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Abstract: Identification of nonlinear systems by a neural network is treated. The paper deals with a
design of a suitable neural network structure to approximate a nonlinear function of the identified system.
Contrary to the recent algorithms, the proposed structure adaptation algorithm can be applied on-line
during the identification process. The designed algorithm consist of a statistical test for making decision
about suitability of an a priori chosen network and then either a growing or a pruning according to the
size of the network is applied. The acceptance or rejection of the model is realized by application of
the statistical cumulative sum test from the decision making field. The growing part of the algorithm
repeatedly utilizes principle of the learning methodology for detecting faults in nonlinear dynamical
systems for adding neurons to the hidden layer. Finally, the pruning algorithm is based on a measure of
sensitivity of the model output error to the removing of the network connections. The properties of the
proposed structure adaptation algorithm are illustrated in a numerical example.

1. INTRODUCTION

Multi-layer perceptron (MLP) networks are widely applied for
modeling, control and fault detection of complex industrial
systems [Witczak, 2006]. However, the crucial issue of the
network design is answering the question - how to select a
suitable network structure in order to be able to approximate
system’s nonlinearities with a desired accuracy. As Cybenko
[1989] proved that a MLP network with one hidden layer
and appropriate number of hidden neurons can approximate
any continuous nonlinear function with arbitrary accuracy, the
task can be restricted to finding appropriate number of hidden
neurons. Unfortunately, it is not possible to use physical insight
for determination of the number of hidden neurons and hence
other more or less heuristic methods have been proposed.
In general, two basic approaches, growing or pruning of the
network, are used for construction of the network structure.

All the growing methods start from a minimal or an a priori
set small network and add neurons until the desired accuracy of
the model is achieved. Therefore, they prefer smaller networks
having better generalization ability to the larger ones. The most
famous growing method named cascade correlation method has
been proposed by Fahlman and Lebiere [1990]. This method
constructs the network with specific complex structure having
multiple hidden layers and each neuron is connected directly to
the output layer. Another method constructing a network with
common layered feed-forward structure was developed by Ma
and Khorasani [2003]. Survey of the main growing algorithms
was published by e.g. Kwok and Yeung [1997].

All of the growing methods add neurons or layers iteratively by
repeated utilization of the whole set of measurements, therefore
they can not be used for on-line system identification as it is
intended in the paper.

⋆ The work was supported by the Czech Science Foundation, projects GA

102/06/P202 and GA 102/08/0442.

The second approach to network structure determination is
based on pruning unnecessary connections or neurons from
a larg network. In principle, there are two broad groups of
the pruning methods [Reed, 1993]. The first one estimates
the sensitivity of the error function to removal of an element
and subsequently removes the connections or neurons with
the least effect. The second one supplements a penalty term
to an objective function, which causes that the unnecessary
weights tend to zero value and are removed during the training.
Between these two groups there is obviously an overlap since
the objective function can have sensitivity terms.

During the years, close attention was paid to the design of the
pruning methods and many of them were developed. Probably
the most popular pruning methods are Optimal Brain Damage
[LeCun et al., 1990] and the Optimal Brain Surgeon [Hassibi
and Stork, 1993] which use the Hessian matrix or its approx-
imation as a measure of saliency of the weights. Lauret et al.
[2006] proposed another approach determining the neurons rel-
evance from an analysis of the Fourier decomposition of the
model output variance. However, these pruning methods work-
ing with the whole set of measurements are computationaly
demanding and hence they can be used off-line only.

An approach usable for on-line neural network pruning was
developed by Sum et al. [1999]. Contrary to the methods men-
tioned above, it treats the MLP network parameters as ran-
dom variables and uses the Bayesian approach for the network
training. However, the usage of Gaussian approximation of the
parameters probability density function (pdf) causes the perfor-
mance to be affected by the initial choice of the parameters.

This problem is solved by the method designed by Šimandl
and Hering [2005] considering more general pdf described by
a mixture of Gaussian distributions [Sorenson and Alspach,
1971].
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The joint drawback of all pruning methods is that it is difficult
to decide how large an a priori network should be. Hence, some
experience is required with the system which will be identified.

Due to the serious flaws of the present structure optimization
methods, a new method for on-line structure adaptation will
be designed in the paper. Particularly, the goal is to design an
algorithm, which automatically decides about suitability of an a
priori chosen model and adjusts its structure during the on-line
identification of nonlinear stochastic system either by adding or
removing neurons and weights. Thus, the proposed algorithm
will consist of both - pruning and growing - parts.

The paper is organized as follows: In Section 2 the problem
of identification of a nonlinear Gaussian stochastic system by
the MLP network is formulated. Section 3 describes Gaussian
sum filter applied in estimation of the conditional pdf’s of the
network parameters. The structure adapting algorithm is pro-
posed in Section 4. In Section 5, an application of the proposed
algorithm is illustrated in a numerical example. Finally, Section
6 summarizes the obtained results.

2. PROBLEM STATEMENT

Consider a nonlinear stochastic system with the single input uk

and the single output yk, given by

yk = h(ϕk) + ek, (1)

ϕk = [yk−1, . . . , yk−na
, uk−1, . . . , uk−nb

]T , (2)

where k is time instant, na and nb are known constants, h(ϕk)
is an unknown continuous function representing nonlinear dy-
namics of the system, ϕk denotes a vector of nϕ past inputs and
outputs of the system, {ek} is zero mean Gaussian white noise
with variance E[e2

k] = σ2.

The nonlinear function h(ϕk) is approximated by a two-layer

perceptron network ĥ(ϕk,Θ). The network consists of an a
priori set of nh neurons in the hidden layer and a single output
linear neuron.

Mathematical description of the network is given by the follow-
ing relations

ŷk = ĥ(ϕk,Θ) =

nh
∑

j=1

Wj · tanh

(

wT
j ·

[

ϕk

1

])

+ W0 (3)

where ŷk is output from the network at time instant k, wj =
[wj,0 . . . wj,nϕ,k]T and W = [W0, . . . ,Wnh

]T denote vector of

weights of inputs into the jth hidden neuron and into the output
neuron, respectively, Θ = [wT

1 , . . . ,wT
nh

,WT ]T . The vector
of parameters Θ is considered as a random variable described

by a conditional pdf p(Θ|yk), where yk , {y0, y1, . . . , yk} is

a measurements history and y−1 , ∅.

As the choice of the optimal number of hidden neurons nh is
impossible from the a priori information, the aim is to decide
about suitability of the a priori network to approximate sys-
tem’s nonlinearities with a desired accuracy. Furthermore, an
algorithm, which is capable to adjust the network structure with
respect to the on-line measured data on the identified system,
should be designed. Hence, the main goal is to design such
algorithm which will have pruning and growing capabilities.

In order to be able to make any decisions about the network, its
parameters need to be set. Therefore, some estimation method
have to be applied at first. The next section deals with the

discussion about an appropriate estimation method which could
be used.

3. PARAMETERS ESTIMATION OF MLP NETWORK BY
THE GAUSSIAN SUM METHOD

In the past, various approaches were developed for parame-
ters estimation particularly based on minimization of predic-
tion error, see Nørgaard et al. [2000], where the well-known
back-propagation algorithm belongs, or on application of the
Bayesian approach using local nonlinear estimation methods
mainly represented by the extended Kalman filter (EKF) and
the unscented Kalman filter, see Singhal and Wu [1988], van
der Merwe and Wan [2001]. The increase of computational
power in the recent years has enabled to use more powerful
and computationally demanding global nonlinear estimation
methods for the MLP network parameters estimation that are
represented by GS method and particle filters, see Sorenson

and Alspach [1971], Hering and Šimandl [2006], Neal [1996].
The global methods compute conditional probability density
function (pdf) of the parameters thus they give the parameters
estimates of higher quality and less influenced by the chosen
initial conditions than the local ones. The main advantages of
the GS method over the particle filters are a possibility to find
an analytic solution for the pdf estimate and lower computa-
tional demands connected with comparable degree of accuracy.
Therefore, this approach will be preferred for estimation of the
pdf in the paper.

Let the a priori pdf of the parameters Θ be assumed in the GS
form

p(Θ|y−1) ,

N
∑

i=1

α
(i)
−1N

{

Θ : Θ̂
(i)
−1,P

(i)
−1

}

, (4)

N
∑

i=1

α
(i)
−1 = 1, α

(i)
−1 > 0, i = 1, . . . , N, (5)

where N represents the number of terms in the mixture,

N

{

Θ : Θ̂
(i)
−1,P

(i)
−1

}

denotes normal distribution of the random

variable Θ with mean Θ̂
(i)
−1 and covariance matrix P

(i)
−1.

The conditional pdf of the parameters at the time instant k is
given by the recursive Bayesian relation

p(Θ|yk) =
p(Θ|yk−1)p(yk|Θ)

∫

p(Θ|yk−1)p(yk|Θ)dΘ
, (6)

where p(yk|Θ) denotes the measurement pdf.

As the equation (3) is nonlinear, the function ĥ(ϕk,Θ) is

linearized at the points Θ̂
(i)
k−1 to ensure the analytic solution

of the Bayesian relation (6). For notational convenience, the
variable ϕk is omitted below. Using the first order Taylor series

expansion of the function ĥ(Θ) having form

ĥ(Θ) ≈ ĥ(Θ̂
(i)
k−1) + H

(i)
k (Θ̂

(i)
k−1)[Θ− Θ̂

(i)
k−1],

where

H
(i)
k (Θ̂

(i)
k−1) = H

(i)
k ,

∂ĥ(Θ)

∂Θ

∣

∣

∣

Θ=Θ̂
(i)

k−1

,

the conditional pdf of parameters p(Θ|yk) is given as follows

p(Θ|yk) =

N
∑

i=1

α
(i)
k N

{

Θ : Θ̂
(i)
k ,P

(i)
k

}

, (7)
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where

Θ̂
(i)
k = Θ̂

(i)
k−1 + K

(i)
k

[

yk − ŷ
(i)
k

]

(8)

P
(i)
k = P

(i)
k−1 −K

(i)
k H

(i)
k P

(i)
k−1 (9)

K
(i)
k = P

(i)
k−1[H

(i)
k ]T

[

H
(i)
k P

(i)
k−1[H

(i)
k ]T + σ2

]

−1

(10)

α
(i)
k = α

(i)
k−1ζ

(i)
k /

N
∑

i=1

α
(i)
k−1ζ

(i)
k (11)

ζ
(i)
k = N

{

yk : ŷ
(i)
k ,H

(i)
k P

(i)
k−1[H

(i)
k ]T + σ2

}

(12)

ŷ
(i)
k = ĥ(Θ̂

(i)
k−1) (13)

for i = 1, 2, . . . , N .

The relations (8) - (13) represent the GS method which is in fact
a bank of N EKF’s working in parallel. The multiple lineariza-

tion of the function ĥ(Θ) accomplished at the several points

Θ̂
(i)
k−1 improves performance and stability of the estimation

algorithm.

The presented estimation algorithm introduces the general ap-
proach for the parameters estimation of the network being cre-
ated during the structure adaptation.

4. STRUCTURE ADAPTATION

The a priori structure need not be optimal as it can be larger
or smaller than it is necessary. Therefore, it is important to
consider a structure adaptation and to find and apply a growing
or pruning method to the current network.

4.1 Model verification

The problem of decision about model suitability has been ex-
tensively studied in fault detection area [Basseville and Niki-
forov, 1993] where hypotheses testing methods are widely used
for this purpose. Decisions can be carried out on the basis of
the measurement obtained at the present time instant only or by
using a measurements history. The snapshot and sequential sta-
tistical tests have been proposed for these purposes. Sequential
tests overcome the snapshot tests in reliability due to the usage
of more information. Therefore, some of them will be used for
acceptance or rejection of selected neural network structure.

A simple sequential statistical method for testing the hypothe-
ses, which can be applied, is Wald’s sequential probability ratio
test (SPRT) [Zhang, 1989, Basseville and Nikiforov, 1993]. The
SPRT is commonly used for testing two alternative hypotheses.

Theoretically, the system function h(·) could be approximated
by the network with infinite number of hidden units exactly and
the output error êk, defined as

êk = yk −

N
∑

i=1

α
(i)
k ŷ

(i)
k , (14)

would have the same features as the system noise but it is
obviously not possible to achieve. In fact, the output error is
affected by bias, estimated parameters values and the system
noise [Cohn, 1996]. If the model has sufficiently large structure,
the bias is negligible and could be omitted. If the parameters
estimates are considered to be near the optimal values due to the
usage of the global estimation method, then it is possible define
the hypothesis 0

H for acceptance of the given model that the

output error has zero mean and some variance σ2
ê,0 correspond-

ing to desired degree of the model accuracy. Nevertheless, this
hypothesis could be kept also for larger networks than neces-
sary. Hence, the pruning algorithm should be applied to find
and remove unnecessary connections. Finally, the alternative
hypothesis 1

H can be defined as that the output error êk has
higher variance σ2

ê,1 than it is assumed by the hypothesis 0
H.

As the output errors êk at individual time instants k are mutu-
ally independent, the conditional pdf p(êk

t0
|jH) of the sequence

of the errors êk
t0

from some initial time instant t0 up to the

current time k conditioned by validity of hypothesis j
H is given

by product of the conditional pdf’s p(êt|
j
H), t = t0, . . . , k,

thus

p(êk
t0
|jH) =

k
∏

t=t0

p(êt|
j
H), (15)

where

p(êt|
j
H) = N{êt : 0, σ2

ê,j}, j = 0, 1. (16)

Let the sequential test statistics Λk based on the measurements
from time t0, t0 ≤ k, be given as a logarithm of a ratio of
conditional probabilities (15), for j = 0, 1, thus

Λk = ln
p(êk

t0
|1H)

p(êk
t0
|0H)

, (17)

which can be rewritten to the recursive form

Λk = Λk−1 + λk, Λt0−1 = 0, (18)

λk = ln
p(êk|

1
H)

p(êk|0H)
. (19)

In order to decide about acceptance or rejection of the model,
two constants γ = P (1H|0H) and β = P (0H|1H) corre-
sponding to desired probabilities of rejection of hypothesis
0
H when it holds and acceptance of 0

H when 1
H holds, re-

spectively, have to be chosen a priori. They must satisfy the
following condition

γ + β < 1 (20)

Then, the decision about the model is made according to the
following rules:

• Λk ≥ A, then accept hypothesis 1
H,

• Λk ≤ B, then accept hypothesis 0
H,

• B < Λk ≤ A, then continue with next measurement
without making any decision.

The constants A and B are chosen to meet the following
inequalities

A ≤ ln
1− β

γ
, (21)

B ≥ ln
β

1− γ
, (22)

A > 0 > B. (23)

It is reasonable to set the upper and lower bounds for value
of Λk to reduce time delays in the decisions making that are
commonly set three times as large as corresponding thresholds,
i.e. 3A and 3B [Zhang, 1989].

The network with a given structure could approximate not
only one function but a particular class of nonlinear functions.
Therefore, the test could not be utilized starting from the
initial time instant but after several training steps when the
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parameters values of the given network are adjusted to the
concrete application and the convergency of the features of
network output error has been reached. From experiments it
arose that it is needed to use about 3nΘ measurements before
beginning the model test.

4.2 Growing of neural network

The designed constructive approach is based on the principle of
learning methodology to fault diagnosis in nonlinear dynamical
systems. The main idea of this approach is to approximate any
off-nominal behavior in the dynamical system by using on-line
approximation structures and nonlinear estimation methods.
When the failure arises, the on-line approximator is used to
estimate it [Trunov and Polycarpou, 2000]. In this case the fault
could represent inability of the a priori network to approximate
system function with a desired accuracy.

When the current model is rejected by the statistical test at time
k, the relation describing identified system is considered in the
following form

yk = ĥ(ϕk,Θ) + f(fΘ, ϕk) + ek, (24)

where ĥ(·) represents nonlinear behavior of the identified sys-
tem, in this case it is represented by the a priori chosen neural
network. Function f(·) is the neural network with parameters
fΘ which is being used for modeling of possible faults in the
system. For purposes of design of the constructive algorithm,
it is used for modeling of the nonlinearities, which can not be

expressed by the network ĥ(·). The real behavior of the system

is then approximated by the network ĥ(·) together with f(·).

However, design of the function f(·) brings the same problem
with determining the optimal network structure as the design

of ĥ(·). Hence, the minimal possible structure represented by
network with one hidden neuron is selected for the purposes of
the constructive algorithm, which is equivalent to addition of

one new neuron into the hidden layer of the network ĥ(·). Thus

f(fΘ, ϕk) = fW · tanh

(

fwT ·

[

ϕk

1

])

, (25)

where fΘ = [fW, fwT ]T denotes nf = nϕ + 2 parameters of
the network f(·).

Further, the parameters fΘ have to be estimated. Let an a priori
pdf of parameters fΘk be like in (4) assumed in the GS form

p(fΘ|y−1) ,

N
∑

i=1

fα
(i)
−1N

{

fΘ : fΘ̂
(i)
−1,

fP
(i)
−1

}

, (26)

N
∑

i=1

fα
(i)
−1 = 1, fα

(i)
−1 > 0, i = 1, . . . , N, (27)

where terms of pdf (26) represent the so called candidate states

for transition from the a priori network ĥ(·) to the network
augmented by one hidden neuron.

Estimated pdf of parameters (7) of the network ĥ(·) could be
also interpreted as N neural networks modeling the system,
each trained by the EKF’s from several different initial point
estimates and working in parallel. During the parameters esti-

mation one of the weights α
(i)
k , i = 1. . . . , N , typically con-

verges to 1 and the rest to zero. It corresponds to selection of
the most probable local model from a set of N models. As the
parameters space has many equivalent minima, several weights

can converge to the same value. Then the corresponding models
are, in fact, the same and only one of them suffices to select.
Hence, the most probable value at time k from parameters esti-

mates Θ̂
(i)
k and relevant covariance matrix P

(i)
k , i = 1, . . . , N ,

are considered to produce the right model of the system be-

havior without fault and will be denoted as ∗Θ̂k and ∗Pk. The
parameters pdf of the new model is then given as

p(Θ|yk) =
N

∑

i=1

fα
(i)
−1N

{

Θ :

[

fΘ̂
(i)
−1

∗Θ̂k

]

,

[

fP
(i)
−1 0
0 ∗Pk

]

}

.

(28)

When the new neuron is added, the estimation algorithm (8) -
(13) continues with using pdf (28). After about 3nf estimation
steps the verification of the model can be realized again. The
process of addition of neuron is repeated until the model does
not attain the desired accuracy.

Due to the application of global estimation method, the pro-
posed approach represents a special case of the multi-valued
transition with candidate states having the same structure and
differing in parameters values. Whereas, if the local estimation
method is used it corresponds to the single-valued transition,
[Kwok and Yeung, 1997].

The growing algorithm based on global description of neural
networks parameters given by pdf (26) can be defined as fol-
lows:

Algorithm 1: Growing algorithm

Step 1 Select the most probable value at time k from param-

eters estimates Θ̂
(i)
k with relevant covariance matrix P

(i)
k ,

i = 1, . . . , N , and denote them as ∗Θ̂k and ∗Pk.

Step 2 Initialize a new neuron by setting fΘ̂
(i)
−1, fP

(i)
−1 and

fα
(i)
−1.

Step 3 Augment current parameters vector by the parameters
of the new neuron Θ = [fΘT , ΘT ]T and use the pdf (28).

4.3 Pruning of neural network

The applied pruning method has been proposed and derived

in [Šimandl and Hering, 2005], therefore in this section the
algorithm will be only briefly introduced.

The method is based on computation of saliency of individual
connections or subsets of them by determining sensitivity of
the output error on their removing. The saliencies are estimated
by using the conditional pdf of the network parameters (7) and
connections having saliency lower than any chosen threshold
T0 are removed from the network. Removing itself is performed
by setting the corresponding parameter value to zero.

Let a vector with the τ th pruned parameter in the ith term of
the pdf (7) at time k be defined as

Θ̂
(i)
[τi],k

= [θ̂
(i)
1,k, . . . , θ̂

(i)
τi−1,k, 0, θ̂

(i)
τi+1,k, . . . , θ̂

(i)
nΘ,k]T ,

where τi ∈ {1, . . . , nΘ}, i = 1, . . . , N .

Moreover, let τi[1,n]
denote a set of n ∈ {1, . . . , nΘ} pointers

τi to the parameters corresponding to the connections which
should be pruned and the ith parameters vector with n elements

set to zero is denoted as Θ̂τi[1,n]
,k.

The connections saliency is measured by variable T [Šimandl
and Hering, 2005] which is given
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T =

N
∑

i=1

α
(i)
k T (i), (29)

where

T (i)=α
(i)
k σ2(Θ̂

(i)
k −Θ̂

(i)
τi[1,n]

,k)T [P
(i)
k ]−1(Θ̂

(i)
k −Θ̂

(i)
τi[1,n]

,k). (30)

If the value T is less than or equal to the chosen threshold T0,
then the connections will be pruned. Since finding all possible
combinations of the parameters that could be pruned is difficult,
the strategy is based on pruning parameters from each term
independently so that the increase of the error caused by the

ith term is α
(i)
k T (i) ≤ α

(i)
k T0. This choice ensures that after all

prunings at the time step it holds that T ≤ T0.

The designed pruning algorithm can be summarized in the
following several basic steps:

Algorithm 2: Pruning algorithm

Step 1 Evaluate Vτi
= [P

(i)
k ]−1

τi,τi
[θ̂

(i)
τi,k

]2 for all

τi ∈ {1, . . . , nΘ} denoting saliency of the parameters.
Step 2 Rearrange the indexes τi = {τi} according to the

ascending Vτi
.

Step 3 Evaluate T (i) for the sets τi[1,n]
for n = 1 . . . , nΘ.

Step 4 Remove all parameters for which T (i) < T0.

4.4 Adaptive system identification algorithm

The individual parts of the structure adaptation algorithm were
proposed above, i.e. parameters estimation, model verification
and structure adaptation parts. Now, the algorithm will be
summarized in the system identification framework for better
transparency.

Algorithm 3: Adaptive system identification algorithm

Step 0 (Initialization)
(1) Choose the structure of initial neural network, i.e. the

number of hidden neurons nh, the network inputs ϕk

and the initial pdf (4).
(2) Choose the parameters of CUSUM test, i.e. the proba-

bilities γ, β and the variances σ2
ê,0, σ2

ê,1. Set t0 ← 3nΘ

and Λt0−1 = 0.
(3) Set the threshold T0 for pruning algorithm.

Step 1 (Parameters estimation) Estimate the network parame-
ters by application of relations (8) - (13).

Step 2 (Model verification and structure adaptation)
If k > 3nΘ and at least for 3nf steps none neuron has been
added.
(1) Compute Λk according to equation (17).
(2) If Λk ≥ A, then reject the current model and add one

neuron using Algorithm 1. Set t0 ← k + 3nf .
(3) If Λk ≤ B, then accept the model and try to simplify the

network by pruning Algorithm 2.
Step 3 k ← k + 1 and go to step 1.

The proposed structure adaptation algorithm provides an exten-

sion of the algorithm given in Šimandl and Hering [2005] where
only pruning was considered.

5. NUMERICAL EXAMPLE

The proposed approach to adaptive identification of nonlinear
system given by Algorithm 3 will be illustrated in the following
numerical example.

Suppose a discrete-time nonlinear system with Gaussian distur-
bances described by the following equation

yk =− 1.5
yk−1yk−2

1 + y2
k−1 + y2

k−2

+

+ 0.35 sin(yk−1 + yk−2) + 1.2uk−1 + ek,

where the input uk is generated from the uniform distribution
within interval [−5; 5]. The sequence of disturbances {ek} is a
zero mean white noise with variance σ2 = 0.0025.

The assumed system is modeled by the a priori chosen two-
layer MLP network having 5 neurons with hyperbolic tangent
activation functions in the hidden layer. The suitability of the
network will be tested during the identification process and
possibly the structure will be adjusted to achieve desired degree
of accuracy of the final model.

The initial conditions for the network parameters are given as
follows

p(Θ|y−1) =

N
∑

i=1

1

N
N

{

Θ : Θ̂
(i)
−1,

10

N
· I

}

,

where the initial means Θ̂
(i)
0 are generated from the uniform

distribution on the interval (−1; 1).

The threshold used in the pruning algorithm is set to T0 =
10−5. The probabilities for the CUSUM test are chosen as
follows: γ = 0.01 and β = 0.01. Variances defining the
hypothesis 0

H and 1
H is σ2

ê,0 = σ2 and σ2
ê,1 = 9σ2,

respectively.

The GS algorithm was tested for several numbers of terms N =
1, . . . , 4. When N = 1 the proposed algorithm corresponds to
using approximation of the parameters pdf by normal distribu-
tion and application of the EKF to the parameters estimation.

The criterion used for computation of quality of the model is
chosen as the mean square error of one step ahead prediction of
the system output for 1500 steps:

MSE =
1

1500

1500
∑

k=1

(yk − ŷk)
2
. (31)

Experiments are repeated over 1000 trials and obtained aver-
aged results are then summarized in Tab. 1. It is obvious, that
the increasing number of terms of the GS improves the mean
square error (MSE) of the final model. Furthermore higher
number of terms N causes the decrease of number of needed
neurons in the hidden layer and whole parameters with a im-
proved quality of the model.

Table 1. Results of simulations for increasing num-
ber of terms N of GS averaged over 1000 trials.
MSE - mean square error; Nneu - number of neu-
rons at the end of the experiment; Npar - number

of parameters at the end of the experiment.

N 1 2 3 4

mean(MSE) 0.2363 0.0977 0.0696 0.0526

var(MSE) 0.3036 0.0148 0.0083 0.0011

mean(Nneu) 26 20 18 17

var(Nneu) 236 101 72 54

mean(Npar) 85 65 59 53

var(Npar) 2805 948 601 448

One concrete development of the number of neurons and pa-
rameters together with results of the statistical test are depicted
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in Figure 1. The given results were obtained for four terms,
N = 4, of GS but similar development would arise for different
number of the terms.
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Fig. 1. Development of the neural network structure adaptation.
a) Development of the number of neurons in the hidden
layer; b) Development of the number of the network
parameters; c) Decision about acceptance or rejection of
current model. Acceptance of the model = 1; Rejection =
-1; Continue without making decision = 0.

6. CONCLUSION

The new approach for on-line structure adaptation of the two-
layer perceptron network in system identification of nonlin-
ear stochastic systems was proposed. The proposed approach
consists of the test of suitability of the a priori model and
subsequent growing or pruning the network structure to obtain
a desired model accuracy. The pdf of the network parameters is
estimated by the global estimation method based on the Gaus-
sian sum approach. Usage of this method brings the advantage
of the multiple-valued transition to the network construction
as it has the higher capability to adapt network to the prob-
lem at hand than by using a single valued-transition. If only
one term in the sum is considered the single-valued transition
is obtained. Increasing number of the terms in the estimated
pdf helps to improve quality of the estimates of the network
parameters and consequently to find a better network structure
more independent of the choice of initial conditions. Obviously,
it is connected with a linear increase of computational demands
with respect to the number of the GS terms.
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