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Abstract: In this paper, a robust stabilization problem for a class of linear time-varying
delay systems with disturbances is studied using sliding mode techniques. Both matched and
mismatched disturbances, involving time-varying delay, are considered. The disturbances are
nonlinear and have nonlinear bounds. A sliding surface is designed and the stability of the
corresponding sliding motion is analysed based on the Razumikhin Theorem. Then a static
output feedback sliding mode control with time-delay is synthesized to drive the system to the
sliding surface in finite time. Simulation results show the effectiveness of the proposed approach.

1. INTRODUCTION

Since Karasovski extended Lyapunov theory to time-delay
systems (Krasovskii 1963) and Razuminkin proposed a
method to avoid the functional in the Lyapunov stabil-
ity analysis (Razuminkhin 1960), great progress has been
made on time-delay systems, but most of the early work
focused on the analysis of unforced time delay systems. In
recent years, increasing interest in the control of systems
with time-delay has considered cases where the delay may
appear in the system state, input, output and distur-
bances experienced by the systems. A variety of control
approaches such as sliding mode control, H∞ control,
back-stepping techniques and adaptive control etc. have
been applied to the control of systems with time delay
and many results have been achieved (Gouaisbaut, Blanco
& Richard 2004, Fridman, Shaked & Suplin 2005).

It is well known that sliding mode control is completely ro-
bust to so-called matched disturbances ((Utkin 1992, Ed-
wards & Spurgeon 1998)). This has motivated the ap-
plication of sliding mode techniques to time delay sys-
tems with disturbances ((Fridman et al. 2005, Niu, Ho &
Lam 2005, Luo, De La Sen & Rodellar 1997, Gouaisbaut
et al. 2004)). Most of the existing results are observer-
based or based on the fact that all of the system state
variables are accessible (Fridman et al. 2005, Gouaisbaut
et al. 2004, Jafarov 2005, Niu et al. 2005). However, system
state variables are often not fully available. It is possible to
establish an observer to estimate the delayed system state
variables and then apply an observer-based scheme (Niu
et al. 2005, Jafarov 2005). However, this will require more
hardware and increase system dimension. Therefore, static
output feedback control may be preferable. Compared with
state feedback, the static output feedback control problem
is much more difficult–even for systems without delay
((Syrmos, Abdallah, Dorato & Grigoriadis 1997)). Much
less attention has been paid to time delay systems with
delayed disturbance using static output feedback sliding
mode control and only very limited literature is available

(Luo et al. 1997). Luo et al studied a class of time-delay
systems where static and dynamic output feedback strate-
gies are both considered (Luo et al. 1997) but it is assumed
that all the uncertainty is matched. In all the existing re-
sults for time-delay systems, it is required that the bounds
on the uncertainties satisfy linear growth conditions (i.e.
linear functions of ‖x‖ and/or ‖xd(t)‖). Since bounds on
uncertainties may have nonlinear forms in reality (Chen
& Pandey 1990), it is pertinent to consider the case when
the bounds on the disturbances are nonlinear.

In this paper, a static output feedback sliding mode control
strategy is proposed to stabilize a class of time-varying
delay systems with time delayed nonlinear disturbances.
Both matched and mismatched uncertainties are consid-
ered where the bounds on the uncertainties involving time-
delay are employed in the control design. A memoryless
sliding surface is designed and the system structure is
analyzed and employed in the stability analysis of the slid-
ing motion by using the Razumikhin-Lypunov approach.
Then, a sliding mode control with time-delay based on
only output information is proposed to drive the system
to the sliding surface in finite time and maintain a sliding
motion on it thereafter. The robustness is enhanced by
fully using the nonlinear bounds on the disturbances. The
conservatism is reduced by employing the system struc-
ture and the feature that the sliding mode is of reduced
dynamical order.

Notation: In this paper, R+ denotes the nonnegative
number set {t | t ≥ 0}. The symbol C[a,b] represents the
set of Rn-valued continuous functions on the interval [a, b].
For a matrix A ∈ Rn×m, R(A) denotes the range space
of A. The expression A > 0 means that A is symmetric
positive definite and λmax(A) (λmin(A)) represents its
maximum (minimum) eigenvalue. For a matrix A > 0,

A
1
2 denotes a symmetric positive definite matrix such that

A
1
2A

1
2 = A. Finally, ‖ · ‖ denotes the Euclidean norm or

its induced norm.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 8642 10.3182/20080706-5-KR-1001.2440



2. PRELIMINARIES

Firstly, recall some basic linear systems theory. Consider
a linear system

ẋ=Ax+Bu (1)

y =Cx (2)

where x ∈ Rn, u ∈ Rm, y ∈ Rp are the states, inputs and
outputs respectively with m ≤ p < n. The triple (A,B,C)
comprises constant matrices of appropriate dimensions
where both B and C are of full rank.

For system (1)-(2), it is assumed that rank(CB) = m.
Then, from (Edwards & Spurgeon 1998) it can be shown

that a coordinate transformation x̃ = T̃ x exists such
that the system triple (A,B,C) with respect to the new
coordinates x̃ has the following structure

Ã =

[
Ã11 Ã12

Ã21 Ã22

]
, B̃ =

[
0
B2

]
, C̃ =

[
0 T̆

]
(3)

where Ã11 ∈ R(n−m)×(n−m), B2 ∈ Rm×m is nonsingular
and T̆ ∈ Rp×p is orthogonal. Further, it is assumed that

system (Ã11, Ã12, C̃1) with C̃1 defined by

C̃1 = [ 0(p−m)×(n−p) Ip−m ] (4)

is output feedback stabilizable i.e. there exists a matrix

K ∈ Rm×(p−m) such that Ã11 − Ã12KC̃1 is stable. It is
shown in (Edwards & Spurgeon 1998) that a necessary

condition for (Ã11, Ã12, C̃1) to be stabilizable is that the
invariant zeros of (A,B,C) lie in the open left half-plane.

Let

F = F2 [K Im ] T̆T (5)

where F2 ∈ Rm×m is any nonsingular matrix. If a further

nonsingular transformation z = T̂ x̃ with T̂ defined by

T̂ =

[
In−m 0

KC̃1 Im

]

is introduced, then in the new coordinates z, system (1)–
(2) has the following form

Â =

[
A11 A12

A21 A22

]
, B̂ =

[
0
B2

]
, Ĉ = [ 0 C2 ] (6)

where A11 = Ã11 − Ã12KC̃1 is stable, C2 ∈ Rp×p is

nonsingular and Ĉ satisfies

FĈ = [ 0 F2 ] (7)

where F2 ∈ Rm×m nonsingular. In the new coordinate
system z, the system output is described by

y = Ĉz (8)

Definition 1. The matrix triple (A,B,C) or linear system
(1)–(2) is called normalizable if there exists a nonsingular
transformation z = Tx such that in the new coordinate
system z, the system (1)–(2) has the following form

ż1 =A11z1 +A12z2 (9)

ż2 =A21z1 +A22z2 +B2u (10)

y = [ 0 C2 ] z, (11)

where z1 ∈ Rn−m, z2 ∈ Rm, A11 is stable, and B2 ∈
Rm×m and C2 ∈ Rp×p are nonsingular. Then, (9)–(11) is
called the canonical form of system (1)–(2).

Lemma 1. System (1)–(2) is normalizable if i) rank(CB) =

m. ii) for the triple (Ã11, Ã12, C̃1) defined in (3) and (4),

there exists a matrix K such that Ã11− Ã12KC1 is stable.

Proof: By letting T = T̂ T̃ , the conclusion follows directly
from the analysis above. ∆

Definition 2 ((Gu, Kharitonov & Chen 2003)) A contin-
uous function α : [0, a) 7→ [0,∞) is said to belong to class
K if it is strictly increasing and α(0) = 0. Further, it is said
to belong to class K∞ if a = ∞ and limr→∞ α(r) = ∞.

Consider a time-delay system

ẋ(t) = f̃(t, x(t− d(t)) (12)

with an initial condition x(t) = φ(t), t ∈ [−d, 0] where

f̃ : R+×C[−d,0] 7→ Rn takes R×(bounded sets of C[−d,0])

into bounded sets in Rn; d(t) > 0 is the time-varying delay
and d := supt∈R+{d(t)} <∞.

Lemma 2. (Razumikhin Theorem (Gu et al. 2003)) If
there exist class K∞ functions γi(·) with i = 1, 2, a class K
function γ3(·) and a continuous function V1(·) : [−d,∞] ×
Rn 7→ R+ satisfying

γ1(‖x‖) ≤ V1(t, x) ≤ γ2(‖x‖), t ∈ [−d,∞], x ∈ Rn

such that the time derivative of V1 along the solution of
system (12) satisfies

V̇1(t, x) ≤ −γ3(‖x‖)
whenever V1(t+θ, x(t+θ)) ≤ V1(t, x(t)) for any θ ∈ [−d, 0],
then the system (12) is uniformly asymptotically stable.

Lemma 3. If there exist a constant γ and a function
V2(t, x(t)) = xT P̃ x with P̃ > 0 such that the time deriva-
tive of V2(·) along the solution of system (12) satisfies

V̇2(t, x(t)) ≤ −γ
∥∥∥P̃

1
2x(t)

∥∥∥
2

(13)

whenever V2(t+θ, x(t+θ)) ≤ V2(t, x(t)) for any θ ∈ [−d, 0],
then, the system (12) is uniformly asymptotically stable.

Proof: From the definition of V2(·) it follows that

λmin(P̃ )‖x‖2 ≤ V2(t, x(t)) ≤ λmax(P̃ )‖x‖2

Furthermore, from (13)

V̇2(t, x(t)) ≤ −γx(t)T P̃ x(t) ≤ −γλmin(P̃ )‖x‖2

Then from Lemma 2 and exploiting the fact P̃ > 0, the
conclusion follows by letting γ1(τ) = λmin(P̃ )τ2, γ2(τ) =

λmax(P̃ )τ2 and γ3(τ) = γλmin(P̃ )τ2 in Lemma 2. ∆

The lemmas presented in this section will be used in the
following analysis. The symbols xd(t), yd(t) and zd(t) will
be used to denote x(t − d(t)), y(t − d(t)) and z(t − d(t))
respectively, throughout the paper.

3. SYSTEM DESCRIPTION

Consider a time-varying delay system with time-delayed
disturbances described by
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ẋ(t) =Ax(t) +A0xd(t) +B(u(t) + g(t, x(t), xd(t)))

+f(t, x(t), xd(t)) (14)

y(t) =Cx(t), i = 1, 2, . . . , N, (15)

where x ∈ Ω ⊂ Rn (where Ω is a neighborhood of
the origin), u ∈ Rm and y ∈ Rp are system states,
inputs and outputs respectively with m ≤ p < n. The
matrices A, A0, B and C represent constant matrices
of appropriate dimension with B and C of full rank.
The vectors g(·) and f(·) represent the matched and
mismatched disturbances affecting the system respectively.
The known function d(t) is a time-varying delay which is
assumed to be continuous, nonnegative and bounded in
R+, that is d := supt∈R+{d(t)} <∞. The initial condition
for the system is given by

x(t) = φ(t), t ∈ [−d, 0]

where φ(·) is continuous in [−d, 0]. It is assumed that the
nonlinear functions g(·) and f(·) are smooth enough in
their domain of definition such that the system has unique
continuous solutions for the initial condition.

Assumption 1. The triple (A,B,C) is normalizable, and
R(A0) ⊂ R(B).

Remark 1. Assumption 1 is a limitation on the linear
part of system (14)–(15). It guarantees that the triple
(A,B,C) can be transformed to a canonical form (9)–(11).
The assumption R(A0) ⊂ R(B) means that the time delay
term A0xd(t) is matched and thus it will not affect the
sliding motion.

Assumption 2. There exist known continuous nonnega-
tive functions ρi(·) : R+ × Rp × Rp 7→ R+ with i = 1, 2
and ̟(·) : R+ × Rp × Rp 7→ R+ such that for t ∈ R+,
and x(t), xd(t) ∈ Ω

‖f(t, x(t), xd(t))‖ ≤ ρ1(t, y(t), yd(t))‖x(t)‖
+ρ2

(
t, y(t), yd(t))‖xd(t)‖ (16)

‖g(t, x(t), xd(t))‖ ≤̟(t, y(t), yd(t)) (17)

In this paper, the objective is to design a static output
feedback control with time-delay of the form

u = u(t, y(t), yd(t)) (18)

based-on sliding mode techniques such that the closed-loop
system formed by the control law in (18) and the system
(14)–(15) is uniformly stable in a domain of the origin even
in the presence of the disturbances.

4. SLIDING MOTION ANALYSIS AND CONTROL
DESIGN

In this section, the main results will be presented. From
R(A0) ⊂ R(B) in Assumption 1, there exists a matrix
D ∈ Rm×n such that A0 = BD. Then, from Section 2, it
follows that under Assumption 1 there exists a coordinate
transformation z = Tx such that in the new coordinate
system z, system (14)–(15) is described by

ż1 =A11z1 +A12z2 + f1(t, z(t), zd(t)) (19)

ż2 =A21z1 +A22z2 +B2DT
−1zd(t) +B2(u

+g(t, T−1z(t), T−1zd(t)) + f2(t, z(t), zd(t)) (20)

y = [ 0 C2 ] z, (21)

where A11 ∈ R(n−m)×(n−m) is stable, B2 ∈ Rm×m and
C2 ∈ Rp×p are nonsingular, and

[
f1(t, z(t), zd(t))
f2(t, z(t), zd(t))

]
:= T [f(t, x(t), xd(t))]x=T−1z (22)

where f1(·) ∈ Rn−m and f2(·) ∈ Rm.

Consider the following sliding surface for system (14)–(15)

S = {x | FCx = 0} (23)

with F defined in (5). Then from (7) and (8), it follows
that

FCx = Fy = FĈz = [0 F2]z = F2z2
Since F2 is nonsingular, it follows that in the z coordinate
system the sliding surface (23) can be described by the
equation z2 = 0. Then from the canonical form (19)–(21),
it follows that the sliding dynamics associated with the
sliding surface (23) are described by

ż1 = A11z1 + [f1(t, z(t), zd(t)]z2(t)=0 (24)

where z1 ∈ Rn−m are the sliding mode state variables and
A11 is stable. It is clear that the mismatched disturbance
affects the sliding motion directly. Obviously system (24)
which describes the sliding motion involves time delay.

Assumption 3 There exist known continuous functions
φ1(·) and φ2(·) such that

∥∥[f1(t, z(t), zd(t))]z2(t)=0

∥∥≤ φ1(t, z1(t), ‖z1d(t)‖)‖z1(t)‖
+φ2(t, z1(t), ‖z1d(t)‖)‖z1d(t)‖ (25)

where the function φ1(t, r1, r2) and φ2(t, r1, r2) are both
nondecreasing about variables r2.

Remark 2. Assumption 3 is a limitation on the mis-
matched disturbance. It implies that when a sliding motion
takes place, the uncertainty f1 can be bounded by a known
continuous function of variables z1(t) and z1d(t). Note
Assumption 3 is unnecessary if f(·) in (14) does not include
time-delay (Yan, Edwards & Spurgeon 2004).

Since the matrix A11 in (24) is stable, it follows that for
any Q > 0 (Q ∈ Rm×m), there exists an unique matrix
P > 0 such that

AT
11P + PA11 = −Q (26)

Lemma 4. If Assumption 3 holds, then there exist known
continuous functions ψ1(t, z1(t), ‖z1d(t)‖) and ψ2(t, z1(t),
‖z1d(t)‖) such that

∥∥∥P
1
2 [f1(t, z(t), zd(t))]z2(t)=0

∥∥∥≤ ψ1(·)‖P
1
2 z1(t)‖

+ ψ2(·)‖P
1
2 z1d(t)‖ (27)

where the functions ψ1(t, r1, r2) and ψ2(t, r1, r2) are both
nondecreasing about variables r2.

Proof: It follows from the fact

‖z1(t)‖ ≤ λmax(P
− 1

2 )‖P 1
2 z1(t)‖ (28)

‖z1d(t)‖ ≤ λmax(P
− 1

2 )‖P 1
2 z1d(t)‖ (29)

that under Assumption 3
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∥∥∥P
1
2 [f1(t, z(t), zd(t))]z2(t)=0

∥∥∥

≤ λmax(P
1
2 )

(
φ1(t, z1(t), ‖z1d(t)‖)‖z1(t)‖

+φ2(t, z1(t), ‖z1d(t)‖)‖z1d(t)‖
)

≤ λmax(P
1
2 )

(
φ1 (t, z1(t), ‖z1d(t)‖)λmax(P

− 1
2 )‖P 1

2 z1(t)‖

+φ2 (t, z1(t), ‖z1d(t)‖)λmax(P
− 1

2 )‖P 1
2 z1d(t)‖

)
(30)

Let

ψ1(t, r1, r2) = λmax(P
1
2 )λmax(P

− 1
2 )φ1(t, r1, r2)

ψ2(t, r1, r2) = λmax(P
1
2 )λmax(P

− 1
2 )φ2(t, r1, r2)

Then it follows that (25) is true and the functions ψ1

and ψ2 are both nondecreasing about variables r2 since
φ1(t, r1, r2) and φ2(t, r1, r2) are both nondecreasing about
variables r2. Hence the conclusion follows. 2

The following theorem gives a sufficient condition under
which the sliding motion is stable:

Theorem 1. Under Assumption 3, the sliding mode dy-
namics (24) are asymptotically uniformly stable if there
exists a domain Ω0 = {z1 | z1 ∈ Rn−m} of the origin in
T (Ω) such that for any z1(t) ∈ Ω0 and t ∈ R+

γ := λmin(P− 1
2QP− 1

2 ) − sup
t∈R+,z1(t)∈Ω0

{Θ(t, z1(t))} > 0 (31)

where

Θ(t, z1(t)) : = ψ1

(
t, z1(t), λmax(P

− 1
2 )‖P 1

2 z1(t)‖
)

+ψ2

(
t, z1(t), λmax(P

− 1
2 )‖P 1

2 z1(t)‖
)
(32)

where the functions ψ1(·) and ψ2(·) satisfy (27), and the
matrices P and Q satisfy (26).

Proof: For system (24), consider as a Lyapunov function
candidate V (z1(t)) = (z1(t))

TPz1(t). It follows from (25)
and (26) that the time derivative of V along the trajecto-
ries of system (24) is given as

V̇ (z1(t)) |(24) =−(z1(t))
TP

1
2

(
P− 1

2QP− 1
2

)
P

1
2 z1(t)

+2(z1(t))
TP

1
2P

1
2 [f1(t, z(t), zd(t))]z2(t)=0

≤−λmin(P− 1
2QP− 1

2 )‖P 1
2 z1(t)‖2

+‖P 1
2 z1‖

(
ψ1(t, z1(t), ‖z1d(t)‖)‖P

1
2 z1(t)‖

+ψ2(t, z1(t), ‖z1d(t)‖)‖P
1
2 z1d(t)‖

)
(33)

where Lemma 4 has been used to obtain the inequality
above. Since ψ1(t, r1, r2) and ψ2(t, r1, r2) are both nonde-
creasing about variables r2, it follows from (28)–(29) that

ψ1(t, z1(t), ‖z1d(t)‖)≤ ψ1(t, z1(t), ζ(t)) (34)

ψ2(t, z1(t), ‖z1d(t)‖)≤ ψ2 (t, z1(t), ζ(t)) (35)

where ζ(t) := λmax(P
− 1

2 )‖P 1
2 z1d(t)‖.

From the definition of V (·), it follows that V (z1(t+ θ)) ≤
V (z1(t)) for any θ ∈ [−d, 0]] is equivalent to V (z1(t −
d)) ≤ V (z1(t)) for any −d ∈ [−d, 0]] which is equivalent to

‖P 1
2 z1d(t)‖ ≤ ‖P 1

2 z1(t)‖ (36)

Therefore, by substituting (36), (34) and (35) into (33),

V̇ (z1(t)) |(24)
≤−λmin(P− 1

2QP− 1
2 )‖P 1

2 z1(t)‖2

+ψ1 (t, z1(t), ζ(t)) ‖P
1
2 z1(t)‖2

+ψ2 (t, z1(t), ζ(t)) ‖P
1
2 z1(t)‖ ‖P

1
2 z1d(t)‖

≤−λmin

(
P− 1

2QP− 1
2

)
‖P 1

2 z1(t)‖2

+ψ1

(
t, z1(t), λmax(P

− 1
2 )‖P 1

2 z1(t)‖
)
‖P 1

2 z1(t)‖2

+ψ2

(
t, z1(t), λmax(P

− 1
2 )‖P 1

2 z1(t)‖
)
‖P 1

2 z1(t)‖2

=−
(
λmin(P− 1

2QP− 1
2 ) − Θ(t, z1(t))

)
‖P 1

2 z1(t)‖2

≤−γ‖P 1
2 z1(t)‖2 (37)

Since γ > 0 and P > 0, the conclusion follows directly
from Lemma 3. △
Remark 3. Theorem 1 shows that the stability of the
sliding motion is completely robust to the matched uncer-
tainty g(·) but is affected by the mismatched uncertainty
f(·). Since the sliding mode is a reduced-order system, it is
clear that only f2(·) affects the sliding mode and thus the
limitation on the mismatched uncertainty is weaker than
in other work ((Wu 1999)) where a similar limitation is
imposed on f(·) instead of f2(·).
Theorem 1 above has shown that, under appropriate
conditions, the sliding motion on the sliding surface (23) is
stable. The objective now is to design a controller to drive
the system to the sliding surface in finite time. Comparing
system (14)–(15) with (19)–(21) gives

CT−1 = [0 C2], TB =

[
0
B2

]

where C2 ∈ Rp×p and B2 ∈ Rm×m are nonsingular. From
(6) and (7), it follows that

FCB = F [0 C2]︸ ︷︷ ︸
Ĉ

[
0
B2

]
= [0 F2]

[
0
B2

]
= F2B2

is nonsingular since both F2 ∈ Rm×m and B2 ∈ Rm×m

are nonsingular. Partition AT−1, A0T
−1 and T as

AT−1 := [ Λ1 Λ2 ] , A0T
−1 := [ Υ1 Υ2 ] , T :=

[
T1

T2

]
(38)

where Λ1 ∈ Rn×m and Υ1 ∈ Rn×m are the first m
columns of AT−1 and A0T

−1 respectively; T1 ∈ Rm×n

and T2 ∈ R(n−m)×n are the first m and the last n − m
rows of T . Then, from the analysis above,

Tx =

[
T1x
T2x

]
=

[
z1
z2

]
=

[
T1x
C−1

2 y

]
(39)

Now, consider system (14)–(15) in Ω1 × Ω2 where

Ω1 : = {x(t) | ‖T1x‖ ≤ µ1} ⊂ Ω (40)

Ω2 : = {xd(t) | ‖T1xd(t)‖ ≤ µ2} ⊂ Ω (41)

with T1 defined in (38). Then the following output feed-
back sliding mode controller with time-delay is proposed
for the system

u = −k(t, y(t), yd(t))(FCB)−1 Fy(t)
‖Fy(t)‖ (42)
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where

k(t, y(t), yd(t))

= ‖Λ1‖µ1 + ‖Λ2C
−1
2 y‖ + ‖FCB‖̟(t, y(t), yd(t))

+‖FC‖ ‖T−1‖
(
ρ1(t, y(t), yd(t))

(
µ1 + ‖C−1

2 y(t))‖
)

+ρ2

(
t, y(t), yd(t)

) (
µ2 + ‖C−1

2 yd(t)
)
‖
)

+ η (43)

for some η > 0 where the matrices Λ1 and Λ2 are defined
by (38), the positive constants µ1 and µ2 are given in (40)
and (41) respectively, and the functions ̟(·), ρ1(·) and
ρ2(·) are given in Assumption 2.

Remark 4. From the analysis above, it is clear to see that
the sliding mode controller (42) with k(·) defined by (43) is
well defined since the matrix FCB is nonsingular and the
functions ̟(·), ρ1(·) and ρ2(·) are assumed to be known.
Obviously, the proposed control only depends on the time
t, the known time-delay d(t) and system output y(t).

Theorem 2. Consider system (14)–(15) in Ω1 ×Ω2. Under
Assumptions 1 and 2, the controller (42) with the gain k(·)
defined by (43) drives the system (14)–(15) to the sliding
surface (23) in finite time and maintains a sliding motion
thereafter.

Proof: Let σ(x) := FCx. Then the sliding surface (23)
can be described by equation σ(x) = 0. From (14) and
(42), it follows that

σT (x)σ̇(x) ≤ ‖σ(x)‖
(
‖FC(Ax(t) +A0xd(t))‖

+‖FCB‖ ‖g(t, x(t), xd(t))‖
+‖FC‖ ‖f(t, x(t), xd(t))‖

)
− k(·)‖σ(x)‖ (44)

From (39) it follows that in Ω1 × Ω2,

‖Tx(t)‖ ≤ µ1 + ‖C−1
2 y(t)‖ (45)

‖Txd(t)‖ ≤ µ2 + ‖C−1
2 yd(t)‖ (46)

From (38) and (39),

FC(Ax(t) +A0xd(t))

= FC
(

[ Λ1 Λ2 ]

[
T1x
C−1

2 y

]
+ [ Υ1 Υ2 ]

[
T1xd(t)
C−1

2 yd(t)

] )

= FCΛ1T1x+ FCΛ2C
−1
2 y + FCΥ1T1xd(t)

+FCΥ2C
−1
2 yd(t)

Therefore, from (45)–(46),

‖FC(Ax(t) +A0xd(t))‖ ≤ ‖FCΛ1‖µ1 + ‖FCΛ2C
−1
2 y(t)‖

+‖FCΥ1‖µ2 + ‖FCΥ2C
−1
2 yd(t)‖ (47)

From (16) and (45)–(46),

‖f(t, x(t), xd(t))‖
≤ ρ1(t, y(t), yd(t))

∥∥T−1
∥∥ ‖Tx(t)‖

+ρ2

(
t, y(t), yd(t)

) ∥∥T−1
∥∥ ‖Txd(t)‖

≤
∥∥T−1

∥∥
(
ρ1(t, y(t), yd(t))

(
µ1 + ‖C−1

2 y(t)‖
)

+ρ2

(
t, y(t), yd(t)

) (
µ2 + ‖C−1

2 yd(t)‖
) )

(48)

Substituting (17), (47), (48) and (43) to (44), yields
σT (x)σ̇(x) ≤ −η‖σ(x)‖. This shows that the reachability
condition ((Utkin 1992, Edwards & Spurgeon 1998)) is
satisfied and thus the conclusion follows. ∆

Theorems 1 and 2 together show that the closed-loop
system formed by applying control (42) with k(·) defined
by (43) to system (14)–(15) is uniformly stable.

5. NUMERICAL SIMULATION

Consider the time varying delay system with delayed
disturbance described by

ẋ=

[−10 1 0
1 0 0
0 1 −5

]

︸ ︷︷ ︸
A

x+

[
0 0 0
−1 0 1
0 0 0

]

︸ ︷︷ ︸
A0

xd(t)

+

[
0
−1
0

]

︸ ︷︷ ︸
B

(
u(t) + g(t, x(t), xd(t))

)

+



√

2β1(·)x1(t) + β2(·)x1d(t)
0

β1(·)x3(t) + β2(·)x3d(t)




︸ ︷︷ ︸
f(t,x(t),xd(t))

(49)

y =

[
0 0 1
0 1 0

]

︸ ︷︷ ︸
C

x (50)

where x = col(x1, x2, x3), u and y = col(y1, y2) are
respectively the state variables, the inputs and the outputs
of the system. The unknown functions β1(·) and β2(·) are
time-delayed disturbances which are assumed to satisfy

|β1(t, x(t), xd(t))| ≤ (y2(t))
2 | sin y1d(t)|

|β2(t, x(t), xd(t))| ≤ |y1d(t)| sin2 y1(t) + (y2(t))
2

The disturbance g(·) has unknown structure but satisfies

‖g(·)‖ ≤ y4
2(t) sin2 y1d(t)︸ ︷︷ ︸

̟(·)
The domain considered here is

Ω = {(x1, x2, x3) | x2 ∈ R, 1

2
x2

1 + x2
3 < 19}

Obviously

‖f(t, x(t), xd(t))‖ ≤
√

2(y2(t))
2 | sin y1d(t)|︸ ︷︷ ︸

ρ1(·)

‖x(t)‖

+
(
|y1d(t)| sin2 y1(t) + (y2(t))

2
)

︸ ︷︷ ︸
ρ2(·)

‖xd(t)‖

Clearly CB = [ 0 −1 ]
T

is full rank. According to the
algorithm given in (Edwards & Spurgeon 1998), the coor-

dinate transformation x̃ = T̃ x with

T̃ =

[−1 0 0
0 0 1
0 1 0

]

transforms the triple (A,B,C) into the following from

[
Ã11 Ã12

Ã21 Ã22

]
=



−10 0 −1
0 −5 1
−1 0 0


 (51)
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[
0

B̃2

]
=




0
0
−1


 ,

[
0 T̆2

]
= [0 I2] (52)

It is clear that the triple (A,B,C) is output feedback

normalizable with K = 0 due to the stability of Ã11.
Further R(A0) ⊂ R(B) since A0 = BD with D =
[ 1 0 −1 ]. Therefore Assumptions 1 and 2 are satisfied.
Since (51)–(52) already has the canonical form (9)–(11),

it follows that T = T̃ , A11 = Ã11, A12 = Ã12, A21 =

Ã21, A22 = Ã22, B2 = B̃2, C2 = C̃2 = I2. Let Q = 10I2.
It follows that the Lyapunov equation (26) has a unique

solution P = diag{0.5, 1} and thus P
1
2 = diag{

√
2

2 , 1}.
According to (Edwards & Spurgeon 1998), choose F =
[ 0 1 ]. The designed sliding surface from (23) is then
described by

S(x) = {(x1, x2, x3) | y2 = 0}
By direct computation, it follows from (22) that

f1 =

[
2 0
0 1

]
β1(·)P

1
2 z1(t) +

[√
2 0

0 1

]
β2(·)P

1
2 z1d(t) (53)

When sliding motion takes place, y2(t) = 0, and thus
β1(·) = 0 and |β2(·)‖ ≤ |y1d(t)| sin2 y1(t). Then,

∥∥∥P
1
2 [f1(t, z(t), zd(t))]z2(t)=0

∥∥∥

≤ ‖z1(t− d(t))‖(sin y1(t))2
∥∥∥P

1
2 zd(t)

∥∥∥ (54)

By comparing (54) with (27), it follows that ψ1(·) = 0 and
ψ2(·) = ‖z1(t− d(t))‖(sin y1(t))2. Therefore,

Θ(t, z1(t)) =
√

2(sin y1(t))
2
∥∥∥P

1
2 zd(t)

∥∥∥
By direct computation, it follows that the conditions of
Theorem 1 hold in the domain T (Ω). From (42) and
(43), the control is well defined and is obtained directly.
For implementation purposes, choose µ1 = µ2 = 2 and
η = 1. The time-varying delay d(t) is chosen as d(t) =
2 + sin t. A simulation with the initial condition φ(t) =
(cos(t), 1,−2 sin(t)) is shown in Figure 1 and confirms that
the proposed approach is effective.
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Fig. 1. The time responses of the system states

6. CONCLUSIONS

A robust static output sliding mode controller has been
developed to stabilise a class of time-varying delay sys-
tems in this paper. An approach to deal with nonlinear
matched and mismatched disturbances is shown when
time-varying delay is involved in the nonlinear bounds
on the disturbances. Compared with existing results, the
nonlinear bounds are fully used in the control design. The
conservatism is reduced by using the system structure
and the property that the sliding mode dynamics are of
reduced-order. Some remarks have shown the advantages
of the approach. Simulations have shown the effectiveness
of the proposed control scheme.
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