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Abstract: Timing an unforced (discrete or continuous) net model preserves deadlock-freeness,
but not the stronger liveness property, in general. The converse is not true, and if the autonomous
net model has deadlocks, the timing may transform it into deadlock-free. Under infinite servers
semantics, here we investigate the conditions on the firing rates of continuous timed models that
makes deadlock-free a given timed system.

1. INTRODUCTION

It is a well known fact that the addition of timing con-
straints to the firing of transitions does not preserve
liveness or non-liveness in (discrete) Petri net systems.
It is also in the folklore of the field that, for stochastic
discrete models, these properties are preserved when the
support of the stochastic functions associated to the firing
of transitions is infinite. Let us study this a little more
deeply by means of two simple examples. The net system
in Fig. 1, seen as autonomous (i.e., with no timing), is
obviously live. Nevertheless, if we associate deterministic
timings θ1 and θ3 to transitions t1 and t3, respectively, with
θ3 smaller (thus faster) than θ1, t2 will never be enabled,
thus cannot be fired, and non liveness follows. Considering
now the net system in Fig. 2(a), it is also immediate to
asses that it is non-live as autonomous; nevertheless, if
θ1 = θ2, and both transitions are deterministically timed,
the system becomes live. Therefore, liveness of the discrete
autonomous model is nor necessary, neither sufficient for
that of the (at least partially) deterministically-timed in-
terpreted model. Regarding deadlock-freeness, things are
a bit simpler, if a system is deadlock-free as autonomous
it will be deadlock-free as timed.
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Fig. 1. Live as autonomous discrete net system but non-
live under certain deterministic timing: θ1 > θ2
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Fig. 2. (a) Non live as autonomous, but live as timed if
λ1 = λ2, (b) is neither live as autonomous, nor for
any lambda

If we consider now a classical markovian timed interpre-
tation (i.e., all transitions have associated an exponential
probability distribution function, pdf), then the Markov
chain and the reachability graph are isomorphous (see Mol-
loy [1982]). Thus any autonomous discrete net system,
and the result of arbitrarily timing it, are both simulta-
neously live (deadlock-free) or both equally non-live (non-
deadlock-free). Therefore, even if the net system in Fig. 1
is non live for the above mentioned deterministic timing,
it is live for any positive exponential timing; moreover, the
net system in Fig. 2(a) is live for the defined deterministic
timing, but non live for any markovian case, even if timing
rates are equal: λ1 = λ2.

In principle, infinite server semantics in continuous nets
can be interpreted as a limit case for the markovian
interpretation of the discrete net model (Recalde and
Silva [2001]), and we might expect that the system in
Fig. 2(a) deadlocks, even for λ1 = λ2. Nevertheless, under
λ1 = λ2 the timed continuous Petri net (TCPN) model
is deadlock-free, what “can be understood” as the mean
time to deadlock being extremely long (in fact, for the
discrete model, if m0(p1) = 2k, it would take 2k2 firings
of t3 (see Silva and Recalde [2002]); but continuization
“is like k going to be extremely large”, thus, even if with
probability 1 the deadlock will be reached, it would take
an “enormous” amount of time).
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The kind of question we address here is: which conditions
should the firing rate λ verify so that it can be guaranteed
that the timed continuous Petri net is deadlock-free? The
results in this context are of two types: If the continuous
Petri net (CPN) is already deadlock-free, it will remain
deadlock-free for any infinite servers semantics interpre-
tation (already advanced for a particular case in Júlvez
et al. [2006]), and the new contribution: if the autonomous
CPN deadlocks, it can eventually be transformed into
deadlock-free (somehow, very long time to deadlock) for
particular numerical timing of the continuous model. The
results hold even for deadlock-free non-monotonic systems
(a system that being deadlock-free, has a deadlock if the
initial marking is increased). Intuitively speaking, dead-
locks, being associated to net siphons that are emptied, are
avoided by creating some token conservations laws around
siphons, thus avoiding them to become empty.

The material in this paper is structured as follows: Af-
ter recalling elementary concepts and notations, basics
of deadlock-freeness in CPNs is considered, both in au-
tonomous and timed systems. Later, using stability results
in linear systems theory and concepts and structures from
Petri net theory, the timing enforcing of token conserva-
tions laws is addressed.

2. NOTATION

We assume that the reader is familiar with Petri nets
(PNs) (for notation we use the standard one, see for
instance Silva [1993]).

The structure N = 〈P, T,Pre,Post〉 of continuous Petri
nets (CPN) is the same as the structure of the usual
(discrete) PNs. That is, P is a finite set of places, T
is a finite set of transitions with P ∩ T = ∅, Pre and
Post are |P | × |T | sized, natural valued, pre- and post-
incidence matrices. We assume that N is connected and
that every place has a successor, i.e. |p•| ≥ 1. The usual
PN system, 〈N ,m0〉, will be said to be discrete so as
to distinguish it from a continuous PN system, in which
m0 ∈ (R≥0)

|P |. Here, we always consider net systems
whose m0 marks all P-semiflows. The main difference
between both formalisms is in the evolution rule, since
in continuous PNs firing is not restricted to be done in
integer amounts (Alla and David [1998], Silva and Recalde
[2002]). As a consequence the marking is not forced to be
integer. More precisely, a transition t is enabled at m iff
for every p ∈ •t, m[p] > 0, and its enabling degree is
enab(t,m) = minp∈•t{m[p]/Pre[p, t]}. The firing of t in
a certain amount α ≤ enab(t,m) leads to a new marking
m′ = m+α ·C[P, t], where C = Post−Pre is the token-
flow matrix.

As in discrete systems, right and left integer annullers of
the token flow matrix are called T- and P-flows, respec-
tively. When they are non-negative, they are called T- and
P-semiflows. If there exists y > 0 s.t. y · C = 0, the
net is said to be conservative, and if there exists x > 0
s.t. C · x = 0 the net is said to be consistent. A set
of places Σ is a siphon iff •Σ ⊆ Σ• (the set of input
transitions is smaller or equal to the corresponding output
one), and it is minimal if it does not contain another
siphon. For example, in the net in Fig. 3(a), {p4, p5, p6}
defines a minimal siphon, while {p3, p4, p5, p6} is also a

siphon, but it is non minimal. Transitions whose firing
increases (decreases) the marking of Σ are called generator
(consumer) transitions. Transition t1 is a consumer and t3
is a generator for the first siphon; for the second one the
generator is t2 not t3.
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Fig. 3. (a) Deadlocks as autonomous, but is deadlock-free
as timed if λ1 > λ3. (b) Minimal siphon of the net of
3(a).

For reachability, as in Júlvez et al. [2006], the limit
concept is used, and a marking reached in the limit of an
infinitely long sequence is considered reachable. 〈N ,m0〉 is
deadlock-free iff for every reachable marking there exists
t ∈ T such that enab(t,m) > 0. If a marking mD is
a deadlock, no transition is enabled and the set ΣD =
{p ∈ P | mD(p) = 0} is a (usually non minimal) siphon
whose outputs cover all transitions (i.e. ΣD

• = T ). For
example, for the system in Fig. 3(a), [1, 1, 3, 0, 0, 0] is the
only deadlock marking, and defines the minimal siphon
{p4, p5, p6} as seen before.

A simple and interesting way to introduce time in discrete
PNs is to assume that all the transitions are timed with
exponential probability distribution functions. For the
timing interpretation of continuous PNs we will use a
first order (or deterministic) approximation of the discrete
case, assuming that the delays associated to the firing of
transitions can be approximated by their mean values.
Hence, a Timed Continuous Petri Net (TCPN) is a

continuous PN together with a vector λ ∈ R
|T |
>0

.

Different semantics have been defined for continuous timed
transitions, the two most important being infinite server
or variable speed, and finite server or constant speed
(see Alla and David [1998], Silva and Recalde [2002]).
Here infinite server semantics will be considered. Like
in purely markovian discrete net models, under infinite
server semantics, the flow through a timed transition t
is the product of the speed, λ[t], and enab(t,m), the
instantaneous enabling of the transition, i.e., f(m)[t] =
λ[t] · enab(t,m) = λ[t] · minp∈•t{m[p]/Pre[p, t]}. For the
flow to be well defined, every transition must have at least
one input place, hence in the following we will assume
∀t ∈ T, |•t| ≥ 1. The ”min” in the definition leads to
the concept of configurations: a configuration assigns to
each transition one place that for some markings will
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control its firing rate. An upper bound for the number
of configurations is

∏

t∈T |•t|. The reachability space can
be divided into marking regions, denoted by <, according
to the configurations. These regions are polyhedrons, and
are disjoint, except on the borders.

The flow through the transitions can be written in a
vectorial form as f(m) = ΛΠ(m)m, where Λ is a diagonal
matrix whose elements are those of λ, and Π(m) is the
configuration operator matrix at m, which is defined s.t.
the i-th entry of the vector Π(m)m is equal to the enabling
degree of transition ti (see Mahulea et al. [2008]). For

example, in the net of Fig. 2(b) the marking m = [ 1 1 0 ]
T

defines a configuration at which p3 is controlling the firing
rate of t3, so, the transitions flow vector is

f(m) = ΛΠ(m)m =

[

λ1 0 0
0 λ2 0
0 0 λ3

] [

1 0 0
1 0 0
0 0 1

][

1
1
0

]

=

[

λ1

λ2

0

]

The dynamical behavior of a TCPN system is described
by its state equation: ṁ = CΛΠ(m)m. Inside each region,
the state equation is linear (Π(m) is constant).

3. DEADLOCK-FREENESS IN CPN SYSTEMS

Regarding autonomous (i.e. unforced) continuous net sys-
tems, it has been proved in Recalde et al. [2007] that
deadlock-freeness is decidable. However, timing can change
the deadlock-freeness properties of these continuous net
systems, although just in one sense.

If a system reaches a deadlock as timed, it also deadlocks
as untimed. This result was stated in Júlvez et al. [2006] for
a subclass of nets, but it is clearly a general one, because
the evolution of the timed system just gives a particular
trajectory, i.e., a firing sequence, that can be fired also in
the untimed system (it is immediate that this property
holds also for discrete net systems).

Proposition 1. If the CPN system 〈N ,m0〉 is deadlock-
free, then for any λ > 0, 〈N ,λ,m0〉 is timed-deadlock-
free.

The reverse is not true, as already shown (Fig. 2(a)). It
may seem that the set of rates for which this kind of
things occur has to be of null measure (i.e., a smaller
dimension manifold), but it is not so. For example, the
CPN system in Fig. 3(a) deadlocks as autonomous, but
is deadlock-free as timed if λ3 > λ1. Let us prove it by
showing that under that timing the siphon defined by
the deadlock, {p4, p5, p6}, will never empty. The deadlock
belongs to a configuration in which m6 ≤ m3. However,
inside this configuration, the marking of the siphon is
always increasing, since m4 + m5 + m6 = m0,4 + m0,5 +
m0,6 +

∫

(f3 − f1)dτ , and
∫

(f3 − f1)dτ =
∫

(λ3 − λ1) ·
m6 · dτ > 0. Clearly, the siphon never empties either if
λ3 = λ1, and so the system does not deadlock, unless the
initial marking was a deadlock already. If λ3 < λ1 and the
system enters in this configuration, the siphon will empty
and a deadlock will be reached. Moreover, the deadlock
does not occur if the initial marking of p1 is 3 instead of 5.
That is, deadlock freeness is non monotonic with respect
to marking: increasing the number of resources (m0,1 > 3)
can kill the system!

But there may exist cases also for which no set of rates
makes the system deadlock-free. For example, the net
system in Fig. 2(b). This net system has two minimal
siphons {p1, p2} and {p1, p3}. Their markings are non-
increasing for any set of rates (ṁ1 + ṁ2 = −λ2 · m1, and
ṁ1 + ṁ3 = −λ1 · m1). For any λ1 and λ2, in infinite time
one of the siphons will empty.

4. DEADLOCKS AND EQUILIBRIUM MARKINGS

Steady states in TCPN systems are equilibrium mark-
ings, i.e. solutions of ṁ = CΛΠ(m)m = 0. Clearly,
deadlock markings are equilibrium markings in which the
transitions flow is null. In this section, the existence of
non-deadlock equilibrium markings, related to a deadlock
configuration (a configuration associated to a deadlock
marking), is studied.

Deadlock markings can appear in different regions. In
general, when more than one deadlock appear, they can
be isolated or connected in the reachability space, in
last case there exist infinite deadlocks. However, inside a
region (in which the system is linear), deadlocks are always
connected, i.e. there exists a unique deadlock or infinite
and connected deadlocks.

In Mahulea et al. [2008], it was pointed out that, if for a
given configuration operator matrix Πi there exists η s.t.

[

Πi

By
T

]

η = 0 (1)

and its associated region <i includes an equilibrium mark-
ing (in particular a deadlock), then <i has infinite equi-
librium markings with the same flow (infinite deadlocks).
Notice that such vector η is an eigenvector of CΛΠi

related to a zero-valued eigenvalue.

In general, eigenvectors η related to a zero eigenvalue of
CΛΠi can be interpreted as the difference between a pair
of equilibrium markings, even when both markings have
different flows. Also, notice that, by definition, ΛΠiη is
either 0 or a T-flow of C.

In the sequel, we call fixed eigenvalues of CΛΠi those
that do not depend on λ, i.e. they are timing independent
(constant). In the same way, other eigenvalues are called
variable.

Proposition 2. Let 〈N ,λ,m0〉 be a TCPN system. Let
ΠD and <D be a deadlock configuration operator matrix
and its associated region, respectively.

1) If all the eigenvalues of CΛΠD, non associated to P-
flows, are not null, then CΛΠDη = 0 iff ΠDη = 0.
As a consequence, all equilibrium markings in <D are
deadlocks.

2) If there exists an eigenvector η, associated to a vari-
able zero valued eigenvalue, s.t. ΛΠDη is a T-semiflow,
dim(<D) = rank(C), and there exists a deadlock mD ∈
<D with only one associated configuration, then there exist
infinite non deadlock equilibrium markings in <D.

Proof. Since ΠD is related to a deadlock configuration,

then there exists a similarity transformation
[

ZT By

]T
,

where Z is a matrix built with all the elementary rows
related to the places that are constraining some transition
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at ΠD (Z exists because in a deadlock configuration there
always exists a place in the support of each P-flow that
is not constraining any transition). Denoting by [ A B ]
the inverse transformation, the transformed system is
described by

[

Z

BT
y

]

CΛΠD [ A B ] =

[

ZCΛΠDA 0
0 0

]

since BT
y C = 0 and ΠDB = 0 (because ZB = 0

and, by definition of Z, the rows of ΠD are scaled rows
of Z). Since this matrix is diagonal (by blocks) and a
similarity transformation does not change the eigenvalues,
then the eigenvalues of ZCΛΠDA are those of CΛΠD non
associated to P-flows.

Statement 1). By hypothesis, all the eigenvalues, non
associated to the P-flows, are not null. Then, all the
eigenvalues of ZCΛΠDA are not null, which implies that
it has full rank. So, every vector in the right annuler of
CΛΠD is in the form η = Ba, for some vector a. However,
since ΠDB = 0 then ΠDη = 0 (i.e. ∀η s.t. CΛΠDη = 0,
ΛΠDη = 0). Finally, since every equilibrium marking
m1 ∈ <D must satisfy CΛΠDm1 = 0, then m1 is in
the right annuler of ΛΠD, i.e. ΛΠDm1 = 0, so, every
equilibrium marking is a deadlock.

Statement 2). By hypothesis, η fulfills that CΛΠDη = 0
since ΛΠDη is a T-semiflow. Now, let us define η′ =
AZη (η′ 6= 0 since η is associated to a variable eigen-

value). Notice that ΛΠDη = ΛΠD [ A B ]
[

ZT By

]T
η,

but ΠDB = 0, so ΛΠDη = ΛΠD [ A 0 ]
[

ZT By

]T
η =

ΛΠDAZη = ΛΠDη′, so, ΛΠDη′ is also a T-semiflow.
Besides, CΛΠDη = CΛΠDη′ = 0 and, since BT

y A = 0

(by definition of A), then BT
y η′ = BT

y AZη = 0.

Now, consider a vector m1 = mD + η′α, notice that it is
nonnegative for a small enough α ≥ 0 (∀pj s.t. mD(pj) = 0
it fulfills that η′

j ≥ 0, because pj is constraining a transi-

tion and ΛΠDη′ is a T-semiflow). Besides, since By
T m1 =

By
T mD, dim(<D) = rank(C) and mD is related to only

one configuration, there always exists a small enough α ≥ 0
s.t. m1 ∈ <D. Moreover, CΛΠDm1 = 0 and ΛΠDη′ 6= 0
(which implies that ΛΠDm1 6= ΛΠDmD = 0), i.e. m1 is
a non deadlock equilibrium marking. Finally, by linearity,
every marking in the convex described by m1 and mD is
also a non deadlock equilibrium marking.

5. REACHABILITY AND STABILITY OF
DEADLOCK MARKINGS

In this section, deadlock-freeness of TCPN systems is
algebraically analyzed. In particular, the stability of a
deadlock marking, seen as an equilibrium marking, is
studied through the knowledge of the values of the poles
of the linear subsystems at which it belongs. For a detailed
introduction to stability concepts see Khalil [2002].

It is known that P-flows are related to zero valued poles
that do not depend on the timing λ (Mahulea et al.
[2008]). From an algebraic perspective, it means that the
matrix CΛΠi has a fixed zero valued eigenvalue and its
corresponding row and column eigenvectors (i.e. ∃ y and
η s.t yCΛΠD = 0 and CΛΠDη = 0). In this way, P-flows
are row eigenvectors associated to the zero eigenvalue (but

not all eigenvectors are P-flows) , and every related column
eigenvector η fulfills that ΛΠDη is a T-flow.

As for eigenvalues, let us distinguish between fixed (λ-
timing independent) and variable poles.

Not all fixed poles are related to P-flows. According to
the Sylvester’s inequality (Chen [1984]), for any Πi and Λ
rank(CΛΠi) ≤ min(rank(C), rank(Πi)). So, whenever
rank(Πi) < rank(C) the dimension of the right annuller
of CΛΠi is bigger than the dimension of P-flows. Thus
there exist others zero valued poles, and since they are
independent of Λ, then they are fixed. Notice that these
zero valued poles appear for a particular configuration,
but not for all, as in case of those associated to P-flows.
Moreover, whenever this new kind of pole appears, it is
possible to find an eigenvector η that fulfills equation 1.

Some nets allow to reduce the rank of CΛΠi by choosing
appropriately Λ. It means that it is possible to add other
zero valued poles and other marking conservation laws,
which are not P-flows (i.e. ∃y s.t. yṁ = yCΛΠD = 0
but yC 6= 0). So, if this occurs for a given deadlock
configuration matrix ΠD, and the corresponding marking
conservation law ensures that the places that are con-
straining the transitions at ΠD never become empty, then
the deadlock markings, related to ΠD, can be avoided. The
sense of this idea is introduced in the following proposition.

Proposition 3. Let 〈N ,λ,m0〉 be a TCPN system. Con-
sider that m0 > 0 belongs to a deadlock region <D, and
let ΠD be its associated configuration operator matrix.

If there exists an eigenvector η, associated to a variable
zero valued eigenvalue of CΛΠD, s.t. ΛΠDη is a T-
semiflow, then deadlock markings in <D are not reachable
through a trajectory in <D.

Proof. Without loss of generality, suppose that η also
fulfills that BT

y η = 0 (in the proof of Prop. 2 it is shown
that, if the hypothesis of this proposition is fulfilled then
there always exists an eigenvector η′ s.t. CΛΠDη′ = 0,
BT

y η′ = 0 and ΛΠDη′ is a T-semiflow).

Now, every marking m1 reachable from m0 > 0, through
a trajectory inside <D, must fulfill the solution of the
state equation (see Chen [1984]): m1 = eCΛΠDτm0, for
some time τ . In this way, considering an initial marking
m0

′ = m0 + ηα, (for some suitable scalar α), the marking
reachable at time τ is given by: m′

1
= eCΛΠDτm0

′. So,
substituting m0

′ and considering that eCΛΠDτη = η (this
equality is easy to see by expanding the exponential matrix
in Taylor’s series), it follows that m′

1
= m1 + ηα.

Now, following a contradiction reasoning, suppose that
for a given positive initial marking m0 ∈ <D the system
converges asymptotically towards a deadlock mD ∈ <D.
Then, according to previous equation, for a positive initial
marking m0

′ = m0 + ηα, in which α < 0, the system
converges asymptotically towards mD

′ = mD + ηα, but,
since the entries of ηα related to the places that constraint
a transition in the support of the T-semiflow ΛΠDη are
negative and the corresponding entries of mD are zero
(close enough to zero), then mD

′ has negative entries,
which is a contradiction. Therefore, mD is not reachable,
through a trajectory in <D, from any positive marking
m0 ∈ <D.
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From a control theory perspective, deadlocks are equilib-
rium points, so, the knowledge of the value of the poles
(in each deadlock configuration) is useful to decide if a
deadlock will be reached or will not. This idea is captured
in the following propositions:

Proposition 4. Let 〈N ,λ,m0〉 be a TCPN system. Given
a deadlock mD in only one associated region <D, then

1) If the real part of the eigenvalues of CΛΠD, non
associated to the P-flows, are negative, then mD is locally
asymptotically stable, i.e. there exists a neighborhood of
mD, named N(mD), s.t. if m0 ∈ N(mD) then the system
inevitably reach mD.

2) If CΛΠD has a zero valued eigenvalue, non associated
to the P-flows, and the real part of the others are negative,
then mD is stable. (mD could be reached or not.)

3) If there exists a variable zero eigenvalue of CΛΠD, with
an associated eigenvector η s.t. ΛΠDη is a T-semiflow,
then mD is not reachable from a positive marking m0 ∈
<D, through a trajectory in <D.

4) If there exist a positive eigenvalue of CΛΠD then mD

is unstable, so it is not reachable from another marking,
through a trajectory in <D.

Proof. The reduced order system ṁ′ = (ZCΛΠDA)′m′,
obtained by the similarity transformation introduced in
the proof of Prop. 2, describes the dynamical behavior of
the original one (in <D). Besides, in this system, only the
poles of CΛΠD, non associated to P-flows, are present.
Now, if the condition of statement 1) is fulfilled, then,
according to Prop. 2, all equilibrium markings in <D are
deadlocks. So, statements 1), 2) and 4) are immediate from
the stability concepts of control theory (Khalil [2002]).
Statement 3) is immediate from Prop. 3.

The stability analysis of a deadlock marking mD, which
is related to different configurations, is more complex,
since it is a stability problem of a piecewise linear system.
However, it is possible to know what could happen for
particular cases.

Proposition 5. Let 〈N ,λ,m0〉 be a TCPN system. Given
a deadlock marking mD that belongs to different regions
<1

D, . . . ,<k
D, then

1) If for each region <i
D the eigenvalues of CΛΠD

i are real
and negative, then mD is locally asymptotically stable, i.e.
there exists a neighborhood of mD, named N(mD), s.t. if
m0 ∈ N(mD) then the system inevitably reach mD.

2) If for all regions <i
D, there exists an eigenvector η,

associated to a variable zero eigenvalue of CΛΠD
i, s.t.

ΛΠD
iη > 0, then mD is not reachable from m0 > 0

through a trajectory in
⋃

<i
D.

Proof. As in the proof of previous proposition, for every
configuration Ci

D related to mD, there exists a reduced
order system that describes the dynamical behavior of the
system in <i

D. If the condition of statement 1) is fulfilled,
then every linear subsystem has real and negative poles.
It is well known, in control theory (Khalil [2002]), that in
such case the state is decreasing all time in such system.
So, the marking m′, and thus the flow, is decreasing while
the system stay in <i

D. Since that happens for every system

Fig. 4. TCPN system with two independent T-semiflows.

associated to mD, then for a small enough neighborhood
of mD, named N(mD), the flow is decreasing, so, the
system inevitably will reach mD. Statement 2) derives
from Prop. 3.

6. TOWARDS INTERPRETATION AT NET LEVEL

The introductory examples of section 3 show that, for
some systems, deadlocks can be avoided by means of a
suitable timing λ. Proposition 3 establishes that, if Λ is
s.t. a variable zero valued eigenvalue exists in CΛΠD with
an associated eigenvector η s.t. ΛΠDη is a T-semiflow,
then no deadlock mD ∈ <D is reachable from any positive
initial marking m0 ∈ <D, through a trajectory in <D.
On the other hand, if the real part of the eigenvalues of
CΛΠD (non associated to P-flows) are negative for every
Λ, and mD has only one associated configuration, then,
according to Prop. 4, there exists a neighborhood N(mD)
from which the system inevitably reach mD.

For instance, consider the TCPN system of Fig. 2(b).
This system has two possible configurations and infinite
deadlocks related to each one (for both Πi, ∃η 6= 0
satisfying equation (1)). For each configuration, the linear
subsystem, described by the transfer matrix CΛΠi, has a
fixed zero-valued pole. The real parts of the other poles,
for both subsystems, are: Re{s1} = Re{s2} = − 1

2
(λ1 +

λ2 + λ3), where λ1, λ2 and λ3 are the transitions firing
speeds. Since λ must be positive, then, there does not
exist a timing that leads to a variable zero valued pole,
and an asymptotically stable deadlock exists (the real part
of the variable poles are always negative), i.e. this system
is dead for any timing λ. The same conclusion is easy to
obtain, noting that both siphons of this system do not have
generator transitions.

On the other hand, consider the TCPN system of
Fig. 3(a). In this case, there exists a unique deadlock

mD = [ 1 1 3 0 0 0 ]
T
, belonging to a unique configu-

ration. This net has three P-semiflows, meaning three
fixed zero valued poles. Here, we are interested in the
possibility of finding λ that leads to a new zero valued
pole. For that, it is sufficient to compute the lower order
term of the characteristic polynomial of matrix CΛΠD in
a parametric form.

Remark. Considering the characteristic polynomial of
CΛΠD, where ΠD is related to a deadlock configuration
and Λ is in parametric form, the order of the lower order
term is the number of fixed zero valued poles. Besides,
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a particular Λ that makes this lower order term become
zero, leads to a variable zero valued poles.

For this example, the lower order term is s3(λ4λ1λ2 −
λ4λ2λ3), it means that there exist 3 fixed zero valued poles,
and that, a timing λ s.t λ2λ4(λ1 − λ3) = 0 creates an
additional zero valued pole. It is easy to see that every
timing λ in which λ1 = λ3 fulfills that condition, in which
case, according to Prop. 4, mD is not reachable from any
m0 > 0, thus the TCPN system is deadlock-free (since
this system is consistent and it has only one minimal
T-semiflow, then the existence of a variable zero valued
eigenvalue implies that ∃η that fulfills the conditions of
Prop. 4).

Furthermore, if λ3 > λ1, then the coefficient of this term
becomes negative and it can be demonstrated, through
the Routh-Hurwitz criterion (Khalil [2002]), that mD is
unstable (a pole becomes positive), then the system is
deadlock-free (Prop. 4). Also, since this system is mono
T-semiflow, deadlock-freeness implies liveness.

Now, consider the system of Fig. 4. This system has 16
configurations but only three with deadlocks:

C1 = {(t3, p5) , (t4, p6) , (t5, p8) , (t6, p5)}

C2 = {(t3, p5) , (t4, p2) , (t5, p8) , (t6, p5)}

C3 = {(t3, p5) , (t4, p2) , (t5, p4) , (t6, p5)}

(the arcs that constraint transitions t1, t2, t7 and t8 are
not written because they are the same for every configu-
ration). Configuration C2 has infinite deadlocks (∃η 6= 0
satisfying equation (1)), but all deadlocks in the system
are connected. Computing the lower order terms of the
characteristic polynomial for the three cases we obtain:

for C1 s3λ1λ2λ7λ4(λ3λ8 − λ5λ6)

for C2 s4 [λ1λ2λ7(λ3λ8 − λ5λ6) + λ2λ7λ8(λ1λ6 − λ3λ4)]

for C3 s3λ2λ7λ8λ5(λ1λ6 − λ3λ4)

Notice that for any timing λ s.t. λ1λ6 = λ3λ4 and
λ8λ3 = λ5λ6, a variable zero valued pole is added to
every deadlock configuration. Even if this system has
two different minimal T-semiflows, there does not exist a
siphon whose output transitions correspond to the support
of one of them. So, every eigenvector η associated to the
new variable zero valued pole is s.t. ΛΠDη is a linear
combination of the minimal T-semiflows, i.e. a T-semiflow
whose support covers all transitions. Then, according to
Prop. 5, no deadlock is reachable from a positive initial
marking.

Now, the system of Fig. 5 has two different minimal T-
semiflows, whose supports are covered, independently, by
siphons Σ1 = {p4, p5, p6} and Σ2 = {p9, p10, p11}. If timing
λ is s.t. λ1 = λ3, the siphon Σ1 conserves its total marking
(as in the system of Fig. 3(a)). But, if λ5 > λ7 then the
siphon Σ2 will empty, so, the system does not reach a
deadlock, but it is non live. On the contrary, choosing λ

s.t. λ1 = λ3 and λ5 = λ7, both siphons remain marked,
for all time, i.e. the timed system is live.

Notice that, in such case, we are introducing two linearly
independent right eigenvectors of CΛΠD, i.e. we are
adding two variable zero-valued poles.

Fig. 5. TCPN system with two independent siphons.

7. CONCLUSIONS

Starting with the idea that a deadlock leads to an empty
siphon, we motivate the rest of the work by showing in an
easy way that values for the firing rates may exist in order
to make deadlock-free the timed continuous model under
infinite servers semantics. After that, we algebraically
study equilibrium markings (i.e. potentially steady states),
because deadlocks are so. Looking for the stability of
those equilibrium markings, we can prove conditions for
transforming the system into deadlock-free one (checking
if those markings are unstable). Finally, closing the loop,
we came back on the net interpretations of the results
partially proven in the framework of control theory.
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