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Abstract: The optimal operation of chemical processes is challenged by frequent transitions
and by the influence of process or model uncertainties. Under uncertainties, it is necessary to
quickly update the optimal trajectories in order to avoid the violation of constraints and the
deterioration of the economic performance of the process. Although an economically optimal
operation can be ensured by online dynamic optimization, the high computational load of
dynamic optimization associated with nonlinear and complex models is often prohibitive in
real-time applications. To reduce the computational time required for online computation of the
optimal trajectories in the neighborhood of the optimal solution under uncertainty, different
strategies have been explored recently. If the operation is affected by small perturbations,
efficient techniques for updating the nominal trajectories based on parametric sensitivities
are applied, which do not require the solution of the rigorous optimization problem. However
for larger perturbations, the linear updates obtained by the neighboring extremal solutions
are not sufficiently accurate, and the solution of the nonlinear optimization problem requires
further iterations with updated sensitivities to give a feasible and optimal solution. In this
work, the sensitivity-based approach of Kadam and Marquardt (2004) is extended with a fast
computational method for second-order derivatives based on composite adjoints. The application
of the method to a simulated semi-batch reactor demonstrates that fast and optimal trajectory
updates can be obtained.

Keywords: Real-Time Dynamic Optimization; Parametric Sensitivity Analysis; Uncertainty;
Hessian; Composite Adjoints.

1. INTRODUCTION

Many chemical processes are operated in a flexible mode
involving frequent transitions, which take place, for ex-
ample, in batch processes or in continuous processes with
frequent changes in product specifications. The profit
achieved in transient processes is increased by the compu-
tation and tracking of optimal control trajectories, which
are obtained through the solution of a dynamic optimiza-
tion problem. However if the process operation is affected
by process or model uncertainties, online updates of opti-
mal trajectories are required.

The research interest in developing efficient strategies for
solving dynamic optimization problems in online appli-
cations has grown in the past years. One approach con-
sists of reducing the complexity by decomposing the op-
timal control problem on different time scales. Dünnebier
et al. (2005) generate optimal control trajectories, that
are tracked by an underlying MPC-Controller at a fast
sampling rate. However, the solution of the dynamic opti-
mization problem with large-scale models involves a high
computational load and therefore renders online trajectory
updates impractical.

A fast update strategy for optimal trajectories, based
on sequential dynamic optimization, has been introduced
by Kadam and Marquardt (2004). The authors apply
parametric sensitivities to compute fast trajectory updates
in the neighborhood of the optimal solution, even in the
case of a changing active set. The computation of first-
order approximations is based on the theory of neighboring
extremals (Pesch, 1989), where an optimal feedback law is
derived by linearization of the system along the optimal
control trajectory. The feedback law allows an immediate
correction of the optimal control trajectory for small
deviations in the state vector. The optimal control problem
and the approximation of the perturbed solution are set up
as a boundary value problem, which is difficult to derive
and the solution requires good estimates of the adjoint
variables. In the recent literature, direct optimization
methods have been applied to overcome these problems.

Real-time strategies for computing optimal control trajec-
tories, which are based on multiple-shooting and simul-
taneous optimization methods, have also been presented
by Diehl et al. (2005) and more recently by Zavala et al.
(2007). A major feature of these algorithms, similar to
the strategy presented in this paper, consists of the ex-
ploitation of sensitivity knowledge already available from
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the solution of previous optimization problems. The usage
of this information allows to prepare the solution of the
optimization problem at the next sampling interval to a
large extent and to compute the trajectory update almost
instantaneously once the measurements of the state vari-
ables are available. Diehl et al. (2005) perform only one
iteration per sampling time in order to reduce the delay
of the feedback response. Although the required computa-
tional time per update is short, a loss in performance might
result if the system is affected by large uncertainties.

This work extends the sensitivity-based update strategy
(Kadam and Marquardt, 2004) with a fast computation
method for second-order derivatives, which allows online
updating of the Hessian. The solution of the neighboring
extremal problem requires exact second-order derivatives
of the Lagrangian. The exact Hessian of the Lagrangian
is computed using a second-order adjoint method (Hanne-
mann and Marquardt, 2007), which is efficient especially
if the optimization problem involves a large number of
optimization parameters. The second-order sensitivities
were computed using finite differences in our previous work
(Kadam and Marquardt, 2004). However, the calculation
by finite differences is too time-consuming to compute
an online update of the second-order sensitivities. If the
system is affected by large perturbations, the first-order
update computed with parametric sensitivities might not
provide a feasible and optimal solution because of strong
nonlinearities in the model. Therefore, updates of the sen-
sitivities are required for further iterations of the nonlinear
optimization problem to obtain a converging and accurate
solution. The exact Hessian provides fast convergence of
the optimization problem in the neighborhood of the op-
timal solution.

2. REAL-TIME DYNAMIC OPTIMIZATION
PROBLEM FORMULATION

The moving horizon formulation of the dynamic optimiza-
tion problem is similar to the formulation used in nonlinear
model-predictive control, although an economic objective
is chosen to provide an economically optimal operation
at all times. The moving horizon problem is defined as
follows:

min
uj(t),tj

f

Φ(x(tjf )) (1)

s.t. ẋ(t) = f(x(t),uj(t), d̂j(t)) , (2)

y(t) = g(x(t),uj(t), d̂j(t)) (3)

x(tj) = x̂j , (4)

0 ≥ h(x(t),y(t),uj(t)) , (5)

0 ≥ e(x(tjf )) , (6)

t ∈ [tj , tjf ] , (7)

tj := tj−1 + ∆t . (8)

x(t) ∈ R
nx are state variables with the initial condi-

tions x̂j ; y(t) ∈ R
ny are algebraic output variables. The

dynamic process model (2) is given by f(·). The time-
dependent control variables u(t) ∈ R

nu and possibly the

final time t
j
f are the degrees of freedom of the optimization

problem. The optimization problem is solved on the time

horizon [tj , tjf ] at every sampling instant tj ; the opti-
mization horizon is then shifted by the sampling interval
∆t. Equations (5) and (6) describe the path constraints
h(·) on the input and state variables and the endpoint
constraints e(·) on the state variables. Process operation is
determined by economic decision criteria, which enter into
the definition of the objective function Φ(x(tjf )). These
economic decision criteria are valid for a certain produc-
tion campaign. Furthermore, uncertainties with different
dynamics d(t) affect the process.

3. FAST TRAJECTORY UPDATES UNDER
UNCERTAINTY

A rigorous solution of the dynamic optimization prob-
lem presented in Section 2 can be very time-consuming.
Instead, a strategy based on parametric sensitivities is
applied to provide fast, first-order updates of the control
trajectory.

3.1 Nominal solution

The nominal optimization problem is solved using the dy-
namic optimization software DyOS (Schlegel et al., 2005),
which adopts a control vector parameterization strat-
egy. After discretizing the control variables, the infinite-
dimensional optimal control problem (1) is converted into

min
z

Ψ(z, p) := Φ(z,p) (9)

s.t. g(z, p) ≥ 0. (10)

The objective function and the constraints depend on the
discretized control variables z as well as on the parametric
uncertainties collected in p. The nonlinear program (9,10)
is solved using a sequential quadratic programming (SQP)
strategy, while the objective function, the constraints, and
the gradients are computed by simultaneous integration of
the model (2) and the associated sensitivity equations.

3.2 Sensitivity-based updates

Solving the optimal control problem on a moving horizon
involves a sequence of related dynamic optimization prob-
lems. If the parametric uncertainties are small, it is not
always necessary to solve a new optimization problem.
In the neighborhood of the optimal solution, parametric
sensitivities computed at the solution of the preceding
optimization problem can be used to predict a first-order
update of the optimal solution (Fiacco, 1983). The com-
putational effort is reduced, since the required first and
second-order sensitivities are evaluated beforehand at the
nominal parameter values.

The parametric sensitivities of the control variables with
respect to the uncertain parameters are obtained through
differentiation of the first order necessary conditions of op-
timality (Karush-Kuhn-Tucker conditions) at the nominal
parameter values, leading to the following system of linear
equations:
[

Lzz(z0, λ0, p0) −gT
z (z0, p0)

gz(z0, p0) 0

] [

zp

λa
p

]

= −

[

Lzp(z0, λ0, p0)
gp(z0, p0)

]

(11)
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where the Lagrangian is defined as L(z, p, λ) = Ψ(z, p) −
λT g(z, p). Under uncertainties, a first-order update of the
control trajectory is rapidly computed from a first-order
Taylor expansion around the nominal solution:

z(p) = z0 + zp(p0)(p − p0) (12)

For the existence of a local minimum in the neighborhood
of the nominal optimal solution, the strict complementar-
ity slackness condition must hold, the active constraints’
gradients must be linearly independent, and an important
condition states that the strong second order sufficient
conditions of optimality must be fulfilled (Fiacco, 1983).
This can be checked by verifying the positive definiteness
of the Hessian matrix projected on the null space of the
Jacobian of the active constraints. Furthermore, it is as-
sumed that the active constraint set does not change with
uncertainties, which is quite restrictive.

A quadratic programming formulation, which allows up-
dating the optimal solution while determining the new ac-
tive set, has been reported by Ganesh and Biegler (1987):

min
∆z

1

2
∆zT Lzz(p0)∆z + ∆pT Lpz(p0)∆z + fz(p0)∆z

(13)

s. t. g(p0) + gz(p0)∆z + gp(p0)∆p ≥ 0 , (14)

Kadam and Marquardt (2004) have applied this formula-
tion for real-time optimization and control of a semi-batch
reactor to provide fast updates under uncertainties while
accounting for active set changes. An optimal solution up-
date can be rapidly computed by solving just one QP, if the
perturbations are small and the updated solutions are close
to the reference ones. For quadratic programs, the update
corresponds to the exact optimal solution. However, for
nonlinear problems, the error of the solution update is
increasing substantially with the size of the perturbation.
In that case, the linear update is not sufficient to provide
the updated optimal solution.

3.3 Real-time algorithm

In order to account for larger uncertainties, the solution
obtained by linear first-order updates is subsequently an-
alyzed by a feasibility and an optimality criterion, which
verifies whether the necessary conditions of optimality are
satisfied. If this is not the case, a rigorous reoptimization is
triggered (Kadam and Marquardt, 2004), that is computa-
tionally expensive. In this work, this approach is extended
by computing a fast update of the first and second-order
sensitivities and by triggering further iterations of the
quadratic program similarly to an SQP algorithm. How-
ever, the first-order update may still be used as an initial
guess for the next iteration of the optimization problem.
The trigger evaluates the error in the Lagrange sensitivity
(ǫopt) and the nonlinear constraint infeasibility (ǫinfs) of
the updated trajectories with respect to uncertainty and
is defined as follows:

ǫopt =
‖Lz(z, p, λ)‖∞

‖λ‖2
, ǫinfs =

‖g(z, p)‖∞
‖z‖2

. (15)

The real-time optimization algorithm based on parametric
sensitivities assuming a shrinking horizon as in batch
optimization is as follows:

(1) Set counter j:=1;
(2) Solve the nominal dynamic optimization problem (1)

on t∈[0, tfj
] to obtain the reference solution z

j
ref ,

λ
j
ref , y

j
ref (t) computed at p0. Assign z

j
ref , y

j
ref as the

reference trajectories for a lower level control system.
Compute Lj

zz, L
j
zp by the second-order adjoint method.

(3) for j = 2, N (number of sample intervals) do

(a) Implement the control z
j−1
ref for one sampling

interval [tj−1, tj ].
(b) Horizon shift: Reduce the time horizon by one

sampling interval ∆t i.e. tj=tj−1+∆t, tfj
=tfj−1

.
On the reduced horizon, assemble the shifted
reference discretized controls z̄

j
ref , λ̄

j
ref Lj

zz, L
j
zp

from the corresponding quantities z
j−1
ref , λ

j−1
ref ,

Lj−1
zz , Lj−1

zp on the previous horizon [tj−1, tfj−1
].

Prepare the next neighboring extremal control
problem by formulating the QP given in eqns.
(13) and (14).

(c) Process measurements: At tj get the measure-

ments yj and estimates x̂j , d̂j after one sampling
interval ∆t to update pj .

(d) Fast update: Solve eqns. (13) and (14) to obtain
∆zj ,λj and Gj .
Calculate the updated controls z

j
ref=z̄

j
ref+∆zj

and the Lagrange multipliers λ
j
ref=λj .

(e) Trigger: Compute y
j
ref , gj , and the sensitivities

f j
z , gj

z by doing one sensitivity integration of
the DAE model using the updated control values
z

j
ref . Compute the optimality error (ǫopt, ǫinfs)

of the updated controls and check the trigger
criteria:
if (ǫopt>τopt) and (ǫinfs>τinfs)
update the 1st order sensitivities f j

z , gj
z and sec-

ond order sensitivities Lj
zz, L

j
zp using the second-

order adjoint method,
Trigger another iteration of QP (13),(14) by set-
ting ∆p = 0, until the feasibility and optimality
criteria are satisfied.
end if
Get the new optimal references z

j
ref , y

j
ref , λj .

(f) Update sensitivities: Update the reference sen-
sitivities Lj

zz, L
j
zp, f j

z , and gj
z.

(4) end for;

The algorithm ensures that directly after getting the pro-
cess measurements, the trajectory update is computed al-
most instantaneously by solving the neighboring extremal
problem in QP (13),(14). The solution of the quadratic
problem is only based on nominal sensitivity information,
and on the current measurements or estimations of the
process uncertainties. Therefore, the update of the refer-
ence sensitivities required to prepare the next neighbor-
ing extremal problem (step 3.f) as well as the shifting
of the nominal solution (step 3.b) can be carried out in
the background during the process sampling interval. The
extension of the algorithm to a receding horizon problem
is straightforward.

If the update does not fulfill the criteria (15), efficient
adjoint-based methods are used to quickly update second-
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order sensitivities. Furthermore, the adjoint-based meth-
ods compute the exact Hessian matrix, which provides
quadratic convergence close to the optimal solution and
therefore significantly reduces the number of iterations
required to obtain the optimal solution.

3.4 Computation of Hessian Matrix by Composite Adjoints

The second-order derivatives Lzz and Lzp are computed
using the novel approach of composite adjoints presented
by Hannemann and Marquardt (2007), that is based on the
second-order adjoint sensitivity analysis recently investi-
gated by Özyurt and Barton (2005). The classical second-
order adjoint approach is not suited for path constrained
optimal control problems since the Lagrangian consists of
a linear combination of different ODE embedded function-
als, which are evaluated at different points in time. The
different points in time stem from the discretization of the
path constraints on the grid tj < tj+1 < · · · < tN = t

j
f :

0 ≥ h(x(tk; z, p),y(tk; z, p),uj(tk; z, p)), k = j+1, . . . , N.

In the Lagrangian, the path constraints occur as a linear
combination associated with their corresponding Lagrange
multipliers µk, k = j + 1, . . . , N :

N
∑

k=j+1

µT
k h(x(tk; z, p),y(tk; z, p),uj(tk; z, p)).

Following an ordinary adjoint approach, for each of the
time points tk, k = j + 1, . . . , N, an individual combined
first- and second-order adjoint system has to be solved.
The method of composite adjoints adapts the second-
order adjoint sensitivity analysis for path constrained
problems exploiting the linearity of the first- and second-
order adjoint system. Instead of solving (N − j) ”single”
adjoint systems, only one system is integrated to obtain
the piecewise smooth composite adjoint vector, which is
a linear combination of the ”single” adjoint vectors. An
illustration of the ”single” and composite adjoints is given
in Figure 1. Details of the algorithm have been reported
by Hannemann and Marquardt (2007).

0 1 2 3 4
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0 1 2 3 4
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Fig. 1. ”Single” adjoints (left) and composite adjoint
(right)

Second-order adjoint sensitivity analysis and the method
of composite adjoints require the storage of the solution of
the state and first-order forwards sensitivity systems for
the backwards integration of the first- and second-order
adjoint systems. To avoid the necessity of interpolation, a
second-order discrete adjoint approach Hannemann and
Marquardt (2008) motivated by Hager (2000) is used.
This discrete approach yields exact first- and second-order
derivatives of the discretized initial value problem and is
in this sense equivalent to automatic differentiation.

In addition to the storage of the solution of the state
and sensitivity equations also the first- and second-order
composite adjoints are stored in the current implementa-
tion, doubling the total storage requirement. The storage
requirement grows linearly in the number of integrations
steps, the amount of intermediate storage per variable per
integration step, the number of states, and the number of
parameters.

For this case study, an s-stage Runge-Kutta method with
s = 4 is used. On the largest horizon N integration
steps with N ≈ 500 steps and a total amount of np =
66 parameters are taken. The intermediate storage per
variable per integration step is s + 1 This results in a
storage requirement of 2nx(np + 1)N(s + 1) variables, or
about 24 megabytes of computer RAM, if 8-byte double
precision variables are employed. Due to the availability
of cheap computer RAM, this discrete composite adjoint
approach is also feasible for medium size models with a
few hundreds of states and a few hundreds of parameters.
Of course, for really large-scale models with thousands of
variables, a different implementation using checkpointing
techniques has to be employed.

4. CASE STUDY

As a benchmark problem, the Williams-Otto semi-batch
reactor, as introduced by Forbes (1994), is chosen. In the
reactor the following reactions take place:

A + B
k1−→ C, C + B

k2−→ P + E, P + C
k3

−→ G.

Reactant A is already present in the reactor, whereas
reactant B is fed continuously to the reactor. During the
exothermic reactions the products P and E as well as the
side-product G is formed. The heat generated through
the exothermic reaction is removed by a cooling jacket,
which is controlled by manipulating the cooling water
temperature. At the end of the batch, the conversion
to the main products P and E should be maximized.
During the batch, path constraints on the inlet flow rate
of reactant B (FBin

), the reactor temperature (Tr), the
reactor volume (V ) and the cooling water temperature
(Tw) must be observed. The manipulated control variables
of this process are FBin

and Tw. The dynamic model
consists of nine differential equations.

The economic objective is to maximize the yield of the
main products at the end of batch. The dynamic opti-
mization problem is defined as follows:

max
FBin

(t),Tw(t)
Φ(tf ) = cpnp(tf ) + cene(tf ) (16)

s.t. process model, and

0 ≤ FBin
(t) ≤ 5.784

kg

sec
, (17)

V (tf ) ≤ 5 m3, (18)

20 ≤ Tw(t) ≤ 100 ℃, (19)

60 ≤ Tr(t) ≤ 90 ℃. (20)

The initial reactor temperature Tr,0 and feed temperature
Tin are fixed at their nominally optimal values of 60
℃ and 35 ℃, respectively. During the batch, two types
of uncertainties are influencing the process. On the one
hand, the inlet temperature decreases gradually from 35◦C
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to 25◦C during the time span of 200s. Furthermore,
uncertainty is present in the model, since the reaction
parameter b1 in the reaction kinetics k1=a1 exp( b1

Tr+273.15 )

deviates by +10% from its nominal value b1 = 6666, 7.
This parameter is assumed to be estimated on-line. We
collect Tin and b1 in the vector of uncertain parameters p.
The uncertainties are represented in Figure 2.
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Fig. 2. Uncertainties: Model uncertainty in the kinetic
parameters (solid line) and disturbance in the inlet
temperature (dashed line)

The reference solution, which is shown in Figures 3-6 by
solid lines, is first computed at the nominal parameter val-
ues. For online implementation, a sampling time of 31.25
s is chosen, whereas the total batch time is fixed at 1000 s.
This results in a uniform discretization grid of both control
variables with 32 parameters. A uniform grid is chosen
here for simplicity. Adaptive grid refinement presented in
(Schlegel et al., 2005) would reduce the number of opti-
mization parameters and the computational solution time.
The application of the real-time algorithm to optimize
the process online is shown in Figures 3-6 by solid lines,
whereas the sampling times are represented by dots. This
solution is compared to a conventional rigorous solution
strategy, where a dynamic optimization problem is iterated
until full convergence using a sequential quadratic pro-
gramming strategy with BFGS Hessian updates (dashed
lines marked with a cross). A warm-start is also provided
for the rigorous approach at each interval using the shifted
solution of the previous problem. All computations are
performed on a Windows XP PC with a 2.0 GHz AMD
Athlon(TM) XP 2400+ processor and a memory of 2048
MB.
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Fig. 3. Inlet Flowrate

In Figures 3 and 4 the plots of online optimized manipu-
lated variables show that the solution obtained with the
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Fig. 4. Cooling Water Temperature
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Fig. 5. Reactor Temperature
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Fig. 6. Reactor Volume

real-time algorithm are coinciding with the solution ob-
tained with conventional optimization. Under the influence
of uncertainties significant changes in the active set are
observed, which are correctly detected in the real-time
algorithm.

The objective values, the number of iterations and the
CPU times per interval are compared in table 1. The values
of the objective are very close, even in the cases where only
one iteration is performed using the parametric sensitivity-
based solution of (13). Except on the first interval, the
solution of the neighboring extremal problem is sufficiently
accurate to compute the optimal update. However on the
first interval, the uncertainty in the kinetic parameter is
significantly perturbing the optimal solution. Therefore
after the first solution of the quadratic program, further it-
erations are triggered because the trajectories obtained by
the first-order update are violating the constraints and do
not fulfil the feasibility and optimality criteria in eq. (15).
Already after a small number of iterations, the optimal
solution is obtained on the first sampling interval. Com-
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Sampling Time 0 31.25 62.5 93.75 125 156.25 187.5 218.75 250 281.25 312.5 343.75

Real- Objective 1266.7 1265.9 1262.5 1248.9 1204.1 1128 1083.2 1070.1 1067.3 1066.6 1066.6

Time Iterations 5 1 1 1 1 1 1 1 1 1 1

Alg CPU Time 6.25 1.29 1.13 1.11 1.09 1.06 1.04 0.99 0.98 0.95 0.93

Rig. Objective 1266.8 1265.9 1262.5 1249 1204.9 1130.4 1083.9 1070.3 1067.4 1066.7 1066.7

Opt. Iterations 21 5 3 6 7 8 8 7 3 5 3

Alg CPU Time 9.58 3.49 6.09 3.53 3.78 4.25 3.89 3.84 5.03 2.81 2.06

Table 1. Objective function, number of iterations, and computational time per sampling interval
of real-time algorithm compared to a rigorous online solution of the optimization problem

pared to the second approach, the number of iterations per
sampling instant is significantly smaller. This is due to the
fact, that the exact Hessian matrix is computed in the
real-time algorithm, whereas the dynamic optimization is
solved in the second approach using a BFGS update, which
has a much slower rate of convergence. The computational
time required for the exact Hessian matrix is relatively low
in this case study with 0.6 seconds per iteration. However,
the total CPU time per iteration is lower in the second
approach, since the cost of computing one BFGS update
is very low.

5. CONCLUSIONS AND FUTURE WORK

The real-time algorithm based on neighboring extremals
provides closed-loop solutions which are nearly identical
to the solution obtained with rigorous dynamic online
optimization. The application to a benchmark problem
has shown that updates obtained by solving one quadratic
program with parametric sensitivities are very fast and
sufficiently accurate, if the process is perturbed by small
disturbances. In order to update the first and second-
order sensitivities online, an efficient computation method
based on composite adjoints is employed. Furthermore, the
performance is not deteriorating for larger uncertainties
because further iterations are triggered in order to satisfy
a certain feasibility and optimality criterion. Since in this
paper a rather small benchmark problem is used, the
approach will be applied to larger models of industrial
processes in the next step, where the computation of the
Hessian matrix will become more expensive. However, it is
expected that by adapting the discretization of the control
variables to the solution structure according to the ap-
proaches presented by Schlegel et al. (2005) and Hartwich
et al. (2007), the number of optimization variables will
be reduced, which will result in a further decrease in
computational time.
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