in hospital setting Pfeiffer
et al. (1974), Albisser et al. (1974), Clemens et al. (1977),
Marliss et al. (1977), Santiago et al. (1979). These systems
were based on variants of the proportional integral deriva-
tive (PID) strategy: the injected insulin is proportional to
the difference between a fixed target and the measured
plasma glucose, as well as to the glucose rate of change.
Other types of controllers have also been designed; some
based on model-predictive (MPC) strategies counteract-
ing the inherent inertia of exogenous insulin. The major
designs can be found in Kraegen et al. (1977), Fischer
et al. (1978), Clemens (1979), Broekhuyse et al. (1981),
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Salzsieder et al. (1985). More work followed, spanning a
broader range of control techniques, such as pole place-
ment Salzsieder et al. (1985), adaptive control Fischer
et al. (1987), physiologic modeling Sorensen (1985), or
linear quadratic Gaussian optimization (LQG) Ollerton
(1989), Fischer (1991). However, i.v. closed-loop control
remains cumbersome and unsuited for outpatient use. An
alternative to extracorporeal i.v. control is presented by
implantable i.v.-i.p. systems employing intravenous sam-
pling and intra-peritoneal (i.p.) insulin delivery Leblanc
et al. (1986), Selam et al. (1992), Renard (2002). Re-
cently, with the advent of minimally-invasive subcutaneous
(s.c.) continuous glucose monitoring (CGM), increasing
academic, industrial, and political effort has been focused
on the development of s.c.-s.c. systems, generally using
CGM coupled with insulin infusion pump and a control
algorithm Klonoff (2007). So far, encouraging pilot results
have been reported Steil et al. (2006), Weinzimer (2006).
A recent United States Senate hearing emphasized the
artificial pancreas initiative, see Senate hearing (2006). In
September 2006, the Juvenile Diabetes Research Founda-
tion (JDRF) initiated the Artificial Pancreas Project and
funded a consortium of university centers to carry closed-
loop glucose control research, see The JDRF e-Newsletter
(2006).
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2. IN SILICO TESTING OF CLOSED-LOOP
CONTROL ALGORITHMS

The future development of the artificial pancreas will be
greatly accelerated by employing modeling and computer
simulation. Such in silico testing would provide direction
for clinical studies, outruling ineffective control scenarios
in a cost-effective manner. In the past two decades sim-
ulation and computer-aided design have made dramatic
progress in all areas of complex engineering systems. In
diabetes, prediction of clinical trials has been done by
the Archimedes diabetes model Eddy et al. (2003), Eddy
et al. (2003b); a company - Entelos, Inc. - specializes in
predictive biosimulation. These diabetes simulators, how-
ever, are based on population models and as a result, their
capabilities are limited to prediction of population aver-
ages. For the purposes of artificial pancreas development,
a different type of system is needed - one that is capable
of simulating the glucose-insulin dynamics of a particular
person. We need to emphasize, however, that good in silico
performance of a control algorithm does not guarantee
in vivo performance. Thus, computer simulation is only
a prerequisite to, not a substitute for clinical trials.

The principal components of computer simulation environ-
ment recreating in silico a closed-loop control system are
presented in Figure 1:

a. A sufficiently large cohort of in silico ’subjects” based on
real individual data and spanning the observed variability
of key parameters in the general population;

b. Sensor-specific simulator of sensor errors, capable of
reproducing the time lag, system and calibration bias, and
random noise of s.c. CGM or implantable devices;

c. The model of an insulin pump ensuring discrete insulin
delivery and accounting for engineering limitations and the
time lag inherent with s.c. insulin injection.

Silicon Sensor

• Calibration errors;

• Interstitial delay;

• Transient loss of sensitivity.

Silicon Insulin Pump

• Discrete insulin delivery;

• Subcutaneous insulin kinetics.
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Fig. 1. Principal components of computer simulation en-
vironment.

2.1 In silico ”subjects”

In silico ”subjects” are typically created by fitting a
metabolic model to data of individuals collected during
clinical trials. Various metabolic models (Dalla Man et al.
(2007), Dalla Man et al. (2007b); Hovorka (2005), Sorensen
(1985)) have been developed to serve this purpose, with

the first two already used for testing of control scenarios.
As an example of building an in silico ”subject” we present
the glucose fluxes (i.e. rate of appearance, endogenous
glucose production, etc.) postulated by the Glucose-Insulin
Model (Dalla Man et al. (2007):





Ġp(t) = EGP (t) + Ra(t)− Uii − E(t)
−k1Gp(t) + k2Gt(t)

Ġt(t) = −Uid(t) + k1Gp(t)− k2Gt(t)
G(t) = Gp(t)

VG

with Gp(0) = Gpb, Gt(0) = Gtb, G(0) = Gb. Here
Gp and Gt (mg/kg) are glucose masses in plasma and
rapidly-equilibrating tissues, and in slowly-equilibrating
tissues, respectively, G (mg/dl) is plasma glucose concen-
tration, suffix b denotes basal state, EGP is endogenous
glucose production (mg/kg/min), Ra is glucose rate of
appearance in plasma (mg/kg/min), E is renal excretion
(mg/kg/min), Uii and Uid are insulin-independent and
dependent glucose utilizations, respectively (mg/kg/min),
VG is the distribution volume of glucose (dl/kg), and
k1 and k2 (min−1) are rate parameters. In addition to
glucose fluxes, the detailed model contains equations of
insulin kinetics, as well as a compartmental representation
of glucose intestinal absorption and the glucose transit
through the stomach and intestine. Glucose excretion by
the kidney, which occurs if plasma glucose exceeds a cer-
tain threshold, is modeled as well Dalla Man et al. (2007).
Once the set of equations defining in silico ”subjects”
is laid out, in silico ”population” is created by generat-
ing parameter vectors spanning the parameter space of
the subject population. As an example of the utility of
this approach, a recently developed in silico ”population”
containing 300 ”subjects” in three age groups has been
approved by the FDA as a substitute to animal trial in
the pre-clinical testing of closed-loop control algorithms.

2.2 In silico sensor

In silico sensor is developed on the basis of a detailed
analysis of sensor errors. In general, continuous glucose
monitors (CGM) provide detailed time series of consecu-
tive observations upon the underlying process of glucose
fluctuations. However, a number of studies have concluded
that despite eight years of development, the CGM tech-
nology continues to face challenges in terms of sensitiv-
ity, stability, calibration, and the physiological time lag
between blood and interstitial glucose concentration Ger-
ritsen et al. (1999), Gross et al. (2000), Cheyne et al.
(2002), Kovatchev et al. (2004), Clarke et al. (2005), Clarke
et al. (2005b), Zisser et al. (2008). While testing sen-
sor accuracy, these studies have typically generated large
amounts of sensor-reference glucose data pairs, thereby
allowing the decomposition of sensor errors into errors
due to calibration, blood-to-interstitial glucose transfer,
and random noise King et al. (2007). After generating a
random calibration error, the components of sensor error
can be modeled as:

(i) Blood-to-interstitium glucose transport described by
the equation:

∂IG

∂t
= −1

τ
(IG−BG),
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where IG is the interstitial and BG is plasma glucose
concentration, and τ represents the time lag between the
two fluids;

(ii) Noise of the sensor, which is non-white (Gaussian). We
therefore use ARMA process for its modeling.{

e1 = v1

en = 0.7(en−1 + vn)

with vn ∼ Φ(0, 1), i.i.d.. The sensor noise is εn, which
is driven by the normally distributed time series en. The
parameters ξ, λ, δ, and γ are the Johnson system (SU -
unbounded system) parameters corresponding to empirical
noise distributions established in accuracy trials:

εn = ξ + λ sinh
(

en − γ

δ

)

2.3 In silico insulin pump

In silico insulin pump is used to model subcutaneous
insulin delivery. This has two major specifics that need to
be taken into account: (i) time and dynamics of insulin
transport from subcutaneous compartment into blood,
and (ii) discrete insulin infusion corresponding to stepwise
basal pump rate and insulin boluses. Several models of
subcutaneous insulin kinetics have been published Nucci
et al. (2000), Wilinska et al. (2005). For example, a two
compartment model can be assumed to describe insulin
kinetics:





İl(t) = − (m1 + m3) Il(t) + m2Ip(t)
İp(t) = − (m2 + m4) Ip(t) + m1Il(t) + Pump(t)
I(t) = Ip(t)

VI

with Il(0) = Ilb, Ip(0) = Ipb, I(0) = Ib where Ip and
Il (pmol/kg) are insulin masses in plasma and in liver,
respectively, I (pmol/l) plasma insulin concentration, suf-
fix b denotes basal state, Pump is the external subcuta-
neous insulin pump; m1, m2, m3, m4 (min−1) are rate
parameters. If implantable insulin pump is to be simulated,
different models reflecting the kinetics of i.v. insulin would
need to be used.

Exemplifying the ”in silico” testing of a pre-meal insulin
bolus, Figure 2 presents the glycemic reaction of three
”silicon subjects” after a meal containing 75 grams of
carbohydrate, while Figure 3 presents the reaction of
one ”subject” to three meals with different carbohydrate
content: 75, 85, and 95 grams.

3. IN VIVO TRIALS OF CONTINUOUS GLUCOSE
MONITORING AND CLOSED-LOOP CONTROL

CONTINUOUS GLUCOSE MONITORING

The feedback of detailed continuous monitoring informa-
tion to patients with diabetes has been shown to have
positive influence on their glycemic control, including re-
duction in glucose variability, time spent in nocturnal
hypoglycemia, time spent in hyperglycemia, and lower gly-
cosylated hemoglobin Klonoff (2005), Garg et al. (2006),
Deiss et al. (2006), Kovatchev et al. (2007). As reported
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Fig. 2. Glycemic reaction of three ”silicon subjects” after
a meal containing 75 grams of carbohydrate.
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Fig. 3. Glycemic reaction of one ”subject” to three meals
with different carbohydrate content.

recently, the first effects occurring within days of initiation
of CGM were marked reductions in glucose variability and
associated risks, not accompanied by reduction in average
glycemia Kovatchev et al. (2007b). The proposed here
criteria have been shown to be quite sensitive to these
effects Kovatchev et al. (2005),McCall et al. (2006). Thus,
in addition to traditional characteristics such as average
BG and time within target range, we suggest computing
in one-hour increments: (i) the Low Blood Glucose Index
(LBGI), which captures the risk of the control algorithm
triggering hypoglycemia; (ii) the High Blood glucose index
(HBGI), which captures the propensity of the algorithm
to stay above the target range, and (iii) the absolute
rate of glucose change, which captures the smoothness
of the algorithm. To illustrate these measures, Figure 4
presents the effect of CGM in a group of 123 patients who
were kept blinded to the readings of the device (Freestyle
NavigatorTM) for 20 days and then unblended, exercising
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behavioral open-loop control based on CGM. Panel A
shows that average glucose did not change as a result of
un-blinding the CGM at day 20, while Panel B shows
dramatic risk-reduction effect for hypoglycemia (LBGI)
and hyperglycemia (HBGI).
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Fig. 4. Effect of CGM in a group of 123 patients.

4. CLOSED-LOOP CONTROL

As indicated in the introduction, closed-loop control is
still in infancy. As reported by Renard Renard (2002),
closed-loop control based on implantable devices showed
promising results. The European Advanced insulin infu-
sion using a control loop (Adicol) project Hovorka et al.
(2004) proposed a modular concept of extracorporeal s.c.-
s.c. closed-loop composed of a minimally invasive subcu-
taneous glucose system, a PocketPC running MPC al-
gorithm, and an insulin pump. Throughout the project,
however, i.v. glucose monitoring has been used due to the
lack of a functional real-time CGM, delayed by 30 min to
mimic s.c. monitoring. It was therefore concluded that the
CGM is the limiting factor in the development of a viable
s.c.-s.c. system Hovorka (2005). Recently, several real-time
s.c. CGM have been introduced: GuardianRT (Medtronic,
Northridge, CA), DexComTM STSTM (DexCom, Inc. San
Diego, CA), and Freestyle NavigatorTM (Abbott Diabetes
Care, Alameda, CA). The next logical step was taken by
the MiniMed Paradigmr REAL-Time Insulin Pump and
Continuous Glucose Monitoring System approved by the
U.S. Food and Drug Administration in April 2006 as the
first open-loop control system available to people with
diabetes. Closed-loop control versions of this system have
been tested as well: Steil et al reported 30-hour trial in
10 patients with T1DM, which proved conceptually the
possibility of fully-automated external closed-loop insulin
delivery Steil et al. (2006). In November 2006, Weinzimer
reported data from the testing of the ePID System in
17 adolescents with T1DM: N = 8 in automated closed-
loop mode and N = 9 in closed-loop combined with pre-
meal insulin bolus (N = 9) Weinzimer (2006). In this 24-
hour test average glucose of 144± 52 mg/dl was achieved,
with three nocturnal episodes of hypoglycemia and a no
hypoglycemia during the day; the pre-meal bolus resulted
in approximately 30 mg/dl attenuation of postprandial
glucose excursions. Finally, in animal experiments, dual

insulin+glucagon model-predictive closed-loop control has
been tested successfully El-Khatib et al. (2007).

5. CONCLUSIONS

Continuous glucose monitoring has already proven its
utility in optimizing the glycemic control of people with
diabetes. The first short-term effect of CGM appears to
be a reduction of glucose variability. This is because the
traditional measures of average glycemia, such as HbA1c,
change slowly over time and are insensitive to short-
term treatment interventions. Based on CGM and insulin
delivery, pilot clinical trials of closed-loop control are
under way. Comprehensive computer simulation has the
potential to greatly accelerate their progress. Its principal
components should include: (i) a mathematical model of
the human metabolic system; (ii) a generator of CGM
errors, and (iii) a representation of discrete insulin deliv-
ery and subcutaneous insulin transport. A final essential
component of both in silico and in vivo trials is a set of
outcome measures capable of capturing the variability-
reducing effects of the relatively short-term (2-3 days)
trials of CGM use or closed-loop control.
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